Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (4): 968-977.DOI: 10.3969/j.issn.1004-1524.20230563
Previous Articles Next Articles
LU Ziqi1,2(), WANG Jing2, ZHANG Zhen2, WANG Jiaoyu2,*(
), SUN Guocang2, LIN Fucheng2
Received:
2023-07-27
Online:
2024-04-25
Published:
2024-04-29
Contact:
WANG Jiaoyu
CLC Number:
LU Ziqi, WANG Jing, ZHANG Zhen, WANG Jiaoyu, SUN Guocang, LIN Fucheng. Research progress of biopesticides based on RNAi[J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 968-977.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230563
[1] | WANG H L, LIU H, WANG D Y. Agricultural insurance, climate change, and food security: evidence from Chinese farmers[J]. Sustainability, 2022, 14(15): 9493. |
[2] | FAO. FAO’s director-general on how to feed the world in 2050[J]. Population and Development Review, 2009, 35(4): 837-839. |
[3] | ALEXANDER P, BROWN C, ARNETH A, et al. Losses, inefficiencies and waste in the global food system[J]. Agricultural Systems, 2017, 153: 190-200. |
[4] | RANK A P, KOCH A. Lab-to-field transition of RNA spray applications—how far are we?[J]. Frontiers in Plant Science, 2021, 12: 755203. |
[5] | TUDI M, RUAN H D, WANG L, et al. Agriculture development, pesticide application and its impact on the environment[J]. International Journal of Environmental Research and Public Health, 2021, 18(3): 1112. |
[6] | WYTINCK N, MANCHUR C L, LI V H, et al. dsRNA uptake in plant pests and pathogens: insights into RNAi-based insect and fungal control technology[J]. Plants, 2020, 9(12): 1780. |
[7] | CAGLIARI D, DIAS N P, GALDEANO D M, et al. Management of pest insects and plant diseases by non-transformative RNAi[J]. Frontiers in Plant Science, 2019, 10: 1319. |
[8] | HAN H Y. RNA interference to knock down gene expression[J]. Methods in Molecular Biology, 2018, 1706: 293-302. |
[9] | NAPOLI C, LEMIEUX C, JORGENSEN R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans[J]. The Plant Cell, 1990, 2(4): 279-289. |
[10] | ROMANO N, MACINO G. Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences[J]. Molecular Microbiology, 1992, 6(22): 3343-3353. |
[11] | GUO S, KEMPHUES K J. Par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed[J]. Cell, 1995, 81(4): 611-620. |
[12] | FIRE A, XU S Q, MONTGOMERY M K, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature, 1998, 391(6669): 806-811. |
[13] | MEISTER G, TUSCHL T. Mechanisms of gene silencing by double-stranded RNA[J]. Nature, 2004, 431(7006): 343-349. |
[14] | TOMARI Y, DU T T, ZAMORE P D. Sorting of Drosophila small silencing RNAs[J]. Cell, 2007, 130(2): 299-308. |
[15] | MATRANGA C, TOMARI Y, SHIN C, et al. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes[J]. Cell, 2005, 123(4): 607-620. |
[16] | MIYOSHI K, TSUKUMO H, NAGAMI T, et al. Slicer function of Drosophila Argonautes and its involvement in RISC formation[J]. Genes & Development, 2005, 19(23): 2837-2848. |
[17] | AGRAWAL N, DASARADHI P V N, MOHMMED A, et al. RNA interference: biology, mechanism, and applications[J]. Microbiology and Molecular Biology Reviews: MMBR, 2003, 67(4): 657-685. |
[18] | HUVENNE H, SMAGGHE G. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review[J]. Journal of Insect Physiology, 2010, 56(3): 227-235. |
