Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (8): 1864-1875.DOI: 10.3969/j.issn.1004-1524.20221096
• Environmental Science • Previous Articles Next Articles
SI Linlin(), XU Jing, CAO Kai, ZHANG Xian, WANG Jianhong*(
)
Received:
2022-07-25
Online:
2023-08-25
Published:
2023-08-29
CLC Number:
SI Linlin, XU Jing, CAO Kai, ZHANG Xian, WANG Jianhong. Response of bacterial community to planting cover crops in virgin upland red soil[J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1864-1875.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20221096
处理 Treatment | 地上部 Shoot | 根系 Root | 总生物量 Total |
---|---|---|---|
SC_bean | 3.9 bc | 0.5 c | 4.4 c |
SC_ssh | 5.6 a | 2.6 a | 8.2 a |
JN_bean | 2.4 c | 0.7 c | 3.1 c |
JN_ssh | 4.5 ab | 1.9 b | 6.4 b |
Table 1 Biomass of cover crops under different treatments t·hm-2
处理 Treatment | 地上部 Shoot | 根系 Root | 总生物量 Total |
---|---|---|---|
SC_bean | 3.9 bc | 0.5 c | 4.4 c |
SC_ssh | 5.6 a | 2.6 a | 8.2 a |
JN_bean | 2.4 c | 0.7 c | 3.1 c |
JN_ssh | 4.5 ab | 1.9 b | 6.4 b |
处理 Treatment | pH | SOC/ (g·kg-1) | POC/ (g·kg-1) | SMBC/ (mg·kg-1) | TN/ (g·kg-1) | PON/ (g·kg-1) | SMBN/ (mg·kg-1) | AN/ (mg·kg-1) | AP/ (mg·kg-1) | AK/ (mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|
SC_CK | 5.06 b | 2.90 d | 0.53 d | 60.51 d | 0.12 d | 0.04 bc | 3.38 d | 26.25 c | 4.83 de | 112.50 e |
SC_bean | 5.08 b | 7.97 a | 1.98 a | 244.39 b | 0.66 a | 0.13 a | 14.02 b | 61.95 a | 42.15 a | 158.40 cd |
SC_ssh | 5.04 b | 6.50 b | 1.94 a | 364.81 a | 0.47 b | 0.11 a | 24.59 a | 64.40 a | 17.63 c | 232.00 b |
JN_CK | 5.30 b | 5.25 c | 0.95 cd | 42.51 d | 0.33 c | 0.03 c | 10.10 c | 30.33 c | 3.47 e | 131.00 de |
JN_bean | 5.27 b | 5.76 c | 1.48 b | 150.08 c | 0.37 c | 0.08 b | 17.26 b | 50.40 b | 37.24 b | 275.75 a |
JN_ssh | 5.58 a | 5.86 c | 1.03 bc | 116.55 c | 0.28 c | 0.03 c | 17.56 b | 29.40 c | 8.68 d | 178.10 c |
Table 2 Soil properties in dryland under different treatments
处理 Treatment | pH | SOC/ (g·kg-1) | POC/ (g·kg-1) | SMBC/ (mg·kg-1) | TN/ (g·kg-1) | PON/ (g·kg-1) | SMBN/ (mg·kg-1) | AN/ (mg·kg-1) | AP/ (mg·kg-1) | AK/ (mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|
SC_CK | 5.06 b | 2.90 d | 0.53 d | 60.51 d | 0.12 d | 0.04 bc | 3.38 d | 26.25 c | 4.83 de | 112.50 e |
SC_bean | 5.08 b | 7.97 a | 1.98 a | 244.39 b | 0.66 a | 0.13 a | 14.02 b | 61.95 a | 42.15 a | 158.40 cd |
SC_ssh | 5.04 b | 6.50 b | 1.94 a | 364.81 a | 0.47 b | 0.11 a | 24.59 a | 64.40 a | 17.63 c | 232.00 b |
JN_CK | 5.30 b | 5.25 c | 0.95 cd | 42.51 d | 0.33 c | 0.03 c | 10.10 c | 30.33 c | 3.47 e | 131.00 de |
JN_bean | 5.27 b | 5.76 c | 1.48 b | 150.08 c | 0.37 c | 0.08 b | 17.26 b | 50.40 b | 37.24 b | 275.75 a |
JN_ssh | 5.58 a | 5.86 c | 1.03 bc | 116.55 c | 0.28 c | 0.03 c | 17.56 b | 29.40 c | 8.68 d | 178.10 c |
Fig.6 Principal co-ordinates analysis (PcoA) based on OTU levels and distribution and dispersion of different treatments based on the PC1 (principle component 1) axis PC1, Principal component 1; PC2, Principle component 2.
