Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (11): 2491-2503.DOI: 10.3969/j.issn.1004-1524.2022.11.18
• Environmental Science • Previous Articles Next Articles
ZHAO Lixian(), ZHANG Wangfei(
), LI Yun, ZHANG Tingwei, HUANG Guoran
Received:
2021-09-09
Online:
2022-11-25
Published:
2022-11-29
Contact:
ZHANG Wangfei
CLC Number:
ZHAO Lixian, ZHANG Wangfei, LI Yun, ZHANG Tingwei, HUANG Guoran. Crops classification based on GF-3 satellite data and Η/Α/α- decomposition characteristic parameters[J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2491-2503.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.11.18
Fig.3 Statistical diagram of polarization scattering characteristics of 9 parameters derived fromΗ/Α/ α - decomposition DN, Digital number, the photopixel brightness value of the remote sensing image.
参数 Parameter | 小麦 Wheat | 油菜 Rape | 植被 Vegetation |
---|---|---|---|
DERD | 0.62±0.06 | 0.55±0.03 | 0.57±0.03 |
PF | 0.69±0.06 | 0.32±0.06 | 0.49±0.05 |
PA | 0.78±0.06 | 0.56±0.14 | 0.71±0.08 |
PH | 0.14±0.03 | 0.48±0.07 | 0.29±0.04 |
RVI | 0.41±0.08 | 0.91±0.09 | 0.69±0.07 |
SERD | 0.72±0.07 | 0.32±0.08 | 0.53±0.05 |
SE | 1.54±0.43 | 0.58±0.32 | 2.92±0.96 |
SEI | 0.53±0.41 | 0.67±0.36 | 2.49±0.94 |
SEP | 1.06±0.22 | 0.15±0.06 | 0.43±0.11 |
Table 1 List of polarization scattering characteristic statistics
参数 Parameter | 小麦 Wheat | 油菜 Rape | 植被 Vegetation |
---|---|---|---|
DERD | 0.62±0.06 | 0.55±0.03 | 0.57±0.03 |
PF | 0.69±0.06 | 0.32±0.06 | 0.49±0.05 |
PA | 0.78±0.06 | 0.56±0.14 | 0.71±0.08 |
PH | 0.14±0.03 | 0.48±0.07 | 0.29±0.04 |
RVI | 0.41±0.08 | 0.91±0.09 | 0.69±0.07 |
SERD | 0.72±0.07 | 0.32±0.08 | 0.53±0.05 |
SE | 1.54±0.43 | 0.58±0.32 | 2.92±0.96 |
SEI | 0.53±0.41 | 0.67±0.36 | 2.49±0.94 |
SEP | 1.06±0.22 | 0.15±0.06 | 0.43±0.11 |
参数Parameter | SVM | RF |
---|---|---|
DERD | 0.33 | 0.23 |
PF | 0.74 | 0.81 |
PA | 0.43 | 0.34 |
PH | 0.81 | 0.86 |
RVI | 0.86 | 0.82 |
SERD | 0.78 | 0.84 |
SE | 0.58 | 0.57 |
SEI | 0.40 | 0.32 |
SEP | 0.89 | 0.87 |
Table 2 Kappa coefficient of SVM and RF classification based on single parameter
参数Parameter | SVM | RF |
---|---|---|
DERD | 0.33 | 0.23 |
PF | 0.74 | 0.81 |
PA | 0.43 | 0.34 |
PH | 0.81 | 0.86 |
RVI | 0.86 | 0.82 |
SERD | 0.78 | 0.84 |
SE | 0.58 | 0.57 |
SEI | 0.40 | 0.32 |
SEP | 0.89 | 0.87 |
参数组合 Combination of parameters | 总体精度 Overall accuracy/% | Kappa系数 Kappa coefficient | ||
---|---|---|---|---|
SVM | RF | SVM | RF | |
PA+SE | 78.80 | 74.03 | 0.68 | 0.60 |
PA+SEI | 82.90 | 82.82 | 0.74 | 0.74 |
PA+SE+SEI | 86.00 | 86.44 | 0.79 | 0.80 |
PA+DERD+SE+SEI | 93.02 | 92.05 | 0.89 | 0.88 |
Table 3 Classification accuracy of combined parameters
参数组合 Combination of parameters | 总体精度 Overall accuracy/% | Kappa系数 Kappa coefficient | ||
---|---|---|---|---|
SVM | RF | SVM | RF | |
PA+SE | 78.80 | 74.03 | 0.68 | 0.60 |
PA+SEI | 82.90 | 82.82 | 0.74 | 0.74 |
PA+SE+SEI | 86.00 | 86.44 | 0.79 | 0.80 |
PA+DERD+SE+SEI | 93.02 | 92.05 | 0.89 | 0.88 |
[1] | 高晗, 汪长城, 杨敏华, 等. 基于高分三号极化SAR数据的农作物散射特性分析及分类[J]. 测绘工程, 2019, 28(3): 50-56. |
GAO H, WANG C C, YANG M H, et al. Scattering feature analysis and classification of crops based on GF-3 PolSAR data[J]. Engineering of Surveying and Mapping, 2019, 28(3): 50-56. (in Chinese with English abstract) | |