[19] | PREALL J B, SONTHEIMER E J. RNAi: RISC gets loaded[J]. Cell, 2005, 123(4): 543-545. |
[20] | MATRANGA C, ZAMORE P D. Small silencing RNAs[J]. Current Biology, 2007, 17(18): R789-R793. |
[21] | LIPPMAN Z, MARTIENSSEN R. The role of RNA interference in heterochromatic silencing[J]. Nature, 2004, 431(7006): 364-370. |
[22] | DUBROVINA A S, KISELEV K V. Exogenous RNAs for gene regulation and plant resistance[J]. International Journal of Molecular Sciences, 2019, 20(9): 2282. |
[23] | TENLLADO F, DÍAZ-RUÍZ J R. Double-stranded RNA-mediated interference with plant virus infection[J]. Journal of Virology, 2001, 75(24): 12288-12297. |
[24] | YIN G H, SUN Z N, LIU N, et al. Production of double-stranded RNA for interference with TMV infection utilizing a bacterial prokaryotic expression system[J]. Applied Microbiology and Biotechnology, 2009, 84(2): 323-333. |
[25] | GAN D F, ZHANG J, JIANG H B, et al. Bacterially expressed dsRNA protects maize against SCMV infection[J]. Plant Cell Reports, 2010, 29(11): 1261-1268. |
[26] | KONAKALLA N C, KALDIS A, BERBATI M, et al. Exogenous application of double-stranded RNA molecules from TMV p126 and CP genes confers resistance against TMV in tobacco[J]. Planta, 2016, 244(4): 961-969. |
[27] | NIEHL A, SOININEN M, PORANEN M M, et al. Synthetic biology approach for plant protection using dsRNA[J]. Plant Biotechnology Journal, 2018, 16(9): 1679-1687. |
[28] | KENNERDELL J R, CARTHEW R W. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway[J]. Cell, 1998, 95(7): 1017-1026. |
[29] | BETTENCOURT R, TERENIUS O, FAYE I. Hemolin gene silencing by ds-RNA injected into Cecropia pupae is lethal to next generation embryos[J]. Insect Molecular Biology, 2002, 11(3): 267-271. |
[30] | DIETZL G, CHEN D, SCHNORRER F, et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila[J]. Nature, 2007, 448(7150): 151-156. |
[31] | ARAUJO R N, SANTOS A, PINTO F S, et al. RNA interference of the salivary gland nitrophorin 2 in the triatomine bug Rhodnius prolixus(Hemiptera: Reduviidae) by dsRNA ingestion or injection[J]. Insect Biochemistry and Molecular Biology, 2006, 36(9): 683-693. |
[32] | TURNER C T, DAVY M W, MACDIARMID R M, et al. RNA interference in the light brown apple moth, Epiphyas postvittana(Walker) induced by double-stranded RNA feeding[J]. Insect Molecular Biology, 2006, 15(3): 383-391. |
[33] | YOON J S, SHUKLA J N, GONG Z J, et al. RNA interference in the Colorado potato beetle, Leptinotarsa decemlineata: identification of key contributors[J]. Insect Biochemistry and Molecular Biology, 2016, 78: 78-88. |
[34] | BRUTSCHER L M, DAUGHENBAUGH K F, FLENNIKEN M L. Virus and dsRNA-triggered transcriptional responses reveal key components of honey bee antiviral defense[J]. Scientific Reports, 2017, 7: 6448. |
[35] | HEIGWER F, PORT F, BOUTROS M. RNA interference (RNAi) screening in Drosophila[J]. Genetics, 2018, 208(3): 853-874. |
[36] | LIU Z Y, CHEN Y X, RAO Y. An RNAi screen for secreted factors and cell-surface players in coordinating neuron and glia development in Drosophila[J]. Molecular Brain, 2020, 13(1): 1. |