Fig.7 Redundancy analysis (RDA) ordination diagram of relationships within soil environmental factors and bacterial community based on OTU levels SOC, Soil organic carbon; POC, Particulate organic carbon; SMBC, Soil microbial biomass carbon; TN, Total nitrogen; PON, Particulate organic nitrogen; SMBN, Soil microbial biomass nitrogen; AN, Alkaline hydrolysis nitrogen; AP, Available phosphorus; AK, Available potassium. The same as below.
环境因子 Environmental factors | RDA1 | RDA2 | R2 | P |
---|---|---|---|---|
pH | 0.897 9 | -0.440 3 | 0.401 2 | 0.020 |
SOC | -0.095 4 | 0.995 4 | 0.340 2 | 0.038 |
POC | 0.208 8 | 0.978 0 | 0.251 0 | 0.102 |
SMBC | 0.082 5 | 0.996 6 | 0.480 9 | 0.008 |
TN | -0.153 8 | 0.988 1 | 0.297 0 | 0.057 |
PON | -0.068 9 | 0.997 6 | 0.432 4 | 0.016 |
SMBN | 0.882 4 | 0.470 5 | 0.227 9 | 0.146 |
AN | 0.218 0 | 0.975 9 | 0.384 2 | 0.025 |
AP | 0.549 5 | 0.835 5 | 0.257 8 | 0.105 |
AK | 0.995 5 | 0.094 6 | 0.358 5 | 0.040 |
Table 3 Explanatory weights of environmental factors for RDA results
环境因子 Environmental factors | RDA1 | RDA2 | R2 | P |
---|---|---|---|---|
pH | 0.897 9 | -0.440 3 | 0.401 2 | 0.020 |
SOC | -0.095 4 | 0.995 4 | 0.340 2 | 0.038 |
POC | 0.208 8 | 0.978 0 | 0.251 0 | 0.102 |
SMBC | 0.082 5 | 0.996 6 | 0.480 9 | 0.008 |
TN | -0.153 8 | 0.988 1 | 0.297 0 | 0.057 |
PON | -0.068 9 | 0.997 6 | 0.432 4 | 0.016 |
SMBN | 0.882 4 | 0.470 5 | 0.227 9 | 0.146 |
AN | 0.218 0 | 0.975 9 | 0.384 2 | 0.025 |
AP | 0.549 5 | 0.835 5 | 0.257 8 | 0.105 |
AK | 0.995 5 | 0.094 6 | 0.358 5 | 0.040 |
Fig.8 Heatmap of correlation within environmental factors and bacterial taxa at phylum level “*” “**” “***” represent significance of P<0.05, P<0.01, P<0.001, respectively.
