Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (8): 1864-1875.DOI: 10.3969/j.issn.1004-1524.20221096
• Environmental Science • Previous Articles Next Articles
SI Linlin(
), XU Jing, CAO Kai, ZHANG Xian, WANG Jianhong*(
)
Received:2022-07-25
Online:2023-08-25
Published:2023-08-29
CLC Number:
SI Linlin, XU Jing, CAO Kai, ZHANG Xian, WANG Jianhong. Response of bacterial community to planting cover crops in virgin upland red soil[J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1864-1875.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20221096
| 处理 Treatment | 地上部 Shoot | 根系 Root | 总生物量 Total |
|---|---|---|---|
| SC_bean | 3.9 bc | 0.5 c | 4.4 c |
| SC_ssh | 5.6 a | 2.6 a | 8.2 a |
| JN_bean | 2.4 c | 0.7 c | 3.1 c |
| JN_ssh | 4.5 ab | 1.9 b | 6.4 b |
Table 1 Biomass of cover crops under different treatments t·hm-2
| 处理 Treatment | 地上部 Shoot | 根系 Root | 总生物量 Total |
|---|---|---|---|
| SC_bean | 3.9 bc | 0.5 c | 4.4 c |
| SC_ssh | 5.6 a | 2.6 a | 8.2 a |
| JN_bean | 2.4 c | 0.7 c | 3.1 c |
| JN_ssh | 4.5 ab | 1.9 b | 6.4 b |
| 处理 Treatment | pH | SOC/ (g·kg-1) | POC/ (g·kg-1) | SMBC/ (mg·kg-1) | TN/ (g·kg-1) | PON/ (g·kg-1) | SMBN/ (mg·kg-1) | AN/ (mg·kg-1) | AP/ (mg·kg-1) | AK/ (mg·kg-1) |
|---|---|---|---|---|---|---|---|---|---|---|
| SC_CK | 5.06 b | 2.90 d | 0.53 d | 60.51 d | 0.12 d | 0.04 bc | 3.38 d | 26.25 c | 4.83 de | 112.50 e |
| SC_bean | 5.08 b | 7.97 a | 1.98 a | 244.39 b | 0.66 a | 0.13 a | 14.02 b | 61.95 a | 42.15 a | 158.40 cd |
| SC_ssh | 5.04 b | 6.50 b | 1.94 a | 364.81 a | 0.47 b | 0.11 a | 24.59 a | 64.40 a | 17.63 c | 232.00 b |
| JN_CK | 5.30 b | 5.25 c | 0.95 cd | 42.51 d | 0.33 c | 0.03 c | 10.10 c | 30.33 c | 3.47 e | 131.00 de |
| JN_bean | 5.27 b | 5.76 c | 1.48 b | 150.08 c | 0.37 c | 0.08 b | 17.26 b | 50.40 b | 37.24 b | 275.75 a |
| JN_ssh | 5.58 a | 5.86 c | 1.03 bc | 116.55 c | 0.28 c | 0.03 c | 17.56 b | 29.40 c | 8.68 d | 178.10 c |
Table 2 Soil properties in dryland under different treatments
| 处理 Treatment | pH | SOC/ (g·kg-1) | POC/ (g·kg-1) | SMBC/ (mg·kg-1) | TN/ (g·kg-1) | PON/ (g·kg-1) | SMBN/ (mg·kg-1) | AN/ (mg·kg-1) | AP/ (mg·kg-1) | AK/ (mg·kg-1) |
|---|---|---|---|---|---|---|---|---|---|---|
| SC_CK | 5.06 b | 2.90 d | 0.53 d | 60.51 d | 0.12 d | 0.04 bc | 3.38 d | 26.25 c | 4.83 de | 112.50 e |
| SC_bean | 5.08 b | 7.97 a | 1.98 a | 244.39 b | 0.66 a | 0.13 a | 14.02 b | 61.95 a | 42.15 a | 158.40 cd |
| SC_ssh | 5.04 b | 6.50 b | 1.94 a | 364.81 a | 0.47 b | 0.11 a | 24.59 a | 64.40 a | 17.63 c | 232.00 b |
| JN_CK | 5.30 b | 5.25 c | 0.95 cd | 42.51 d | 0.33 c | 0.03 c | 10.10 c | 30.33 c | 3.47 e | 131.00 de |
| JN_bean | 5.27 b | 5.76 c | 1.48 b | 150.08 c | 0.37 c | 0.08 b | 17.26 b | 50.40 b | 37.24 b | 275.75 a |
| JN_ssh | 5.58 a | 5.86 c | 1.03 bc | 116.55 c | 0.28 c | 0.03 c | 17.56 b | 29.40 c | 8.68 d | 178.10 c |
Fig.6 Principal co-ordinates analysis (PcoA) based on OTU levels and distribution and dispersion of different treatments based on the PC1 (principle component 1) axis PC1, Principal component 1; PC2, Principle component 2.
