Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (12): 2954-2965.DOI: 10.3969/j.issn.1004-1524.20221751
• Biosystems Engineering • Previous Articles Next Articles
TAN Yunfeng(), CHEN Lin(
), HU Sen, WANG Jian, CHEN Zhifan, LYU Xiaorong
Received:
2022-11-15
Online:
2023-12-25
Published:
2023-12-27
CLC Number:
TAN Yunfeng, CHEN Lin, HU Sen, WANG Jian, CHEN Zhifan, LYU Xiaorong. Design and experiment of longitudinal-axial flow flexible bent-tooth soybean thresher[J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2954-2965.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20221751
Fig.1 General structure of longitudinal-axial flow flexible bent-tooth soybean thresher 1, Threshing drum; 2, Guide plate; 3, Shell; 4, Rack; 5, Passively rotable concave sieve; 6, Conveyor belt; 7, Collection plate; 8, Motor.
Fig.2 Threshing element 1, Degranulation curved teeth; 2, Limited seating; 3, Set screw; 4, Bolt; 5, Finger glove; 6, Base; 7, Nut; 8, Spring; 9, Spoke.
Fig.3 Force diagram of threshing element Ft, The external forces of curved teeth subjected to the material; F n 1, The support force of the bolt on the bent teeth; F n 2, The force exerted by the torsion spring on the rod teeth; β1, The angle between the external force Ft and the horizontal direction; β2, The angle between the force F n 2 of the torsion spring on the rod teeth and the horizontal direction; β3, The angle between the support force F n 1 of the bolt on the curved teeth and the vertical direction; θ, The rod teeth rotate counterclockwise with the bolt as the center of rotation; L, The distance between the contact point of the material and the threshing bending tooth and the torsion center.
Fig.5 The force diagram of the material moving on the screen side of concave plate ω, The angular speed of the roller; FN, The impact force of the material subjected to the concave sieve; μNFN, The friction of the material subjected to the concave screen; FS, The impact force of the material subjected to the threshing element; μSFS, The frictional force of the material subjected to the threshing element; G, Gravity; β, Spiral angle of material movement; V, Material movement speed; δ, The angle of action of the threshing element on the material.
材料 Materials | 参数 Parameter | 数值 Value | 材料 Materials | 参数 Parameter | 数值 Value |
---|---|---|---|---|---|
茎秆 | 泊松比Poisson’s ratio | 0.3 | 茎秆-籽粒 | 恢复系数Restitution coefficient | 0.55 |
Stalks | 密度Density/(kg·m-3) | 500 | Stalks-Seeds | 静摩擦系数Static friction coefficient | 0.50 |
弹性模量Elastic modulus/Pa | 6×108 | 滚动摩擦系数Rolling friction coefficient | 0.05 | ||
钢板 | 泊松比Poisson’s ratio | 0.3 | 籽粒-钢板 | 恢复系数Restitution coefficient | 0.56 |
Steel plate | 密度Density/(kg·m-3) | 7 800 | Seeds-steel | 静摩擦系数Static friction coefficient | 0.43 |