[1] | CHEN W, TENG Y, LI Z G, et al. Mechanisms by which organic fertilizer and effective microbes mitigate peanut continuous cropping yield constraints in a red soil of South China[J]. Applied Soil Ecology, 2018, 128: 23-34. |
[2] | JIN Z W, CHEN C, CHEN X M, et al. The crucial factors of soil fertility and rapeseed yield: a five year field trial with biochar addition in upland red soil, China[J]. Science of the Total Environment, 2019, 649: 1467-1480. |
[3] | 黄国勤, 赵其国. 红壤生态学[J]. 生态学报, 2014, 34(18): 5173-5181. |
HUANG G Q, ZHAO Q G. Initial exploration of red soil ecology[J]. Acta Ecologica Sinica, 2014, 34(18): 5173-5181. (in Chinese with English abstract) | |
[4] | 黄国勤, 周丽华, 杨滨娟, 等. 红壤旱地不同复种方式养地效果[J]. 生态学报, 2014, 34(18): 5191-5199. |
HUANG G Q, ZHOU L H, YANG B J, et al. Improving soil fertility with different multiple cropping patterns in upland red soil[J]. Acta Ecologica Sinica, 2014, 34(18): 5191-5199. (in Chinese with English abstract) | |
[5] | HALLAMA M, PEKRUN C, LAMBERS H, et al. Hidden miners: the roles of cover crops and soil microorganisms in phosphorus cycling through agroecosystems[J]. Plant and Soil, 2019, 434(1): 7-45. |
[6] | 曹卫东, 包兴国, 徐昌旭, 等. 中国绿肥科研60年回顾与未来展望[J]. 植物营养与肥料学报, 2017, 23(6): 1450-1461. |
CAO W D, BAO X G, XU C X, et al. Reviews and prospects on science and technology of green manure in China[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1450-1461. (in Chinese with English abstract) | |
[7] | 樊志龙, 柴强, 曹卫东, 等. 绿肥在我国旱地农业生态系统中的服务功能及其应用[J]. 应用生态学报, 2020, 31(4): 1389-1402. |
FAN Z L, CHAI Q, CAO W D, et al. Ecosystem service function of green manure and its application in dryland agriculture of China[J]. Chinese Journal of Applied Ecology, 2020, 31(4): 1389-1402. (in Chinese with English abstract) | |
[8] | 丁钰珮, 杜宇佳, 高广磊, 等. 呼伦贝尔沙地樟子松人工林土壤细菌群落结构与功能预测[J]. 生态学报, 2021, 41(10): 4131-4139. |
DING Y P, DU Y J, GAO G L, et al. Soil bacterial community structure and functional prediction of Pinus sylvestris var. mongolica plantations in the Hulun Buir Sandy Land[J]. Acta Ecologica Sinica, 2021, 41(10): 4131-4139. (in Chinese with English abstract) | |
[9] | 刘佳, 陈晓芬, 刘明, 等. 长期施肥对旱地红壤细菌群落的影响[J]. 土壤学报, 2020, 57(2): 468-478. |
LIU J, CHEN X F, LIU M, et al. Effects of long-term fertilization on bacterial community in upland red soil[J]. Acta Pedologica Sinica, 2020, 57(2): 468-478. (in Chinese with English abstract) | |
[10] | CAMBARDELLA C A, ELLIOTT E T. Particulate soil organic-matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal, 1992, 56(3): 777-783. |
[11] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
[12] | PEREIRA L B, VICENTINI R, OTTOBONI L M M. Changes in the bacterial community of soil from a neutral mine drainage channel[J]. PLoS One, 2014, 9(5): e96605. |
[13] | 陈安磊, 王凯荣, 谢小立. 施肥制度与养分循环对稻田土壤微生物生物量碳氮磷的影响[J]. 农业环境科学学报, 2005, 24(6): 1094-1099. |
CHEN A L, WANG K R, XIE X L. Effects of fertilization systems and nutrient recycling on microbial biomass C, N and P in a reddish paddy soil[J]. Journal of Agro-Environmental Science, 2005, 24(6): 1094-1099. (in Chinese with English abstract) | |