[37] | GONG L, CHEN Y, HU Z, et al. Testing insecticidal activity of novel chemically synthesized siRNA against Plutella xylostella under laboratory and field conditions[J]. PLoS One, 2013, 8(5): e62990. |
[38] | HUNTER W B, GLICK E, PALDI N, et al. Advances in RNA interference: dsRNA treatment in trees and grapevines for insect pest suppression[J]. Southwestern Entomologist, 2012, 37(1): 85-87. |
[39] | DE ANDRADE E C, HUNTER W B. RNA interference-natural gene-based technology for highly specific pest control (HiSPeC)[M]// RNA Interference. InTech, 2016 |
[40] | MILLER S C, MIYATA K, BROWN S J, et al. Dissecting systemic RNA interference in the red flour beetle Tribolium castaneum: parameters affecting the efficiency of RNAi[J]. PLoS One, 2012, 7(10): e47431. |
[41] | VÉLEZ A M, FISHILEVICH E. The mysteries of insect RNAi: a focus on dsRNA uptake and transport[J]. Pesticide Biochemistry and Physiology, 2018, 151: 25-31. |
[42] | CHRISTIAENS O, WHYARD S, VÉLEZ A M, et al. Double-stranded RNA technology to control insect pests: current status and challenges[J]. Frontiers in Plant Science, 2020, 11: 451. |
[43] | CHOUDHARY C, MEGHWANSHI K K, SHUKLA N, et al. Innate and adaptive resistance to RNAi: a major challenge and hurdle to the development of double stranded RNA-based pesticides[J]. 3 Biotech, 2021, 11(12): 498. |
[44] | KOCH A, BIEDENKOPF D, FURCH A, et al. An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery[J]. PLoS Pathogens, 2016, 12(10): e1005901. |
[45] | WANG M, WEIBERG A, LIN F M, et al. Bidirectional cross-Kingdom RNAi and fungal uptake of external RNAs confer plant protection[J]. Nature Plants, 2016, 2: 16151. |
[46] | KOCH A, HÖFLE L, WERNER B T, et al. SIGS vs HIGS: a study on the efficacy of two dsRNA delivery strategies to silence Fusarium FgCYP51 genes in infected host and non-host plants[J]. Molecular Plant Pathology, 2019, 20(12): 1636-1644. |
[47] | WERNER B T, GAFFAR F Y, SCHUEMANN J, et al. RNA-spray-mediated silencing of Fusarium graminearum AGO and DCL genes improve barley disease resistance[J]. Frontiers in Plant Science, 2020, 11: 476. |
[48] | SARKAR A, ROY-BARMAN S. Spray-induced silencing of pathogenicity gene MoDES1 via exogenous double-stranded RNA can confer partial resistance against fungal blast in rice[J]. Frontiers in Plant Science, 2021, 12: 733129. |
[49] | BENNETT M, DEIKMAN J, HENDRIX B, et al. Barriers to efficient foliar uptake of dsRNA and molecular barriers to dsRNA activity in plant cells[J]. Frontiers in Plant Science, 2020, 11: 816. |
[50] | NERVA L, SANDRINI M, GAMBINO G, et al. Double-stranded RNAs (dsRNAs) as a sustainable tool against gray mold (Botrytis cinerea) in grapevine: effectiveness of different application methods in an open-air environment[J]. Biomolecules, 2020, 10(2): 200. |
[51] | SAMMONS R, IVASHUTA S, LIU H, et al. Polynucleotide molecules for gene regulation in plants. Patent 20110296556A1[P/OL]. https://patentscope2.wipo.int/search/en/detail.jsf?docId=WO2011112570, 2011. |
[52] | BOLOGNESI R, RAMASESHADRI P, ANDERSON J, et al. Characterizing the mechanism of action of double-stranded RNA activity against western corn rootworm (Diabrotica virgifera virgifera LeConte)[J]. PLoS One, 2012, 7(10): e47534. |