Fig.7 Redundancy analysis (RDA) ordination diagram of relationships within soil environmental factors and bacterial community based on OTU levels SOC, Soil organic carbon; POC, Particulate organic carbon; SMBC, Soil microbial biomass carbon; TN, Total nitrogen; PON, Particulate organic nitrogen; SMBN, Soil microbial biomass nitrogen; AN, Alkaline hydrolysis nitrogen; AP, Available phosphorus; AK, Available potassium. The same as below.
| 环境因子 Environmental factors | RDA1 | RDA2 | R2 | P |
|---|---|---|---|---|
| pH | 0.897 9 | -0.440 3 | 0.401 2 | 0.020 |
| SOC | -0.095 4 | 0.995 4 | 0.340 2 | 0.038 |
| POC | 0.208 8 | 0.978 0 | 0.251 0 | 0.102 |
| SMBC | 0.082 5 | 0.996 6 | 0.480 9 | 0.008 |
| TN | -0.153 8 | 0.988 1 | 0.297 0 | 0.057 |
| PON | -0.068 9 | 0.997 6 | 0.432 4 | 0.016 |
| SMBN | 0.882 4 | 0.470 5 | 0.227 9 | 0.146 |
| AN | 0.218 0 | 0.975 9 | 0.384 2 | 0.025 |
| AP | 0.549 5 | 0.835 5 | 0.257 8 | 0.105 |
| AK | 0.995 5 | 0.094 6 | 0.358 5 | 0.040 |
Table 3 Explanatory weights of environmental factors for RDA results
| 环境因子 Environmental factors | RDA1 | RDA2 | R2 | P |
|---|---|---|---|---|
| pH | 0.897 9 | -0.440 3 | 0.401 2 | 0.020 |
| SOC | -0.095 4 | 0.995 4 | 0.340 2 | 0.038 |
| POC | 0.208 8 | 0.978 0 | 0.251 0 | 0.102 |
| SMBC | 0.082 5 | 0.996 6 | 0.480 9 | 0.008 |
| TN | -0.153 8 | 0.988 1 | 0.297 0 | 0.057 |
| PON | -0.068 9 | 0.997 6 | 0.432 4 | 0.016 |
| SMBN | 0.882 4 | 0.470 5 | 0.227 9 | 0.146 |
| AN | 0.218 0 | 0.975 9 | 0.384 2 | 0.025 |
| AP | 0.549 5 | 0.835 5 | 0.257 8 | 0.105 |
| AK | 0.995 5 | 0.094 6 | 0.358 5 | 0.040 |
Fig.8 Heatmap of correlation within environmental factors and bacterial taxa at phylum level “*” “**” “***” represent significance of P<0.05, P<0.01, P<0.001, respectively.