弹性模量Elastic modulus/Pa | 7×1010 | plate | 滚动摩擦系数Rolling friction coefficient | 0.01 | |
籽粒Seeds | 泊松比Poisson’s ratio | 0.25 | 茎秆-茎秆 | 恢复系数Restitution coefficient | 0.28 |
密度Density/(kg·m-3) | 1236 | Stalks-Stalks | 静摩擦系数Static friction coefficient | 0.38 | |
弹性模量Elastic modulus/Pa | 1.04×107 | 滚动摩擦系数Rolling friction coefficient | 0.01 | ||
茎秆-钢板 | 恢复系数Restitution coefficient | 0.68 | 籽粒-籽粒 | 恢复系数Restitution coefficient | 0.55 |
Stalks-steel | 静摩擦系数Static friction coefficient | 0.32 | 静摩擦系数Static friction coefficient | 0.50 | |
plate | 滚动摩擦系数Rolling friction coefficient | 0.012 | Seeds-Seeds | 滚动摩擦系数Rolling friction coefficient | 0.05 |
Table 1 Discrete element simulation of contact parameters
材料 Materials | 参数 Parameter | 数值 Value | 材料 Materials | 参数 Parameter | 数值 Value |
---|---|---|---|---|---|
茎秆 | 泊松比Poisson’s ratio | 0.3 | 茎秆-籽粒 | 恢复系数Restitution coefficient | 0.55 |
Stalks | 密度Density/(kg·m-3) | 500 | Stalks-Seeds | 静摩擦系数Static friction coefficient | 0.50 |
弹性模量Elastic modulus/Pa | 6×108 | 滚动摩擦系数Rolling friction coefficient | 0.05 | ||
钢板 | 泊松比Poisson’s ratio | 0.3 | 籽粒-钢板 | 恢复系数Restitution coefficient | 0.56 |
Steel plate | 密度Density/(kg·m-3) | 7 800 | Seeds-steel | 静摩擦系数Static friction coefficient | 0.43 |
弹性模量Elastic modulus/Pa | 7×1010 | plate | 滚动摩擦系数Rolling friction coefficient | 0.01 | |
籽粒Seeds | 泊松比Poisson’s ratio | 0.25 | 茎秆-茎秆 | 恢复系数Restitution coefficient | 0.28 |
密度Density/(kg·m-3) | 1236 | Stalks-Stalks | 静摩擦系数Static friction coefficient | 0.38 | |
弹性模量Elastic modulus/Pa | 1.04×107 | 滚动摩擦系数Rolling friction coefficient | 0.01 | ||
茎秆-钢板 | 恢复系数Restitution coefficient | 0.68 | 籽粒-籽粒 | 恢复系数Restitution coefficient | 0.55 |
Stalks-steel | 静摩擦系数Static friction coefficient | 0.32 | 静摩擦系数Static friction coefficient | 0.50 | |
plate | 滚动摩擦系数Rolling friction coefficient | 0.012 | Seeds-Seeds | 滚动摩擦系数Rolling friction coefficient | 0.05 |
材料Materials | 参数Parameter | 数值Value |
---|---|---|
籽粒-茎秆Seeds-stalks | 法向单位面积刚度Normal stiffness per unit area/(kg·m-3) | 5×108 |
切向单位面积刚度Tangential stiffness per unit area/(kg·m-3) | 4×108 | |
临界法向应力Critical normal stress/Pa | 200 000 | |
临界切向应力Critical tangential stress/Pa | 160 000 | |
黏结半径Bond radius/mm | 4.2 | |
茎秆-茎秆Stalks-stalks | 法向单位面积刚度Normal stiffness per unit area/(kg·m-3) | 1.5×1010 |
切向单位面积刚度Tangential stiffness per unit area/(kg·m-3) | 1.2×1010 | |
临界法向应力Critical normal stress/Pa | 1.3×107 | |
临界切向应力Critical tangential stress/Pa | 1.04×107 | |
黏结半径Bond radius/mm | 4.2 |
Table 2 Parameters of intergranular bond
材料Materials | 参数Parameter | 数值Value |
---|---|---|
籽粒-茎秆Seeds-stalks | 法向单位面积刚度Normal stiffness per unit area/(kg·m-3) | 5×108 |
切向单位面积刚度Tangential stiffness per unit area/(kg·m-3) | 4×108 | |
临界法向应力Critical normal stress/Pa | 200 000 | |