[53] | HÖFLE L, BIEDENKOPF D, WERNER B T, et al. Study on the efficiency of dsRNAs with increasing length in RNA-based silencing of the Fusarium CYP51 genes[J]. RNA Biology, 2020, 17(4): 463-473. |
[54] | QIAO L L, LAN C, CAPRIOTTI L, et al. Spray-induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake[J]. Plant Biotechnology Journal, 2021, 19(9): 1756-1768. |
[55] | FEINBERG E H, HUNTER C P. Transport of dsRNA into cells by the transmembrane protein SID-1[J]. Science, 2003, 301(5639): 1545-1547. |
[56] | SALEH M C, VAN RIJ R P, HEKELE A, et al. The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing[J]. Nature Cell Biology, 2006, 8(8): 793-802. |
[57] | WANG M, THOMAS N, JIN H L. Cross-Kingdom RNA trafficking and environmental RNAi for powerful innovative pre- and post-harvest plant protection[J]. Current Opinion in Plant Biology, 2017, 38: 133-141. |
[58] | XIONG Q, YE W W, CHOI D, et al. Phytophthora suppressor of RNA silencing 2 is a conserved RxLR effector that promotes infection in soybean and Arabidopsis thaliana[J]. Molecular Plant-Microbe Interactions: MPMI, 2014, 27(12): 1379-1389. |
[59] | MELNYK C W, MOLNAR A, BAULCOMBE D C. Intercellular and systemic movement of RNA silencing signals[J]. The EMBO Journal, 2011, 30(17): 3553-3563. |
[60] | MOLNAR A, MELNYK C, BAULCOMBE D C. Silencing signals in plants: a long journey for small RNAs[J]. Genome Biology, 2011, 12(1): 215. |
[61] | GOGOI A, SARMAH N, KALDIS A, et al. Plant insects and mites uptake double-stranded RNA upon its exogenous application on tomato leaves[J]. Planta, 2017, 246(6): 1233-1241. |
[62] | NIU L, YAN H X, SUN Y J, et al. Nanoparticle facilitated stacked-dsRNA improves suppression of the Lepidoperan pest Chilo suppresallis[J]. Pesticide Biochemistry and Physiology, 2022, 187: 105183. |
[63] | TENLLADO F, MARTÍNEZ-GARCÍA B, VARGAS M, et al. Crude extracts of bacterially expressed dsRNA can be used to protect plants against virus infections[J]. BMC Biotechnology, 2003, 3: 3. |
[64] | LIM Z X, ROBINSON K E, JAIN R G, et al. Diet-delivered RNAi in Helicoverpa armigera: progresses and challenges[J]. Journal of Insect Physiology, 2016, 85: 86-93. |
[65] | MA Z Z, ZHOU H, WEI Y L, et al. A novel plasmid-Escherichia coli system produces large batch dsRNAs for insect gene silencing[J]. Pest Management Science, 2020, 76(7): 2505-2512. |
[66] | LÜ J, GUO W, CHEN S M, et al. Double-stranded RNAs targeting HvRPS18 and HvRPL13 reveal potential targets for pest management of the 28-spotted ladybeetle, Henosepilachna vigintioctopunctata[J]. Pest Management Science, 2020, 76(8): 2663-2673. |
[67] | CHEN Z J, HE J D, LUO P, et al. Production of functional double-stranded RNA using a prokaryotic expression system in Escherichia coli[J]. MicrobiologyOpen, 2019, 8(7): e00787. |
[68] | NITYAGOVSKY N N, KISELEV K V, SUPRUN A R, et al. Exogenous dsRNA induces RNA interference of a Chalcone synthase gene in Arabidopsis thaliana[J]. International Journal of Molecular Sciences, 2022, 23(10): 5325. |
[69] | DELGADO-MARTÍN J, VELASCO L. An efficient dsRNA constitutive expression system in Escherichia coli[J]. Applied Microbiology and Biotechnology, 2021, 105(16/17): 6381-6393. |
