Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (2): 249-258.DOI: 10.3969/j.issn.1004-1524.2023.02.01
• Crop Science • Next Articles
JI Meijun(), CAO Ziyi, WANG Yiting, LU Jingru, WANG Baohua(
)
Received:
2021-07-20
Online:
2023-02-25
Published:
2023-03-14
Contact:
WANG Baohua
CLC Number:
JI Meijun, CAO Ziyi, WANG Yiting, LU Jingru, WANG Baohua. Genome-wide identification and analysis of NCS1 gene family in upland cotton[J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 249-258.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2023.02.01
基因名称 Gene name | 上游引物 Forward primers(5'→3') | 下游引物 Reverse primers(5'→3') |
---|---|---|
histidine3 | GCCAAGCGTGTCACAATTATG | ACATCACATTGAACCTACCACTACC |
Gh_A09G1345 | GGTGGCATAGTCTTAGCA | CTGAAACCGACGATAGAA |
Gh_A09G1346 | TGGCATCTTCAGGTCAAT | AACCAACCAAGGCTCTAA |
Gh_D09G1347 | ACGATGACCTCAAGCCGACAA | CGCCAGGACAGGGAAAGA |
Gh_D09G1348 | AATGATGACCTCAAGCCGACAA | CACCCACAACAAACCAAAGCA |
Table 1 Primers for qRT-PCR
基因名称 Gene name | 上游引物 Forward primers(5'→3') | 下游引物 Reverse primers(5'→3') |
---|---|---|
histidine3 | GCCAAGCGTGTCACAATTATG | ACATCACATTGAACCTACCACTACC |
Gh_A09G1345 | GGTGGCATAGTCTTAGCA | CTGAAACCGACGATAGAA |
Gh_A09G1346 | TGGCATCTTCAGGTCAAT | AACCAACCAAGGCTCTAA |
Gh_D09G1347 | ACGATGACCTCAAGCCGACAA | CGCCAGGACAGGGAAAGA |
Gh_D09G1348 | AATGATGACCTCAAGCCGACAA | CACCCACAACAAACCAAAGCA |
物种 Species | 基因名 Gene name | 基因ID Gene ID | 氨基酸数量 Amino acid length | 亚细胞定位 Subcellular localization |
---|---|---|---|---|
陆地棉 | GhNCS1 | Gh_A09G1345 | 570 | 叶绿体,线粒体Chloroplast,mitochondrion |
Gossypium hirsutum | GhNCS2 | Gh_A09G1346 | 557 | 叶绿体,质膜Chloroplast, plasma membrane |
GhNCS3 | Gh_D09G1347 | 573 | 叶绿体,线粒体Chloroplast,mitochondrion | |
GhNCS4 | Gh_D09G1348 | 554 | 叶绿体,质膜Chloroplast, plasma membrane | |
拟南芥Arabidopsis thaliana | ATNCS1 | AT5G03555 | 599 | 质膜Plasma membrane |
番茄Lycopersicon esculentum | SlNCS1 | Solyc09g008550.3 | 501 | 质膜Plasma membrane |
水稻Oryza sativa | OsNCS1 | Os02g0666700 | 538 | 叶绿体,质膜Chloroplast, plasma membrane |
玉米Zea mays | ZmNCS1 | Zm00001d017531 | 541 | 质膜,叶绿体,细胞质 |
Plasma membrane, chloroplast, cytoplasm | ||||
可可Theobroma cacao | TcNCS1 | EOY08031 | 579 | 叶绿体Chloroplast |
葡萄Vitis vinifera | VvNCS1 | VIT_08s0007g04550.t01 | 511 | 叶绿体Chloroplast |
高粱Sorghum bicolor | SBNCS1 | KXG31048 | 544 | 质膜Plasma membrane |
Table 2 Basic information of NCS1 gene family
物种 Species | 基因名 Gene name | 基因ID Gene ID | 氨基酸数量 Amino acid length | 亚细胞定位 Subcellular localization |
---|---|---|---|---|
陆地棉 | GhNCS1 | Gh_A09G1345 | 570 | 叶绿体,线粒体Chloroplast,mitochondrion |
Gossypium hirsutum | GhNCS2 | Gh_A09G1346 | 557 | 叶绿体,质膜Chloroplast, plasma membrane |
GhNCS3 | Gh_D09G1347 | 573 | 叶绿体,线粒体Chloroplast,mitochondrion | |
GhNCS4 | Gh_D09G1348 | 554 | 叶绿体,质膜Chloroplast, plasma membrane | |
拟南芥Arabidopsis thaliana | ATNCS1 | AT5G03555 | 599 | 质膜Plasma membrane |
番茄Lycopersicon esculentum | SlNCS1 | Solyc09g008550.3 | 501 | 质膜Plasma membrane |
水稻Oryza sativa | OsNCS1 | Os02g0666700 | 538 | 叶绿体,质膜Chloroplast, plasma membrane |
玉米Zea mays | ZmNCS1 | Zm00001d017531 | 541 | 质膜,叶绿体,细胞质 |
Plasma membrane, chloroplast, cytoplasm | ||||
可可Theobroma cacao | TcNCS1 | EOY08031 | 579 | 叶绿体Chloroplast |
葡萄Vitis vinifera | VvNCS1 | VIT_08s0007g04550.t01 | 511 | 叶绿体Chloroplast |
高粱Sorghum bicolor | SBNCS1 | KXG31048 | 544 | 质膜Plasma membrane |