[2] | 杨劲松, 任林, 王隽. 高分三号卫星对海浪的首次定量遥感[J]. 海洋与湖沼, 2017, 48(2): 207-209. |
YANG J S, REN L, WANG J. The first quantitative remote sensing of ocean surface waves by Chinese GF-3 SAR satellite[J]. Oceanologia et Limnologia Sinica, 2017, 48(2): 207-209. (in Chinese with English abstract) | |
[3] | 王文煜, 谢春华, 袁新哲, 等. 高分三号卫星ATI模式海表面流场测量性能分析[J]. 航天器工程, 2017, 26(1): 132-139. |
WANG W Y, XIE C H, YUAN X Z, et al. Performance analysis of sea surface current measurements by GF-3 satellite ATI mode[J]. Spacecraft Engineering, 2017, 26(1): 132-139. (in Chinese with English abstract) | |
[4] | 刘泽宇, 柳彬, 郭炜炜, 等. 高分三号NSC模式SAR图像舰船目标检测初探[J]. 雷达学报, 2017, 6(5): 473-482. |
LIU Z Y, LIU B, GUO W W, et al. Ship detection in GF-3 NSC mode SAR images[J]. Journal of Radars, 2017, 6(5): 473-482. (in Chinese with English abstract) | |
[5] | 李平湘, 赵伶俐, 任烨仙. 合成孔径雷达在农业监测中的应用和展望[J]. 地理空间信息, 2017, 15(3): 1-4. |
LI P X, ZHAO L L, REN Y X. Outlook and application of the synthetic aperture radar in agriculture monitoring[J]. Geospatial Information, 2017, 15(3): 1-4. (in Chinese with English abstract) | |
[6] | 秦昆, 陈一祥, 甘顺子, 等. 高分辨率遥感影像空间结构特征建模方法综述[J]. 中国图象图形学报, 2013, 18(9): 1055-1064. |
QIN K, CHEN Y X, GAN S Z, et al. Review on methods of spatial structural feature modeling of high resolution remote sensing images[J]. Journal of Image and Graphics, 2013, 18(9): 1055-1064. (in Chinese with English abstract) | |
[7] | 韩震, 金亚秋. ERS-2 SAR和Landsat ETM+数据融合提取崇明东滩典型地物信息与分类[J]. 海洋环境科学, 2006, 25(3): 21-24. |
HAN Z, JIN Y Q. Information extraction and classification of typical canopies over the Chongming eastern tidal flat from data fusion of ERS-2 SAR and Landsat ETM+[J]. Marine Environmental Science, 2006, 25(3): 21-24. (in Chinese with English abstract) | |
[8] | 曾妍, 王迪, 田甜, 等. 极化SAR农作物分类研究进展[J]. 中国农业信息, 2020, 32(2): 13-26. |
ZENG Y, WANG D, TIAN T, et al. Research advances on crop classification using PolSAR data[J]. China Agricultural Informatics, 2020, 32(2): 13-26. (in Chinese with English abstract) | |
[9] | 韩宇. 多时相C波段全极化SAR农作物识别方法研究[D]. 呼和浩特: 内蒙古师范大学, 2015. |
HAN Y. Research of crop recognition method based on multi-temporal C-band quad-poi SAR[D]. Hohhot: Inner Mongolia Normal University, 2015. (in Chinese with English abstract) | |
[10] | 邹斌, 张腊梅, 孙德明, 等. PolSAR图像信息提取技术及应用的发展[J]. 遥感技术与应用, 2009, 24(3): 263-273. |
ZOU B, ZHANG L M, SUN D M, et al. Development and application of information extraction using polarimetric SAR data[J]. Remote Sensing Technology and Application, 2009, 24(3): 263-273. (in Chinese with English abstract) | |
[11] | 张腊梅, 段宝龙, 邹斌. 极化SAR图像目标分解方法的研究进展[J]. 电子与信息学报, 2016, 38(12): 3289-3297. |
ZHANG L M, DUAN B L, ZOU B. Research development on target decomposition method of polarimetric SAR image[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3289-3297. (in Chinese with English abstract) | |
[12] | LEE J S, POTTIER E. 极化雷达成像基础与应用[M].洪文, 李洋, 尹嫱, 等,译. 北京: 电子工业出版社, 2013. |
[13] |
JIAO X F, KOVACS J M, SHANG J L, et al. Object-oriented crop mapping and monitoring using multi-temporal polarimetric RADARSAT-2 data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 96: 38-46.