[70] | NWOKEOJI A O, NWOKEOJI E A, CHOU T, et al. A novel sustainable platform for scaled manufacturing of double-stranded RNA biopesticides[J]. Bioresources and Bioprocessing, 2022, 9(1): 107. |
[71] | WHITTEN M M A, FACEY P D, DEL SOL R, et al. Symbiont-mediated RNA interference in insects[J]. Proceedings Biological Sciences, 2016, 283(1825): 20160042. |
[72] | HASHIRO S, CHIKAMI Y, KAWAGUCHI H, et al. Efficient production of long double-stranded RNAs applicable to agricultural pest control by Corynebacterium glutamicum equipped with coliphage T7-expression system[J]. Applied Microbiology and Biotechnology, 2021, 105(12): 4987-5000. |
[73] | DUMAN-SCHEEL M. Saccharomyces cerevisiae(baker’s yeast) as an interfering RNA expression and delivery system[J]. Current Drug Targets, 2019, 20(9): 942-952. |
[74] | PARK M G, CHOI J Y, PARK D H, et al. Simultaneous control of sacbrood virus (SBV) and Galleria mellonella using a Bt strain transformed to produce dsRNA targeting the SBV vp1 gene[J]. Entomologia Generalis, 2021, 41(3): 233-242. |
[75] | HAPAIRAI L K, MYSORE K, CHEN Y Y, et al. Lure-and-kill yeast interfering RNA larvicides targeting neural genes in the human disease vector mosquito Aedes aegypti[J]. Scientific Reports, 2017, 7: 13223. |
[76] | MYSORE K, HAPAIRAI L K, SUN L H, et al. Yeast interfering RNA larvicides targeting neural genes induce high rates of Anopheles larval mortality[J]. Malaria Journal, 2017, 16(1): 461. |
[77] | MYSORE K, LI P, WANG C W, et al. Characterization of a broad-based mosquito yeast interfering RNA larvicide with a conserved target site in mosquito semaphorin-1a genes[J]. Parasites & Vectors, 2019, 12(1): 256. |
[78] | LEONARD S P, POWELL J E, PERUTKA J, et al. Engineered symbionts activate honey bee immunity and limit pathogens[J]. Science, 2020, 367(6477): 573-576. |
[79] | DALAKOURAS A, WASSENEGGER M, MCMILLAN J N, et al. Induction of silencing in plants by high-pressure spraying of in vitro-synthesized small RNAs[J]. Frontiers in Plant Science, 2016, 7: 1327. |
[80] | ZHU F, XU J J, PALLI R, et al. Ingested RNA interference for managing the populations of the Colorado potato beetle, Leptinotarsa decemlineata[J]. Pest Management Science, 2011, 67(2): 175-182. |
[81] | MAMTA B, RAJAM M V. RNAi technology: a new platform for crop pest control[J]. Physiology and Molecular Biology of Plants, 2017, 23(3): 487-501. |
[82] | DAVIS-VOGEL C, ORTIZ A, PROCYK L, et al. Knockdown of RNA interference pathway genes impacts the fitness of western corn rootworm[J]. Scientific Reports, 2018, 8: 7858. |
[83] | GHOSH S K B, HUNTER W B, PARK A L, et al. Double-stranded RNA oral delivery methods to induce RNA interference in phloem and plant-sap-feeding hemipteran insects[J]. Journal of Visualized Experiments: JoVE, 2018(135): 57390. |
[84] | CHRISTIAENS O, TARDAJOS M G, MARTINEZ REYNA Z L, et al. Increased RNAi efficacy in Spodoptera exigua via the formulation of dsRNA with guanylated polymers[J]. Frontiers in Physiology, 2018, 9: 316. |
[85] | THAIRU M W, SKIDMORE I H, BANSAL R, et al. Efficacy of RNA interference knockdown using aerosolized short interfering RNAs bound to nanoparticles in three diverse aphid species[J]. Insect Molecular Biology, 2017, 26(3): 356-368. |