Fig.2 The collinearity of NCS1 family genes in the upland cotton The gray lines represent collinear relationships within different genomes, and the red lines represent collinear gene pairs in the NCS1 family
Fig.5 Phylogenetic tree of NCS1 gene family members Gh, upland cotton; Tc, cocoa; Vv, grape; Sl, tomato; AT, Arabidopsis; Os, rice; Sb, sorghum; Zm, maize.
基因 Gene | 非同义替换率 Ka | 同义替换率 Ks | 选择压力比值 Ka/Ks |
---|---|---|---|
GhNCS2&GhNCS4 | 0.991436 | 1.02657 | 0.965776 |
GhNCS2&GhNCS1 | 0.982483 | 1.05538 | 0.930925 |
GhNCS2&GhNCS3 | 0.978506 | 1.0674 | 0.91672 |
GhNCS4&GhNCS1 | 0.983082 | 1.0533 | 0.933336 |
GhNCS4&GhNCS3 | 0.979421 | 1.06429 | 0.920259 |
GhNCS1&GhNCS3 | 0.006621 | 0.037711 | 0.175571 |
Table 3 Nucleotide replacement rate of upland cotton NCS1 gene family
基因 Gene | 非同义替换率 Ka | 同义替换率 Ks | 选择压力比值 Ka/Ks |
---|---|---|---|
GhNCS2&GhNCS4 | 0.991436 | 1.02657 | 0.965776 |
GhNCS2&GhNCS1 | 0.982483 | 1.05538 | 0.930925 |
GhNCS2&GhNCS3 | 0.978506 | 1.0674 | 0.91672 |
GhNCS4&GhNCS1 | 0.983082 | 1.0533 | 0.933336 |
GhNCS4&GhNCS3 | 0.979421 | 1.06429 | 0.920259 |
GhNCS1&GhNCS3 | 0.006621 | 0.037711 | 0.175571 |
[1] | KRYPOTOU E, EVANGELIDIS T, BOBONIS J, et al. Origin, diversification and substrate specificity in the family of NCS1/FUR transporters[J]. Molecular Microbiology, 2015, 96(5): 927-950. |
[2] | SIOUPOULI G, LAMBRINIDIS G, MIKROS E, et al. Cryptic purine transporters in Aspergillus nidulans reveal the role of specific residues in the evolution of specificity in the NCS1 family[J]. Molecular Microbiology, 2017, 103(2):319-332. |
[3] | MA P, PATCHING S G, IVANOVA E, et al. Allantoin transport protein, PucI, from Bacillus subtilis: evolutionary relationships, amplified expression, activity and specificity[J]. Microbiology (Reading, England), 2016, 162(5):823-836. |
[4] | SAIER M H, YEN M R, NOTO K, et al. The transporter classification database: recent advances[J]. Nucleic Acids Research, 2009, 37(suppl_1): D274-D278. |
[5] | JACKSON S M, PATCHING S G, IVONOVA E, et al. Mhp1, the Na+-hydantoin membrane transport protein[M]//Encyclopedia of biophysics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 1514-1521. |
[6] | KAZMIER K, CLAXTON D P, MCHAOURAB H S. Alternating access mechanisms of LeuT-fold transporters: trailblazing towards the promised energy landscapes[J]. Current Opinion in Structural Biology, 2017, 45:100-108. |
[7] | SHIMAMURA T, WEYAND S, BECKSTEIN O, et al. Molecular basis of alternating access membrane transport by the sodium-hydantoin transporter Mhp1[J]. Science, 2010, 328(5977): 470-473. |
[8] | MOFFATT B A, ASHIHARA H. Purine and pyrimidine nucleotide synthesis and metabolism[J]. Frontiers in Bioscience, 2002, 1: e0018. |
[9] | KAFER C, ZHOU L, SANTOSO D, et al. Regulation of pyrimidine metabolism in plants[J]. Frontiers in Bioscience: a Journal and Virtual Library, 2004, 9:1611-1625. |
[10] | ZRENNER R, STITT M, SONNEWALD U, et al. Pyrimidine and purine biosynthesis and degradation in plants[J]. Annual Review of Plant Biology, 2006, 57:805-836. |
[11] | ASHIHARA H, SANO H, CROZIER A. Caffeine and related purine alkaloids: Biosynthesis, catabolism, function and genetic engineering[J]. Phytochemistry, 2008, 69(4): 841-856. |
[12] | FRÉBORT I, KOWALSKA M, HLUSKA T, et al. Evolution of cytokinin biosynthesis and degradation[J]. Journal of Experimental Botany, 2011, 62(8): 2431-2452. |
[13] | GILLISSEN B, BÜRKLE L, ANDRÉ B, et al. A new family of high-affinity transporters for adenine, cytosine, and purine derivatives in Arabidopsis[J]. The Plant Cell, 2000, 12(2): 291-300. |