DOI URL |
[14] |
LI H P, ZHANG C, ZHANG S Q, et al. Full year crop monitoring and separability assessment with fully-polarimetric L-band UAVSAR: a case study in the Sacramento Valley, California[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 74: 45-56.
DOI URL |
[15] | 张继超, 郭伟, 周沛希. 雷达植被指数与香农熵在GF-3影像分类中的应用[J]. 测绘科学, 2020, 45(10): 48-54. |
ZHANG J C, GUO W, ZHOU P X. Application of radar vegetation index and Shannon entropy in GF-3 image classification[J]. Science of Surveying and Mapping, 2020, 45(10): 48-54. (in Chinese with English abstract) | |
[16] | 马腾, 王耀强, 李瑞平, 等. 基于微波遥感极化目标分解的土地覆盖/土地利用分类[J]. 农业工程学报, 2015, 31(2): 259-265. |
MA T, WANG Y Q, LI R P, et al. Land cover/land use classification based on polarimetric target decomposition of microwave remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(2): 259-265. (in Chinese with English abstract) | |
[17] | 姚天宇. 长征四号丙运载火箭成功发射高分三号卫星[J]. 中国航天, 2016(8): 8. |
YAO T Y. The CZ-4 carrier rocket successfully launched GF-3 satellite[J]. Aerospace China, 2016(8): 8. (in Chinese) | |
[18] |
JI Y J, XU K P, ZENG P, et al. GA-SVR algorithm for improving forest above ground biomass estimation using SAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 6585-6595.
DOI URL |
[19] | 张王菲, 姬永杰. 极化与干涉SAR植被参数反演[M]. 北京: 中国林业出版社, 2019. |
[20] | ALLAIN S, FERRO-FAMIL L, POTTIER E. Two novel surface model based inversion algorithms using multi-frequency polSAR data[C]// IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium. Anchorage, AK, USA: IEEE, 2004: 823-826. |
[21] | ALLAIN S, FERROFAMIL L, POTIER E. New eigenvalue-based parameters for natural media characterization[C]// European Radar Conference, 2005. EURAD 2005. Paris, France: IEEE, 2005: 177-180. |
[22] |
RÉFRÉGIER P, MORIO J. Shannon entropy of partially polarized and partially coherent light with Gaussian fluctuations[J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2006, 23(12): 3036-3044.
DOI URL |
[23] | AINSWORTH T L, LEE J S, SCHULER D L. Multi-frequency polarimetric SAR data analysis of ocean surface features[C]// IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Honolulu, HI, USA: IEEE, 2000: 1113-1115. |
[24] | AINSWORTH T L, CLOUDE S R, LEE J S. Eigenvector analysis of polarimetric SAR data[C]// IEEE International Geoscience and Remote Sensing Symposium. Toronto, ON, Canada: IEEE, 2002: 626-628. |
[25] | VAN ZYL J J. Application of Cloude’s target decomposition theorem to polarimetric imaging radar data[J]. Proceedings of SPIE, 1993, 1748: 184-191. |
[26] |
DURDEN S L, VAN ZYL J J, ZEBKER H A. The unpolarized component in polarimetric radar observations of forested areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(2): 268-271.
DOI URL |
[27] | WANG P Z. Pattern recognition with fuzzy objective function algorithms[J]. SIAM Review, 1983, 25(3): 442. |
[28] | 王馨爽. 多维度SAR森林及其类型分类识别方法研究[D]. 西安: 西安科技大学, 2013. |
WANG X S. Multi-dimension SAR for forest recognition and forest type classification[D]. Xi’an: Xi’an University of Science and Technology, 2013. (in Chinese with English abstract) | |
[29] | 隋艳立. 基于深度支持向量机的极化SAR图像分类[D]. 西安: 西安电子科技大学, 2014. |
SUI Y L. Polarmetric SAR image classification based on deep SVM[D]. Xi’an: Xidian University, 2014. (in Chinese with English abstract) | |
[30] | HE F C, GU L J, REN R Z, et al. Research on crop classification in northeast China based on multi-source and multi-temporal SAR Images[J]. Proceedings of SPIE, 2018, 10767: 124-136. |
[31] |
CHAN J C W, PAELINCKX D. Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery[J]. Remote Sensing of Environment, 2008, 112(6): 2999-3011.
DOI URL |
[32] |
LIU C, SHANG J L, VACHON P W, et al. Multiyear crop monitoring using polarimetric RADARSAT-2 data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(4): 2227-2240.