[86] | CASTELLANOS N L, SMAGGHE G, SHARMA R, et al. Liposome encapsulation and EDTA formulation of dsRNA targeting essential genes increase oral RNAi-caused mortality in the Neotropical stink bug Euschistus heros[J]. Pest Management Science, 2019, 75(2): 537-548. |
[87] | HERNÁNDEZ-SOTO A, CHACÓN-CERDAS R. RNAi crop protection advances[J]. International Journal of Molecular Sciences, 2021, 22(22): 12148. |
[88] | MA Z Z, ZHENG Y, CHAO Z J, et al. Visualization of the process of a nanocarrier-mediated gene delivery: stabilization, endocytosis and endosomal escape of genes for intracellular spreading[J]. Journal of Nanobiotechnology, 2022, 20(1): 124. |
[89] | WHITFIELD R, ANASTASAKI A, TRUONG N P, et al. Efficient binding, protection, and self-release of dsRNA in soil by linear and star cationic polymers[J]. ACS Macro Letters, 2018, 7(8): 909-915. |
[90] | YAN S, REN B Y, SHEN J. Nanoparticle-mediated double-stranded RNA delivery system: a promising approach for sustainable pest management[J]. Insect Science, 2021, 28(1): 21-34. |
[91] | WANG Z H, LI M X, KONG Z Y, et al. Star polycation mediated dsRNA improves the efficiency of RNA interference in Phytoseiulus persimilis[J]. Nanomaterials, 2022, 12(21): 3809. |
[92] | MA Z Z, ZHANG Y H, LI M S, et al. A first greenhouse application of bacteria-expressed and nanocarrier-delivered RNA pesticide for Myzus persicae control[J]. Journal of Pest Science, 2023, 96(1): 181-193. |
[93] | MITTER N, WORRALL E A, ROBINSON K E, et al. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses[J]. Nature Plants, 2017, 3: 16207. |
[94] | JAIN R G, FLETCHER S J, MANZIE N, et al. Foliar application of clay-delivered RNA interference for whitefly control[J]. Nature Plants, 2022, 8(5): 535-548. |
[95] | KOSTOV K, ANDONOVA-LILOVA B, SMAGGHE G. Inhibitory activity of carbon quantum dots against Phytophthora infestans and fungal plant pathogens and their effect on dsRNA-induced gene silencing[J]. Biotechnology & Biotechnological Equipment, 2022, 36(1): 949-959. |
[96] | HU R P, SHI J, TIAN C, et al. Nucleic acid aptamers for pesticides, toxins, and biomarkers in agriculture[J]. ChemPlusChem, 2022, 87(11): e202200230. |
[97] | GU K X, SONG X S, XIAO X M, et al. A β2-tubulin dsRNA derived from Fusarium asiaticum confers plant resistance to multiple phytopathogens and reduces fungicide resistance[J]. Pesticide Biochemistry and Physiology, 2019, 153: 36-46. |
[98] | BLUM S A E, LORENZ M G, WACKERNAGEL W. Mechanism of retarded DNA degradation and prokaryotic origin of DNases in nonsterile soils[J]. Systematic and Applied Microbiology, 1997, 20(4): 513-521. |
[99] | LEVY-BOOTH D J, CAMPBELL R G, GULDEN R H, et al. Cycling of extracellular DNA in the soil environment[J]. Soil Biology and Biochemistry, 2007, 39(12): 2977-2991. |
[100] | DUBELMAN S, FISCHER J, ZAPATA F, et al. Environmental fate of double-stranded RNA in agricultural soils[J]. PLoS One, 2014, 9(3): e93155. |
[101] | ZOTTI M, DOS SANTOS E A, CAGLIARI D, et al. RNA interference technology in crop protection against arthropod pests, pathogens and nematodes[J]. Pest Management Science, 2018, 74(6): 1239-1250. |