| [1] | CHEN W, TENG Y, LI Z G, et al. Mechanisms by which organic fertilizer and effective microbes mitigate peanut continuous cropping yield constraints in a red soil of South China[J]. Applied Soil Ecology, 2018, 128: 23-34. |
| [2] | JIN Z W, CHEN C, CHEN X M, et al. The crucial factors of soil fertility and rapeseed yield: a five year field trial with biochar addition in upland red soil, China[J]. Science of the Total Environment, 2019, 649: 1467-1480. |
| [3] | 黄国勤, 赵其国. 红壤生态学[J]. 生态学报, 2014, 34(18): 5173-5181. |
| HUANG G Q, ZHAO Q G. Initial exploration of red soil ecology[J]. Acta Ecologica Sinica, 2014, 34(18): 5173-5181. (in Chinese with English abstract) | |
| [4] | 黄国勤, 周丽华, 杨滨娟, 等. 红壤旱地不同复种方式养地效果[J]. 生态学报, 2014, 34(18): 5191-5199. |
| HUANG G Q, ZHOU L H, YANG B J, et al. Improving soil fertility with different multiple cropping patterns in upland red soil[J]. Acta Ecologica Sinica, 2014, 34(18): 5191-5199. (in Chinese with English abstract) | |
| [5] | HALLAMA M, PEKRUN C, LAMBERS H, et al. Hidden miners: the roles of cover crops and soil microorganisms in phosphorus cycling through agroecosystems[J]. Plant and Soil, 2019, 434(1): 7-45. |
| [6] | 曹卫东, 包兴国, 徐昌旭, 等. 中国绿肥科研60年回顾与未来展望[J]. 植物营养与肥料学报, 2017, 23(6): 1450-1461. |
| CAO W D, BAO X G, XU C X, et al. Reviews and prospects on science and technology of green manure in China[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1450-1461. (in Chinese with English abstract) | |
| [7] | 樊志龙, 柴强, 曹卫东, 等. 绿肥在我国旱地农业生态系统中的服务功能及其应用[J]. 应用生态学报, 2020, 31(4): 1389-1402. |
| FAN Z L, CHAI Q, CAO W D, et al. Ecosystem service function of green manure and its application in dryland agriculture of China[J]. Chinese Journal of Applied Ecology, 2020, 31(4): 1389-1402. (in Chinese with English abstract) | |
| [8] | 丁钰珮, 杜宇佳, 高广磊, 等. 呼伦贝尔沙地樟子松人工林土壤细菌群落结构与功能预测[J]. 生态学报, 2021, 41(10): 4131-4139. |
| DING Y P, DU Y J, GAO G L, et al. Soil bacterial community structure and functional prediction of Pinus sylvestris var. mongolica plantations in the Hulun Buir Sandy Land[J]. Acta Ecologica Sinica, 2021, 41(10): 4131-4139. (in Chinese with English abstract) | |
| [9] | 刘佳, 陈晓芬, 刘明, 等. 长期施肥对旱地红壤细菌群落的影响[J]. 土壤学报, 2020, 57(2): 468-478. |
| LIU J, CHEN X F, LIU M, et al. Effects of long-term fertilization on bacterial community in upland red soil[J]. Acta Pedologica Sinica, 2020, 57(2): 468-478. (in Chinese with English abstract) | |
| [10] | CAMBARDELLA C A, ELLIOTT E T. Particulate soil organic-matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal, 1992, 56(3): 777-783. |
| [11] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
| [12] | PEREIRA L B, VICENTINI R, OTTOBONI L M M. Changes in the bacterial community of soil from a neutral mine drainage channel[J]. PLoS One, 2014, 9(5): e96605. |
| [13] | 陈安磊, 王凯荣, 谢小立. 施肥制度与养分循环对稻田土壤微生物生物量碳氮磷的影响[J]. 农业环境科学学报, 2005, 24(6): 1094-1099. |
| CHEN A L, WANG K R, XIE X L. Effects of fertilization systems and nutrient recycling on microbial biomass C, N and P in a reddish paddy soil[J]. Journal of Agro-Environmental Science, 2005, 24(6): 1094-1099. (in Chinese with English abstract) | |
| [14] | 李红燕, 胡铁成, 曹群虎, 等. 旱地不同绿肥品种和种植方式提高土壤肥力的效果[J]. 植物营养与肥料学报, 2016, 22(5): 1310-1318. |