[14] | BÜRKLE L, CEDZICH A, DÖPKE C, et al. Transport of cytokinins mediated by purine transporters of the PUP family expressed in phloem, hydathodes, and pollen of Arabidopsis[J]. The Plant Journal, 2003, 34(1): 13-26. |
[15] | CEDZICH A, STRANSKY H, SCHULZ B, et al. Characterization of cytokinin and adenine transport in Arabidopsis cell cultures[J]. Plant Physiology, 2008, 148(4):1857-1867. |
[16] | MANSFIELD T A, SCHULTES N P, MOURAD G S. AtAzg1 and AtAzg2 comprise a novel family of purine transporters in Arabidopsis[J]. FEBS Letters, 2009, 583(2): 481-486. |
[17] | RAPP M, SCHEIN J, HUNT K A, et al. The solute specificity profiles of nucleobase cation symporter 1 (NCS1) from Zea mays and Setaria viridis illustrate functional flexibility[J]. Protoplasma, 2016, 253(2):611-623. |
[18] | FINN R D, COGGILL P, EBERHARDT R Y, et al. The Pfam protein families database: towards a more sustainable future[J]. Nucleic Acids Research, 2016, 44(D1): D279-D285. |
[19] | VOORRIPS R E. MapChart: software for the graphical presentation of linkage maps and QTLs[J]. Journal of Heredity, 2002, 93(1):77-78. |
[20] | WANG Y P, TANG H B, DEBARRY J D, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Research, 2012, 40(7): e49. |
[21] | BAILEY T L, WILLIAMS N, MISLEH C, et al. MEME: discovering and analyzing DNA and protein sequence motifs[J]. Nucleic Acids Research, 2006, 34(suppl_2): W369-W373. |
[22] | HU B, JIN J P, GUO A Y, et al. GSDS 2.0: an upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8):1296-1297. |
[23] | ZHANG C H, RAIKHEL N V, HICKS G R. CLASPing microtubules and auxin transport[J]. Developmental Cell, 2013, 24(6): 569-571. |
[24] | TAMURA K, STECHER G, PATERSON D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution, 2013, 30(12):2725-2729. |
[25] | LESCOT M, DÉHAIS P, THIJS G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research, 2002, 30(1):325-327. |
[26] | FRILLINGOS S. Insights to the evolution of Nucleobase-Ascorbate Transporters (NAT/NCS2 family) from the Cys-scanning analysis of xanthine permease XanQ[J]. International Journal of Biochemistry and Molecular Biology, 2012, 3(3): 250-272. |
[27] | DIALLINAS G, GOURNAS C. Structure-function relationships in the nucleobase-ascorbate transporter (NAT) family: lessons from model microbial genetic systems[J]. Channels (Austin, Tex), 2008, 2(5): 363-372. |
[28] | SCHEIN J R, HUNT K A, MINTON J A, et al. The nucleobase cation symporter 1 of Chlamydomonas reinhardtii and that of the evolutionarily distant Arabidopsis thaliana display parallel function and establish a plant-specific solute transport profile[J]. Plant Physiology and Biochemistry, 2013, 70: 52-60. |
[29] | YOUND J D, YAO S Y M, BALDWIN J M, et al. The human concentrative and equilibrative nucleoside transporter families, SLC28 and SLC29[J]. Molecular Aspects of Medicine, 2013, 34(2/3): 529-547. |
[30] | PAN W C, ZHENG P P, ZHANG C, et al. The effect of abre binding factor 4-mediated fyve 1 on salt stress tolerance in Arabidopsis[J]. Plant Science, 2020, 296:110489. |
[31] | IMAN A, HUNTLEY R B, MOURAD G S, et al. Apple nucleobase cation symporter 1 transports guanine and the toxic guanine analog 6-thioguanine[J]. Physiological and Molecular Plant Pathology, 2020, 111:101492. |