[102] | DEWITTE-ORR S J, MEHTA D R, COLLINS S E, et al. Long double-stranded RNA induces an antiviral response independent of IFN regulatory factor 3, IFN-beta promoter stimulator 1, and IFN[J]. Journal of Immunology, 2009, 183(10): 6545-6553. |
[103] | WHITEHEAD K A, DAHLMAN J E, LANGER R S, et al. Silencing or stimulation? siRNA delivery and the immune system[J]. Annual Review of Chemical and Biomolecular Engineering, 2011, 2: 77-96. |
[104] | FLETCHER S J, REEVES P T, HOANG B T, et al. A perspective on RNAi-based biopesticides[J]. Frontiers in Plant Science, 2020, 11: 51. |
[105] | KUNTE N, MCGRAW E, BELL S, et al. Prospects, challenges and current status of RNAi through insect feeding[J]. Pest Management Science, 2020, 76(1): 26-41. |
[106] | KINGSOLVER M B, HUANG Z J, HARDY R W. Insect antiviral innate immunity: pathways, effectors, and connections[J]. Journal of Molecular Biology, 2013, 425(24): 4921-4936. |
[107] | COOPER A M, SILVER K, ZHANG J Z, et al. Molecular mechanisms influencing efficiency of RNA interference in insects[J]. Pest Management Science, 2019, 75(1): 18-28. |
[108] | MAT JALALUDDIN N S, OTHMAN R Y, HARIKRISHNA J A. Global trends in research and commercialization of exogenous and endogenous RNAi technologies for crops[J]. Critical Reviews in Biotechnology, 2019, 39(1): 67-78. |
[109] | 关若冰, 李海超, 苗雪霞. RNA生物农药的商业化现状及存在问题[J]. 中国农业科学, 2022, 55(15): 2949-2960. |
GUAN R B, LI H C, MIAO X X. Commercialization status and existing problems of RNA biopesticides[J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960. (in Chinese with English abstract) | |
[110] | RODRIGUES T B, MISHRA S K, SRIDHARAN K, et al. First sprayable double-stranded RNA-based biopesticide product targets proteasome subunit beta type-5 in Colorado potato beetle (Leptinotarsa decemlineata)[J]. Frontiers in Plant Science, 2021, 12: 728652. |
[111] | LIU S S, JAOUANNET M, DEMPSEY D A, et al. RNA-based technologies for insect control in plant production[J]. Biotechnology Advances, 2020, 39: 107463. |
[112] | SZÉKÁCS A, AMMOUR A S, MENDELSOHN M L. Editorial: RNAi based pesticides[J]. Frontiers in Plant Science, 2021, 12: 714116. |
[113] | NAITO Y, YAMADA T, MATSUMIYA T, et al. dsCheck: highly sensitive off-target search software for double-stranded RNA-mediated RNA interference[J]. Nucleic Acids Research, 2005, 33(suppl_2): W589-W591. |
[1] | CHEN Leran, ZHENG Jianbo, JIA Yongyi, CHI Meili, LI Fei, CHENG Shun, LIU Shili, LIU Yinuo, JIANG Wenping, GU Zhimin. Expression profiles of CHH2 gene in redclaw crayfish Cherax quadricarinatus and its role in ovarian development [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 33-40. |
[2] | DONG Ruixian;WANG Xuming;YAN Chengqi;CHEN Jianping;* . The function of rice OsBBR1 in resistance to rice bacterial blight disease [J]. , 2011, 23(6): 0-1146. |
[3] | HE Qiong-ji;YAN Fei;CHEN Jian-ping;*. Advance of RNA interference (RNAi) mechanism and the main proteins in RNAi [J]. , 2011, 23(2): 0-420. |
[4] | YANG Ke-fu;CHEN Yu;WANG Hui-zhong;YING Qi-cai;SHI Nong-nong*. Review on RNA silencing and its mediated?鄄genetic engineering of plant virus?鄄resistance [J]. , 2009, 21(6): 0-659. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||