| LI H Y, HU T C, CAO Q H, et al. Effect of improving soil fertility by planting different green manures in different patterns in dryland[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(5): 1310-1318. (in Chinese with English abstract) | |
| [15] | PIOTROWSKA-DŁUGOSZ A, WILCZEWSKI E. Assessment of soil nitrogen and related enzymes as influenced by the incorporation time of field pea cultivated as a catch crop in Alfisol[J]. Environmental Monitoring and Assessment, 2014, 186(12): 8425-8441. |
| [16] | 杨山, 李小彬, 王汝振, 等. 氮水添加对中国北方草原土壤细菌多样性和群落结构的影响[J]. 应用生态学报, 2015, 26(3): 739-746. |
| YANG S, LI X B, WANG R Z, et al. Effects of nitrogen and water addition on soil bacterial diversity and community structure in temperate grasslands in Northern China[J]. Chinese Journal of Applied Ecology, 2015, 26(3): 739-746. (in Chinese with English abstract) | |
| [17] | 雷利国, 江长胜, 郝庆菊. 缙云山土地利用方式对土壤轻组及颗粒态有机碳氮的影响[J]. 环境科学, 2015, 36(7): 2669-2677. |
| LEI L G, JIANG C S, HAO Q J. Impacts of land use changes on soil light fraction and particulate organic carbon and nitrogen in Jinyun Mountain[J]. Environmental Science, 2015, 36(7): 2669-2677. (in Chinese with English abstract) | |
| [18] | TIAN J, WANG J Y, DIPPOLD M, et al. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil[J]. Science of the Total Environment, 2016, 556: 89-97. |
| [19] | LU M, REN Y L, WANG S J, et al. Contribution of soil variables to bacterial community composition following land use change in Napahai Plateau wetlands[J]. Journal of Environmental Management, 2019, 246: 77-84. |
| [20] | ZHAO Y, YAN C B, HU F C, et al. Intercropping pinto peanut in litchi orchard effectively improved soil available potassium content, optimized soil bacterial community structure, and advanced bacterial community diversity[J]. Frontiers in Microbiology, 2022, 13: 868312. |
| [21] | 黄志强, 邱景璇, 李杰, 等. 基于16S rRNA基因测序分析微生物群落多样性[J]. 微生物学报, 2021, 61(5): 1044-1063. |
| HUANG Z Q, QIU J X, LI J, et al. Exploration of microbial diversity based on 16S rRNA gene sequence analysis[J]. Acta Microbiologica Sinica, 2021, 61(5): 1044-1063. (in Chinese with English abstract) | |
| [22] | BRYANT J A, LAMANNA C, MORLON H, et al. Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(supplement 1): 11505-11511. |
| [23] | 王金平, 黄荣珍, 朱丽琴, 等. 肥力提升措施对林地红壤生物结皮层微生物群落结构的影响[J]. 土壤学报, 2023, 60(1): 292-303. |
| WANG J P, HUANG R Z, ZHU L Q, et al. Effects of different fertility improvement measures on microbial community structures in biological red soil crusts of woodland[J]. Acta Pedologica Sinica, 2023, 60(1): 292-303. (in Chinese with English abstract) | |
| [24] | HARTMAN W H, RICHARDSON C J, VILGALYS R, et al. Environmental and anthropogenic controls over bacterial communities in wetland soils[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(46): 17842-17847. |
| [25] | 周灵芝, 劳承英, 申章佑, 等. 定向栽培连作淮山根际土壤细菌群落的多样性分析[J]. 西南农业学报, 2021, 34(8): 1601-1607. |
| ZHOU L Z, LAO C Y, SHEN Z Y, et al. Analysis of diversity of rhizosphere soil bacterial community of yam in directional cultivation in continuous cropping[J]. Southwest China Journal of Agricultural Sciences, 2021, 34(8): 1601-1607. (in Chinese with English abstract) | |
| [26] | SHEN C C, NI Y Y, LIANG W J, et al. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra[J]. Frontiers in Microbiology, 2015, 6: 582. |