[14] | 李红燕, 胡铁成, 曹群虎, 等. 旱地不同绿肥品种和种植方式提高土壤肥力的效果[J]. 植物营养与肥料学报, 2016, 22(5): 1310-1318. |
LI H Y, HU T C, CAO Q H, et al. Effect of improving soil fertility by planting different green manures in different patterns in dryland[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(5): 1310-1318. (in Chinese with English abstract) | |
[15] | PIOTROWSKA-DŁUGOSZ A, WILCZEWSKI E. Assessment of soil nitrogen and related enzymes as influenced by the incorporation time of field pea cultivated as a catch crop in Alfisol[J]. Environmental Monitoring and Assessment, 2014, 186(12): 8425-8441. |
[16] | 杨山, 李小彬, 王汝振, 等. 氮水添加对中国北方草原土壤细菌多样性和群落结构的影响[J]. 应用生态学报, 2015, 26(3): 739-746. |
YANG S, LI X B, WANG R Z, et al. Effects of nitrogen and water addition on soil bacterial diversity and community structure in temperate grasslands in Northern China[J]. Chinese Journal of Applied Ecology, 2015, 26(3): 739-746. (in Chinese with English abstract) | |
[17] | 雷利国, 江长胜, 郝庆菊. 缙云山土地利用方式对土壤轻组及颗粒态有机碳氮的影响[J]. 环境科学, 2015, 36(7): 2669-2677. |
LEI L G, JIANG C S, HAO Q J. Impacts of land use changes on soil light fraction and particulate organic carbon and nitrogen in Jinyun Mountain[J]. Environmental Science, 2015, 36(7): 2669-2677. (in Chinese with English abstract) | |
[18] | TIAN J, WANG J Y, DIPPOLD M, et al. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil[J]. Science of the Total Environment, 2016, 556: 89-97. |
[19] | LU M, REN Y L, WANG S J, et al. Contribution of soil variables to bacterial community composition following land use change in Napahai Plateau wetlands[J]. Journal of Environmental Management, 2019, 246: 77-84. |
[20] | ZHAO Y, YAN C B, HU F C, et al. Intercropping pinto peanut in litchi orchard effectively improved soil available potassium content, optimized soil bacterial community structure, and advanced bacterial community diversity[J]. Frontiers in Microbiology, 2022, 13: 868312. |
[21] | 黄志强, 邱景璇, 李杰, 等. 基于16S rRNA基因测序分析微生物群落多样性[J]. 微生物学报, 2021, 61(5): 1044-1063. |
HUANG Z Q, QIU J X, LI J, et al. Exploration of microbial diversity based on 16S rRNA gene sequence analysis[J]. Acta Microbiologica Sinica, 2021, 61(5): 1044-1063. (in Chinese with English abstract) | |
[22] | BRYANT J A, LAMANNA C, MORLON H, et al. Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(supplement 1): 11505-11511. |
[23] | 王金平, 黄荣珍, 朱丽琴, 等. 肥力提升措施对林地红壤生物结皮层微生物群落结构的影响[J]. 土壤学报, 2023, 60(1): 292-303. |
WANG J P, HUANG R Z, ZHU L Q, et al. Effects of different fertility improvement measures on microbial community structures in biological red soil crusts of woodland[J]. Acta Pedologica Sinica, 2023, 60(1): 292-303. (in Chinese with English abstract) | |
[24] | HARTMAN W H, RICHARDSON C J, VILGALYS R, et al. Environmental and anthropogenic controls over bacterial communities in wetland soils[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(46): 17842-17847. |
[25] | 周灵芝, 劳承英, 申章佑, 等. 定向栽培连作淮山根际土壤细菌群落的多样性分析[J]. 西南农业学报, 2021, 34(8): 1601-1607. |
ZHOU L Z, LAO C Y, SHEN Z Y, et al. Analysis of diversity of rhizosphere soil bacterial community of yam in directional cultivation in continuous cropping[J]. Southwest China Journal of Agricultural Sciences, 2021, 34(8): 1601-1607. (in Chinese with English abstract) | |