临界切向应力Critical tangential stress/Pa | 160 000 | |
黏结半径Bond radius/mm | 4.2 | |
茎秆-茎秆Stalks-stalks | 法向单位面积刚度Normal stiffness per unit area/(kg·m-3) | 1.5×1010 |
切向单位面积刚度Tangential stiffness per unit area/(kg·m-3) | 1.2×1010 | |
临界法向应力Critical normal stress/Pa | 1.3×107 | |
临界切向应力Critical tangential stress/Pa | 1.04×107 | |
黏结半径Bond radius/mm | 4.2 |
参数 Parameter | 范围 Scope | 均值 Mean |
---|---|---|
茎秆外径(大) | 7.13~7.75 | 7.36 |
Stem outside diameter (large)/mm | ||
茎秆外径(中) | 5.86~6.39 | 6.11 |
Stem outer diameter (middle)/mm | ||
茎秆外径(小) | 4.81~5.14 | 4.98 |
Stem outside diameter (small)/mm | ||
籽粒长轴 | 9.14~11.91 | 10.65 |
Long axis of grain/mm | ||
籽粒短轴 | 5.82~7.31 | 6.43 |
Short axis of grain/mm | ||
籽粒含水率 | 14.40~18.90 | 16.60 |
Grain moisture content/% |
Table 3 Basic parameters of soybean plant
参数 Parameter | 范围 Scope | 均值 Mean |
---|---|---|
茎秆外径(大) | 7.13~7.75 | 7.36 |
Stem outside diameter (large)/mm | ||
茎秆外径(中) | 5.86~6.39 | 6.11 |
Stem outer diameter (middle)/mm | ||
茎秆外径(小) | 4.81~5.14 | 4.98 |
Stem outside diameter (small)/mm | ||
籽粒长轴 | 9.14~11.91 | 10.65 |
Long axis of grain/mm | ||
籽粒短轴 | 5.82~7.31 | 6.43 |
Short axis of grain/mm | ||
籽粒含水率 | 14.40~18.90 | 16.60 |
Grain moisture content/% |
编码值 Code | 滚筒转速 Roller speed(A)/ (r·min-1) | 脱粒间隙 Threshing clearance (B)/mm×mm | 喂入量 Feed amount (C)/(kg·s-1) |
---|---|---|---|
-1 | 350 | 15×10 | 1 |
0 | 400 | 20×15 | 2 |
1 | 450 | 25×20 | 3 |
Table 4 Level of test factors
编码值 Code | 滚筒转速 Roller speed(A)/ (r·min-1) | 脱粒间隙 Threshing clearance (B)/mm×mm | 喂入量 Feed amount (C)/(kg·s-1) |
---|---|---|---|
-1 | 350 | 15×10 | 1 |
0 | 400 | 20×15 | 2 |
1 | 450 | 25×20 | 3 |
序号No. | A | B | C | Y1/% | Y2/% |
---|---|---|---|---|---|
1 | 0 | -1 | 1 | 2.28 | 0.80 |
2 | 1 | 0 | 1 | 3.05 | 0.88 |
3 | -1 | -1 | 0 | 1.82 | 0.72 |
4 | 0 | 0 | 0 | 1.98 | 0.74 |
5 | 1 | 1 | 0 | 2.58 | 0.79 |
6 | 0 | 0 | 0 | 1.91 | 0.69 |
7 | -1 | 0 | -1 | 1.71 | 0.69 |
8 | 0 | 0 | 0 | 1.92 | 0.72 |
9 | 0 | 0 | 0 | 1.61 | 0.73 |
10 | 0 | -1 | -1 | 1.42 | 0.77 |
11 | -1 | 0 | 1 | 2.53 | 0.75 |
12 | 0 | 1 | 1 | 3.03 | 0.72 |
13 | 1 | 0 | -1 | 1.83 | 0.76 |
14 | 1 | -1 | 0 | 2.41 | 0.81 |
15 | 0 | 1 | -1 | 2.45 | 0.65 |
16 | 0 | 0 | 0 | 2.11 | 0.72 |
17 | -1 | 1 | 0 | 1.81 | 0.68 |
Table 5 Test design scheme and results
序号No. | A | B | C | Y1/% | Y2/% |
---|---|---|---|---|---|
1 | 0 | -1 | 1 | 2.28 | 0.80 |
2 | 1 | 0 | 1 | 3.05 | 0.88 |
3 | -1 | -1 | 0 | 1.82 | 0.72 |
4 | 0 | 0 | 0 | 1.98 | 0.74 |
5 | 1 | 1 | 0 | 2.58 | 0.79 |
6 | 0 | 0 | 0 | 1.91 | 0.69 |
7 | -1 | 0 | -1 | 1.71 | 0.69 |
8 | 0 | 0 | 0 | 1.92 | 0.72 |
9 | 0 | 0 | 0 | 1.61 | 0.73 |
10 | 0 | -1 | -1 | 1.42 | 0.77 |
11 | -1 | 0 | 1 | 2.53 | 0.75 |
12 | 0 | 1 | 1 | 3.03 | 0.72 |
13 | 1 | 0 | -1 | 1.83 | 0.76 |
14 | 1 | -1 | 0 | 2.41 | 0.81 |