| [27] | BAIS H P, WEIR T L, PERRY L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms[J]. Annual Review of Plant Biology, 2006, 57: 233-266. |
| [28] | SÁNCHEZ-CAÑIZARES C, JORRÍN B, POOLE P S, et al. Understanding the holobiont: the interdependence of plants and their microbiome[J]. Current Opinion in Microbiology, 2017, 38: 188-196. |
| [29] | YANG Y J, LIU H X, DAI Y C, et al. Soil organic carbon transformation and dynamics of microorganisms under different organic amendments[J]. Science of the Total Environment, 2021, 750: 141719. |
| [30] | 李欣雨, 刘函亦, 薛少琪, 等. 几种绿肥的根系分泌物对土壤锌的活化效应[J]. 中国土壤与肥料, 2022(1): 81-89. |
| LI X Y, LIU H Y, XUE S Q, et al. Zinc mobilization effect by root exudates of different green manure[J]. Soil and Fertilizer Sciences in China, 2022(1): 81-89. (in Chinese with English abstract) | |
| [31] | LADYGINA N, HEDLUND K. Plant species influence microbial diversity and carbon allocation in the rhizosphere[J]. Soil Biology and Biochemistry, 2010, 42(2): 162-168. |
| [32] | KOBAYASHI K. Plant methyl salicylate induces defense responses in the rhizobacterium Bacillus subtilis[J]. Environmental Microbiology, 2015, 17(4): 1365-1376. |
| [33] | 赵娟, 刘涛, 潘磊, 等. 元阳梯田地方水稻品种根部内生菌及根际微生物的分离与鉴定[J]. 应用生态学报, 2015, 26(12): 3737-3745. |
| ZHAO J, LIU T, PAN L, et al. Isolation and identification of root endophytic and rhizosphere bacteria of rice landraces in Yuanyang Terrace, China[J]. Chinese Journal of Applied Ecology, 2015, 26(12): 3737-3745. (in Chinese with English abstract) | |
| [34] | 肖健, 陈思宇, 孙妍, 等. 甘蔗间作不同豆科作物对甘蔗植株内生细菌多样性的影响[J]. 热带作物学报, 2021, 42(11): 3188-3198. |
| XIAO J, CHEN S Y, SUN Y, et al. Effect of intercropping with different legume crops on endophytic bacterial diversity of sugarcanes[J]. Chinese Journal of Tropical Crops, 2021, 42(11): 3188-3198. (in Chinese with English abstract) | |
| [35] | GREEN S J, PRAKASH O, JASROTIA P, et al. Denitrifying bacteria from the genus Rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site[J]. Applied and Environmental Microbiology, 2012, 78(4): 1039-1047. |
| [36] | WANG J, LEI Z, WANG L X, et al. Insight into using up-flow anaerobic sludge blanket-anammox to remove nitrogen from an anaerobic membrane reactor during mainstream wastewater treatment[J]. Bioresource Technology, 2020, 314: 123710. |
| [37] | PISHGAR R, DOMINIC J A, SHENG Z Y, et al. Denitrification performance and microbial versatility in response to different selection pressures[J]. Bioresource Technology, 2019, 281: 72-83. |
| [38] | WANG D P, LI T, HUANG K L, et al. Roles and correlations of functional bacteria and genes in the start-up of simultaneous anammox and denitrification system for enhanced nitrogen removal[J]. Science of the Total Environment, 2019, 655: 1355-1363. |
| [39] | 严君, 韩晓增, 王守宇, 等. 不同形态氮对大豆根瘤生长及固氮的影响[J]. 大豆科学, 2009, 28(4): 674-677. |
| YAN J, HAN X Z, WANG S Y, et al. Effect of different forms nitrogen on nodule growth and nitrogen fixation in soybean (Glycine max L.)[J]. Soybean Science, 2009, 28(4): 674-677. (in Chinese with English abstract) |
| [1] | CHEN Jiayi, ZHOU Qiaojuan, OU Qiuxue, CHEN Shufang, ZHANG Jia’en, WEI Hui. Effects of sterilization methods on physiochemical properties of lateritic red soil in south China [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 633-642. |