[26] | SHEN C C, NI Y Y, LIANG W J, et al. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra[J]. Frontiers in Microbiology, 2015, 6: 582. |
[27] | BAIS H P, WEIR T L, PERRY L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms[J]. Annual Review of Plant Biology, 2006, 57: 233-266. |
[28] | SÁNCHEZ-CAÑIZARES C, JORRÍN B, POOLE P S, et al. Understanding the holobiont: the interdependence of plants and their microbiome[J]. Current Opinion in Microbiology, 2017, 38: 188-196. |
[29] | YANG Y J, LIU H X, DAI Y C, et al. Soil organic carbon transformation and dynamics of microorganisms under different organic amendments[J]. Science of the Total Environment, 2021, 750: 141719. |
[30] | 李欣雨, 刘函亦, 薛少琪, 等. 几种绿肥的根系分泌物对土壤锌的活化效应[J]. 中国土壤与肥料, 2022(1): 81-89. |
LI X Y, LIU H Y, XUE S Q, et al. Zinc mobilization effect by root exudates of different green manure[J]. Soil and Fertilizer Sciences in China, 2022(1): 81-89. (in Chinese with English abstract) | |
[31] | LADYGINA N, HEDLUND K. Plant species influence microbial diversity and carbon allocation in the rhizosphere[J]. Soil Biology and Biochemistry, 2010, 42(2): 162-168. |
[32] | KOBAYASHI K. Plant methyl salicylate induces defense responses in the rhizobacterium Bacillus subtilis[J]. Environmental Microbiology, 2015, 17(4): 1365-1376. |
[33] | 赵娟, 刘涛, 潘磊, 等. 元阳梯田地方水稻品种根部内生菌及根际微生物的分离与鉴定[J]. 应用生态学报, 2015, 26(12): 3737-3745. |
ZHAO J, LIU T, PAN L, et al. Isolation and identification of root endophytic and rhizosphere bacteria of rice landraces in Yuanyang Terrace, China[J]. Chinese Journal of Applied Ecology, 2015, 26(12): 3737-3745. (in Chinese with English abstract) | |
[34] | 肖健, 陈思宇, 孙妍, 等. 甘蔗间作不同豆科作物对甘蔗植株内生细菌多样性的影响[J]. 热带作物学报, 2021, 42(11): 3188-3198. |
XIAO J, CHEN S Y, SUN Y, et al. Effect of intercropping with different legume crops on endophytic bacterial diversity of sugarcanes[J]. Chinese Journal of Tropical Crops, 2021, 42(11): 3188-3198. (in Chinese with English abstract) | |
[35] | GREEN S J, PRAKASH O, JASROTIA P, et al. Denitrifying bacteria from the genus Rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site[J]. Applied and Environmental Microbiology, 2012, 78(4): 1039-1047. |
[36] | WANG J, LEI Z, WANG L X, et al. Insight into using up-flow anaerobic sludge blanket-anammox to remove nitrogen from an anaerobic membrane reactor during mainstream wastewater treatment[J]. Bioresource Technology, 2020, 314: 123710. |
[37] | PISHGAR R, DOMINIC J A, SHENG Z Y, et al. Denitrification performance and microbial versatility in response to different selection pressures[J]. Bioresource Technology, 2019, 281: 72-83. |
[38] | WANG D P, LI T, HUANG K L, et al. Roles and correlations of functional bacteria and genes in the start-up of simultaneous anammox and denitrification system for enhanced nitrogen removal[J]. Science of the Total Environment, 2019, 655: 1355-1363. |
[39] | 严君, 韩晓增, 王守宇, 等. 不同形态氮对大豆根瘤生长及固氮的影响[J]. 大豆科学, 2009, 28(4): 674-677. |