[1] | LIANG Chenggang, WANG Yan, GUAN Zhixiu, WEI Chunyu, DENG Jiao, HUANG Juan, MENG Ziye, SHI Taoxiong. Identification and bioinformatics analysis of sucrose transporter family FtSUCs in Tartary buckwheat [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1591-1598. |
[2] | CHU Zhigang, TIAN Yunfang. Cloning and bioinformatics analysis of a PEBP family gene from Cymbidium faberi [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1679-1691. |
[3] | LIU Pengcheng, ZHANG Ji, QIU Ganyuan, GONG Yu, LI Xuesong, LI Wei, ZHANG Yiyu, LIU Ruoyu. Single nucleotide polymorphism screening and bioinformatics analysis of TBC1D7 gene in Guanling cattle [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1402-1411. |
[4] | LI Wenchen, LIU Xin, QI Zezheng, YU Lu, WANG Fang. Bioinformatics of Huipizhi Black soybean GmPUB24 and expression under Heterodera glycines infection [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1124-1132. |
[5] | XIA Yuqi, SUN Yu, LIU Zhixin, SUN Ruiqing, YANG Nan, PU Jinji, ZHANG He. Genome-wide identification and bioinformatics analysis of BES1 transcription factor family in mango [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 984-994. |
[6] | YU Yanling, LUO Honglin, LUO Hui, FENG Pengfei, PAN Chuanyan, SONG Manling, XIAO Rui, ZHANG Yongde. Genome-wide identification and expression of MRF gene family in embryonic development of Trachinotus ovatus [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 695-705. |
[7] | LIU Tongjin, XU Mingjie, WANG Jinglei, LIU Liangfeng, CUI Qunxiang, BAO Chonglai, WANG Changyi. Genome-wide identification and expression analysis of ALMT gene family in radish [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 746-755. |
[8] | FAN Youcun, ZHANG Hongyan, YANG Xusheng, HAN Qian, LIU Yujiao, WU Xuexia. Cloning, bioinformatics analysis and gene expression pattern of VfHKT1; 1 in Vicia faba L. [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 756-765. |
[9] | LI Xiaolan, ZHANG Rui, HAO Lanlan, WANG Hong. Bioinformatics analysis of peach NAC gene family and its expression characteristics in response to low temperature stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 766-780. |
[10] | YANG Weijun, DONG Yanlei, WU Qiufang, ZHANG Meiling, HAN Libin, ZHANG Yuanchen. Cloning and expression analysis of AgoATPb gene in cotton-melon aphid, Aphis gossypi [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 329-336. |
[11] | XU Jingen, JIN Erhui, WANG Chonglong, GU Youfang, LI Qinggang. Polymorphism and bioinformatics analysis of pig CAST gene [J]. Acta Agriculturae Zhejiangensis, 2022, 34(1): 17-23. |
[12] | CAI Fangyang, ZHAO Yichen, LI Yi, ZHAO Degang. Identification and analysis of ABC transporters family from Eucommia ulmoides [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1581-1591. |
[13] | ZHAO Xiuping, WANG Shuang, YAN Xingyi, DUAN Qiang, ZHANG Shuai, CHEN Yongsheng, LI Guorui. Expression, purification and bioinformatics analysis of Magnaporthe oryzae MGG-01005 [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 470-478. |
[14] | OUYANG Xiahui, ZHENG Tianyu, XU Wenkai, ZHENG Xiangxiang. Cloning and expression analysis of amLDH gene in Apis mellifera [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2051-2058. |
[15] | MENG Yaxuan, SUN Yingqi, ZHAO Xinyue, WANG Fengxia, WENG Qiaoyun, LIU Yinghui. Identification and expression analysis of millet GH5 gene family [J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1797-1807. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||