DOI URL |
[33] | 朱凤敏, 吴迪, 杨佳琪. 基于Sentinel-1B SAR数据的农作物分类方法研究[J]. 测绘与空间地理信息, 2020, 43(5): 105-108. |
ZHU F M, WU D, YANG J Q. Research on crop classification method based on sentinel-1B SAR data[J]. Geomatics & Spatial Information Technology, 2020, 43(5): 105-108. (in Chinese with English abstract) | |
[34] |
LARRAÑAGA A, ÁLVAREZ-MOZOS J. On the added value of quad-pol data in a multi-temporal crop classification framework based on RADARSAT-2 imagery[J]. Remote Sensing, 2016, 8(4): 335.
DOI URL |
[35] |
TAMIMINIA H, HOMAYOUNI S, MCNAIRN H, et al. A particle swarm optimized kernel-based clustering method for crop mapping from multi-temporal polarimetric L-band SAR observations[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 58: 201-212.
DOI URL |
[36] | 王晨丞, 王永前, 王利花. 基于SAR纹理信息的农作物识别研究: 以农安县为例[J]. 遥感技术与应用, 2021, 36(2): 372-380. |
WANG C C, WANG Y Q, WANG L H. Crop identification based on SAR texture information: a case study of Nong’an County[J]. Remote Sensing Technology and Application, 2021, 36(2): 372-380. (in Chinese with English abstract) |
[1] | LI Yongmei, WANG Hao, ZHAO Yong, ZHANG Ligen. Hyperspectral estimation of leaf water content of Lycium barbarum based on continuum-removed method [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 781-789. |
[2] | ZHANG Yuxun, WANG Lei, QU Xiangning, CAO Yuan, WU Mengyao, YU Ruixin, SUN Yuan. Application research of GF-1/WFV data in estimation of maize leaf area index [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 861-872. |
[3] | LU Muyuan, LIU Yuan, LIU Guijian. Predictive analysis of soil organic matter content in black soil region based on combined model [J]. , 2020, 32(8): 1427-1436. |
[4] | QIAN Jiawei, LIU Xiaoqing, ZHANG Jingjing, ZHOU Weihong, LI Jianlong. Constructions of hyperspectral remote sensing monitoring models for heavy metal contents in farmland soil in Zhangjiagang City [J]. , 2020, 32(8): 1437-1445. |
[5] | YU Wenjie, WANG Caixia, QIAO Lu, WANG Songlei, HE Xiaoguang. Construction of PLSR prediction model for detecting color of Jingyuan yellow beef by hyperspectral technique [J]. , 2020, 32(3): 527-533. |
[6] | YANG Hongyun, ZHOU Qiong, YANG Jun, SUN Yuting, LU Yan, YIN Hua. Study on nitrogen nutrition diagnosis of rice leaves based on hyperspectrum [J]. , 2019, 31(10): 1575-1582. |
[7] | MENG Qinglong, ZHANG Yan, SHANG Jing. Nondestructive recognition of surface defect on kiwifruits using hyperspectral imaging technology [J]. , 2019, 31(8): 1372-1378. |
[8] | WANG Meiling, JIAO Linlin, WANG Xiaohong, WU Bing, XIAO Xingxing. Differences in spectral characteristics of typical vegetation in Caofeidian wetland [J]. , 2019, 31(6): 963-969. |
[9] | LIANG Changjiang, WU Xuemei, WANG Fang, SONG Zhujun, ZHANG Fugui. Research on recognition algorithm of field mulch film based on unmanned aerial vehicle [J]. , 2019, 31(6): 1005-1011. |
[10] | JIN Xiu, LU Jie, FU Yunzhi, WANG Shuai, XU Gaojian, LI Shaowen. A classification method for hyperspectral imaging of Fusarium head blight disease symptom based on deep convolutional neural network [J]. , 2019, 31(2): 315-325. |
[11] | WANG Wencai, ZHAO Liu, LI Shaowen, QI Haijun, JIN Xiu, WANG Shuai. Prediction of soil total nitrogen content from hyperspectral data based on charateristic wavelength selection and modelling [J]. , 2018, 30(9): 1576-1584. |
[12] | YU Changle, XU Tongyu, WANG Yang, YU Fenghua. Inversion estimation of carotenoid content of dicotyledonous plant leaves based on hyperspectral data [J]. , 2018, 30(3): 393-398. |
[13] | YANG Fuqin, FENG Haikuan, LI Zhenhai, YANG Guijun, DAI Huayang. Estimation of apple leaf chlorophyll content based on hyperspectral data [J]. , 2017, 29(10): 1742-1748. |
[14] | XU Tong-yu, HONG Xue, CHEN Chun-ling, ZHOU Yun-cheng, CAO Ying-li, YU Feng-hua, LI Na. Study on northern japonica rice yield model based on canopy date of NDVI [J]. , 2016, 28(10): 1790-1795. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||