15 | 0 | 1 | -1 | 2.45 | 0.65 |
16 | 0 | 0 | 0 | 2.11 | 0.72 |
17 | -1 | 1 | 0 | 1.81 | 0.68 |
参数 Parameter | Y1/% | Y2/% | ||
---|---|---|---|---|
F值 F value | P值 P value | F值 F value | P值 P value | |
Model | 4.07 | 0.038 7 | 7.64 | 0.006 9 |
A | 6.11 | 0.042 7 | 30.11 | 0.000 9 |
B | 5.75 | 0.047 6 | 12.72 | 0.009 1 |
C | 18.50 | 0.003 6 | 14.75 | 0.006 4 |
AB | 0.099 0 | 0.762 2 | 0.150 5 | 0.709 6 |
AC | 0.488 9 | 0.507 0 | 1.35 | 0.282 6 |
BC | 0.239 5 | 0.639 5 | 0.602 2 | 0.463 2 |
A2 | 0.704 4 | 0.429 0 | 6.69 | 0.036 1 |
B2 | 0.896 6 | 0.375 2 | 0.039 6 | 0.847 9 |
C2 | 3.40 | 0.107 8 | 1.94 | 0.206 2 |
失拟项Lack of fit | 4.33 | 0.095 5 | 3.10 | 0.151 8 |
Table 6 Analysis of variance
参数 Parameter | Y1/% | Y2/% | ||
---|---|---|---|---|
F值 F value | P值 P value | F值 F value | P值 P value | |
Model | 4.07 | 0.038 7 | 7.64 | 0.006 9 |
A | 6.11 | 0.042 7 | 30.11 | 0.000 9 |
B | 5.75 | 0.047 6 | 12.72 | 0.009 1 |
C | 18.50 | 0.003 6 | 14.75 | 0.006 4 |
AB | 0.099 0 | 0.762 2 | 0.150 5 | 0.709 6 |
AC | 0.488 9 | 0.507 0 | 1.35 | 0.282 6 |
BC | 0.239 5 | 0.639 5 | 0.602 2 | 0.463 2 |
A2 | 0.704 4 | 0.429 0 | 6.69 | 0.036 1 |
B2 | 0.896 6 | 0.375 2 | 0.039 6 | 0.847 9 |
C2 | 3.40 | 0.107 8 | 1.94 | 0.206 2 |
失拟项Lack of fit | 4.33 | 0.095 5 | 3.10 | 0.151 8 |
编号 No. | 滚筒转速 Roller speed(A)/ (r·min-1) | 脱粒间隙 Threshing clearance(B)/ mm×mm | 喂入量 Feed amount(C)/ (kg·s-1) | 损失率 Loss rate (Y1)/% | 破碎率 Breakage rate (Y2)/% |
---|---|---|---|---|---|
1 | 366.65 | 20.78×15.78 | 1.286 | 1.79 | 0.69 |
2 | 366.65 | 20.78×15.78 | 1.286 | 1.75 | 0.73 |
3 | 366.65 | 20.78×15.78 | 1.286 | 1.76 | 0.72 |
平均值Average value | 366.65 | 20.78×15.78 | 1.286 | 1.767 | 0.713 |
Table 7 Optimization result validation test
编号 No. | 滚筒转速 Roller speed(A)/ (r·min-1) | 脱粒间隙 Threshing clearance(B)/ mm×mm | 喂入量 Feed amount(C)/ (kg·s-1) | 损失率 Loss rate (Y1)/% | 破碎率 Breakage rate (Y2)/% |
---|---|---|---|---|---|
1 | 366.65 | 20.78×15.78 | 1.286 | 1.79 | 0.69 |
2 | 366.65 | 20.78×15.78 | 1.286 | 1.75 | 0.73 |
3 | 366.65 | 20.78×15.78 | 1.286 | 1.76 | 0.72 |
平均值Average value | 366.65 | 20.78×15.78 | 1.286 | 1.767 | 0.713 |
[1] | 谢方平, 罗锡文, 卢向阳, 等. 柔性滚筒结构参数对水稻脱粒效果的影响试验[J]. 农机化研究, 2009, 31(9): 147-151. |
XIE F P, LUO X W, LU X Y, et al. Effect of roller structural parameter on flexible threshing character for paddy rice[J]. Journal of Agricultural Mechanization Research, 2009, 31(9): 147-151. (in Chinese with English abstract) | |
[2] | 刘广才. 不同间套作系统种间营养竞争的差异性及其机理研究[D]. 兰州: 甘肃农业大学, 2005. |
LIU G C. Difference and its mechanism of interspecific nutrition competition in different intercropping systems[D]. Lanzhou: Gansu Agricultural University, 2005. (in Chinese with English abstract) | |
[3] | 赵贵玉, 张越杰. 黑龙江省大豆生产效率研究[J]. 吉林农业大学学报, 2009, 31(3): 350-354. |