YAN J, HAN X Z, WANG S Y, et al. Effect of different forms nitrogen on nodule growth and nitrogen fixation in soybean (Glycine max L.)[J]. Soybean Science, 2009, 28(4): 674-677. (in Chinese with English abstract) |
[1] | ZHU Shijun, WANG Lili, JIN Shuquan, ZHOU Jinbo, WANG Feng, LU Xiaohong. Effects of different soil disinfection methods on soil fungal diversity and community structure [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 639-646. |
[2] | JI Meijun, CAO Ziyi, WANG Yiting, LU Jingru, WANG Baohua. Genome-wide identification and analysis of NCS1 gene family in upland cotton [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 249-258. |
[3] | WANG Jingge, JI Xiaofeng, WU Jing, YANG Hua, TANG Biao, DING Bao'an. Effects of sulfamonomethoxine on bacterial community structure in feces of laying hens [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 284-292. |
[4] | ZHANG Liang, LI Yuting, XU Xiaofeng. Dissolution and release of soil potassium by ectomycorrhizal fungi under Mn2+ stress [J]. , 2020, 32(7): 1215-1222. |
[5] | CHEN Qianli, WANG Hancheng, LIANG Yongjin, CAI Liuti, HUANG Yu, ZHOU Hao, LI Zhong, HAN Jie. Fungal composition and diversity analysis of healthy and rotten tobacco leaves after curing [J]. , 2020, 32(6): 1019-1028. |
[6] | LUO Manli, LAN Qin, WANG Ge, WEI Hong, XIAO Jiujin, ZHANG Jian. Effect of fertilization on soil fauna community structure in farmland [J]. , 2019, 31(6): 946-954. |
[7] | GOU Liqiong, YAO Heng, WANG Ge, HUAGN Rucheng, DUAN Junhua, XIAO Jiujin, ZHANG Jian. Effects of different straw returning methods on cropland soil fauna community [J]. , 2019, 31(3): 450-457. |
[8] | GUI Guohong, YANG Hua, ZHU Jiangqun, ZHU Jianfeng, XIAO Yingping, XU E. Study on microbial community structure in chilled chicken during cold storage [J]. , 2019, 31(1): 47-55. |
[9] | CHEN Yun, LIU Qi, DENG Junliang, YANG Yanyi, GAO Shuang, CHEN Chong, YAO Shuhua. Effects of composite antimicrobial peptide on rumen bacteria community structure of goat [J]. , 2017, 29(11): 1800-1808. |
[10] | WANG Xin, CHENG Liang. Soil bacterial community composition and diversity of five soil types in Qinghai-Tibetan Plateau [J]. , 2017, 29(11): 1882-1889. |
[11] | LI Yuan-yuan, SHI Kai, DELIGEER. Community structure and fauna of Lygus complex in Inner Mongolia [J]. , 2016, 28(9): 1558-1563. |
[12] | ZHANG Aiju1,2,3, LIU Jindian1,2,3,*,YANG Yuanjie1,2,3,GUO Aihuan1,2,3, GU Zhimin1,2,3,*. Analysis of community characteristics of macrozoobenthos in enhancement and releasing zone in Tonglu section of Qiantang River [J]. , 2016, 28(8): 1323-. |
[13] | LIU Dan, WU Feng-zhi. Effect of phenylalanine ammonialyase transgenic Arabidopsis thaliana on bacterial community in rhizosphere soil [J]. , 2016, 28(12): 2068-2075. |
[14] | HAN Li-na, DING Zhe-li, ZENG Hui-cai, ZHENG Wei, HE Ying-dui, GE Yu. Effect of functional organic fertilizer on growth of Chinese cabbage [J]. , 2016, 28(10): 1718-1723. |
[15] | LIU Jun;TAN Ji\|cai;*;ZHONG Lang;WANG Zhi\|gao. Evaluation of several agricultural practices in preventing the apple snails, Pomacea canaliculata, in the paddy fields [J]. , 2013, 25(6): 0-1325. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||