| [2] | ZHU Xiaomei, XING Jincheng, HONG Lizhou, WANG Jianhong, LIU Chong, DONG Jing, SUN Guoli, HE Sunan. Effects of overturning Lolium perenne under different nitrogen rates on carbon, nitrogen and bacterial community structure in saline soil of coastal area [J]. Acta Agriculturae Zhejiangensis, 2025, 37(1): 159-168. |
| [3] | LIU Wenwen, HU Lianqing, ZHOU Wanhai, WEI Qin, FENG Ruizhang, ZHAO Xin, CHE Litao, CHEN Jinyu. Effects of different contents of Camphora longepaniculata leaves in diets on intestinal pH, cecal fermentation and cecal microbiota of meat rabbits [J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1279-1289. |
| [4] | XIONG Houquan, JIANG Jie. Discrete element parameter calibration and testing of interaction between yellow lateritic red soil and trenching components [J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1400-1412. |
| [5] | ZHANG Hongfang, QIAN Tao, JIN Ting, XIE Xiaoling, WU Choufei, XIAO Yingping, MA Lingyan. Gut microbial profiles and its developmental changes of grass carp (Ctenopharyngodon idella) [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 780-789. |
| [6] | QIAO Hongyong, YUAN Tao, ZHAO Xinyong, YANG Huiyan. Characteristics of endophyte’s community changes of Paeonia suffruticosa cv. Lu He Hong fine root in different plant ages [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 115-126. |
| [7] | MA Bingzeng, JIANG Yunfeng, YAN Ting, LIU Junnan. Influence of no tillage with high stubble on macrofauna community of black soil [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 187-195. |
| [8] | ZHU Shijun, WANG Lili, JIN Shuquan, ZHOU Jinbo, WANG Feng, LU Xiaohong. Effects of different soil disinfection methods on soil fungal diversity and community structure [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 639-646. |
| [9] | JI Meijun, CAO Ziyi, WANG Yiting, LU Jingru, WANG Baohua. Genome-wide identification and analysis of NCS1 gene family in upland cotton [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 249-258. |
| [10] | WANG Jingge, JI Xiaofeng, WU Jing, YANG Hua, TANG Biao, DING Bao'an. Effects of sulfamonomethoxine on bacterial community structure in feces of laying hens [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 284-292. |
| [11] | ZHANG Liang, LI Yuting, XU Xiaofeng. Dissolution and release of soil potassium by ectomycorrhizal fungi under Mn2+ stress [J]. , 2020, 32(7): 1215-1222. |
| [12] | CHEN Qianli, WANG Hancheng, LIANG Yongjin, CAI Liuti, HUANG Yu, ZHOU Hao, LI Zhong, HAN Jie. Fungal composition and diversity analysis of healthy and rotten tobacco leaves after curing [J]. , 2020, 32(6): 1019-1028. |
| [13] | LUO Manli, LAN Qin, WANG Ge, WEI Hong, XIAO Jiujin, ZHANG Jian. Effect of fertilization on soil fauna community structure in farmland [J]. , 2019, 31(6): 946-954. |
| [14] | GOU Liqiong, YAO Heng, WANG Ge, HUAGN Rucheng, DUAN Junhua, XIAO Jiujin, ZHANG Jian. Effects of different straw returning methods on cropland soil fauna community [J]. , 2019, 31(3): 450-457. |
| [15] | GUI Guohong, YANG Hua, ZHU Jiangqun, ZHU Jianfeng, XIAO Yingping, XU E. Study on microbial community structure in chilled chicken during cold storage [J]. , 2019, 31(1): 47-55. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||