ZHAO G Y, ZHANG Y J. A study on soybean productivity in Heilongjiang Province[J]. Journal of Jilin Agricultural University, 2009, 31(3): 350-354. (in Chinese with English abstract) | |
[4] | 石彦国. 调整产业结构确保大豆产业健康持续发展[J]. 中国食品学报, 2010, 10(4): 1-7. |
SHI Y G. Adjusting the industrial structure to ensure sustained and healthy development of soybean industry[J]. Journal of Chinese Institute of Food Science and Technology, 2010, 10(4): 1-7. (in Chinese with English abstract) | |
[5] | 王红蕾. 黑龙江省大豆产业振兴发展路径分析[J]. 黑龙江农业科学, 2019(10): 103-106. |
WANG H L. Analysis on the development path of soybean industry revitalization in Heilongjiang Province[J]. Heilongjiang Agricultural Sciences, 2019(10): 103-106. (in Chinese with English abstract) | |
[6] | 亢江飞, 常丽丹, 李林, 等. 大豆机械化种植发展现状及对策分析[J]. 河北农机, 2020(6): 22. |
KANG J F, CHANG L D, LI L, et al. Development status and countermeasures of mechanized planting of soybean[J]. Hebei Agricultural Machinery, 2020(6): 22. (in Chinese) | |
[7] | 龙生云, 王明立. 从大豆种子的现状看精选种子的重要性[J]. 大豆通报, 2004(1): 11-12. |
LONG S Y, WANG M L. On the importance of selecting seeds from the present situation of soybean seeds[J]. Soybean Bulletin, 2004(1): 11-12. (in Chinese) | |
[8] | 牛元民. 浅谈大豆机械收割减少破碎技术[J]. 大豆科技, 2008(5): 28. |
NIU Y M. Techology for reducing breaking rate during soybean mechanical harvesing[J]. Soybean Science & Technology, 2008(5): 28. (in Chinese with English abstract) | |
[9] | TENG Y J, CHEN Y P, JIN C Q, et al. Design and test on the type of spiral cylinder-segmented concave threshing system[C]// 2019 Boston, Massachusetts July 7-July 10, 2019. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2019: 1. |
[10] | 樊晨龙, 崔涛, 张东兴, 等. 低损伤组合式玉米脱粒分离装置设计与试验[J]. 农业机械学报, 2019, 50(4): 113-123. |
FAN C L, CUI T, ZHANG D X, et al. Design and test of low-damage combined corn threshing and separating device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(4): 113-123. (in Chinese with English abstract) | |
[11] | 谢方平, 罗锡文, 卢向阳, 等. 柔性杆齿滚筒脱粒机理[J]. 农业工程学报, 2009, 25(8): 110-114. |
XIE F P, LUO X W, LU X Y, et al. Threshing principle of flexible pole-teeth roller for paddy rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(8): 110-114. (in Chinese with English abstract) | |
[12] | 王志明. 横置差速轴流脱分选系统工作机理及设计研究[D]. 西安: 长安大学, 2017. |
WANG Z M. Study on work mechanism and design of axial flow differential-speed threshing-separating-cleaning unit[D]. Xi’an: Chang’an University, 2017. (in Chinese with English abstract) | |
[13] | 刘基. 大豆收获机低损伤脱粒机构设计与试验[D]. 北京: 中国农业科学院, 2017. |
LIU J. The design and experiment of low damage threshing mechanism of soybean harvester[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese with English abstract) | |
[14] | 孙成龙, 左杰文, 卢富运, 等. 燕麦脱粒组合式轴流滚筒设计与试验[J]. 农机化研究, 2021, 43(6): 135-141, 151. |
SUN C L, ZUO J W, LU F Y, et al. Design and test of combined axial flow roller for oats threshing[J]. Journal of Agricultural Mechanization Research, 2021, 43(6): 135-141, 151. (in Chinese with English abstract) | |
[15] | WANG J W, LI Z W, HUSSAIN S, et al. Design and threshing outputs study of internal and external rotary roller buckwheat thresher[J]. INMATEH Agricultural Engineering, 2020, 60(1): 173-182. |
[16] | 段玥晨, 章定国, 洪嘉振. 作大范围运动柔性梁的一种碰撞动力学求解方法[J]. 机械工程学报, 2012, 48(19): 95-102. |
DUAN Y C, ZHANG D G, HONG J Z. Method for solving the impact problem of a flexible beam with large overall motion[J]. Journal of Mechanical Engineering, 2012, 48(19): 95-102. (in Chinese with English abstract) | |
[17] | QIAN Z J, JIN C Q, ZHANG D G. Multiple frictional impact dynamics of threshing process between flexible tooth and grain kernel[J]. Computers and Electronics in Agriculture, 2017, 141: 276-285. |
[18] | 陈美舟, 徐广飞, 王传旭, 等. 纵轴流辊式组合玉米柔性脱粒分离装置设计与试验[J]. 农业机械学报, 2020, 51(10): 123-131. |
CHEN M Z, XU G F, WANG C X, et al. Design and experiment of roller-type combined longitudinal axial flow flexible threshing and separating device for corn[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(10): 123-131. (in Chinese with English abstract) | |
[19] | 陈德俊, 陈霓, 姜喆雄, 等. 国外水稻联合收割机新技术及相关理论研究[M]. 镇江: 江苏大学出版社, 2015. |
[20] | 宋志才, 刁培松, 陈美舟, 等. 纵轴流玉米脱粒分离装置设计与试验[J]. 农机化研究, 2022, 44(2): 58-66. |
SONG Z C, DIAO P S, CHEN M Z, et al. Analysis design and test of longitudinal flow corn threshing and separating plant[J]. Journal of Agricultural Mechanization Research, 2022, 44(2): 58-66. (in Chinese with English abstract) | |
[21] | XU T Y, YU J Q, YU Y J, et al. A modelling and verification approach for soybean seed particles using the discrete element method[J]. Advanced Powder Technology, 2018, 29(12): 3274-3290. |
[22] | YAN D X, YU J Q, WANG Y, et al. A general modelling method for soybean seeds based on the discrete element method[J]. Powder Technology, 2020, 372: 212-226. |
[23] | 邱轶兵. 试验设计与数据处理[M]. 合肥: 中国科学技术大学出版社, 2009. |
[24] | 耿端阳, 张道林, 王相友. 新编农业机械学[M]. 北京: 国防工业出版社, 2011. |
[25] | 杨德旭, 姜德龙, 沈永哲, 等. 切轴流式双滚筒大豆种子脱粒机设计与试验[J]. 农业机械学报, 2017, 48(9): 102-110. |
YANG D X, JIANG D L, SHEN Y Z, et al. Design and test on soybean seed thresher with tangential-axial flow double-roller[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 102-110. (in Chinese with English abstract) | |
[26] | 孙博, 曹肆林, 卢勇涛, 等. “张持”式顺向残膜捡拾机构的设计与试验[J]. 干旱地区农业研究, 2020, 38(5): 252-258. |
SUN B, CAO S L, LU Y T, et al. Design and test of open-hold forward rotation residual film machine[J]. Agricultural Research in the Arid Areas, 2020, 38(5): 252-258. (in Chinese with English abstract) |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||