[1] 陈庆富. 荞麦属植物科学[M]. 北京: 科学出版社, 2012: 5-55. [2] WEISSKOPF A, FULLER D Q. Buckwheat: Origins and development [M]// SMITH C. Encyclopedia of global archaeology. New York: Springer, 2014: 1025-1028. [3] AHMED A, KHALID N, AHMAD A, et al. Phytochemicals and biofunctional properties of buckwheat: a review[J]. The Journal of Agricultural Science, 2014, 152(03): 349-369. [4] JACQUEMART A L, LEDENT J F O, QUINET M, et al. Is buckwheat (Fagopyrum esculentum Moench) still a valuable crop today?[J]. European Journal of Plant Science and Biotechnology, 2012, 6(S2): 1-10. [5] COUCH J F, NAGHSKI J, KREWSON C F. Buckwheat as a source of rutin[J]. Science, 1946, 103(2668): 197-198. [6] CHENG Z J, ZHAO X Y, SHAO X X, et al. Abscisic acid regulates early seed development in Arabidopsis by ABI5-mediated transcription of SHORT HYPOCOTYL UNDER BLUE1[J]. The Plant Cell, 2014, 26(3): 1053-1068. [7] FINKELSTEIN R R. Abscisic acid-insensitive mutations provide evidence for stage-specific signal pathways regulating expression of an Arabidopsis late embryo genesis-abundant (lea) gene[J]. Molecular and General Genetics, 1993, 238(3): 401-408. [8] ANTONI R, RODRIGUEZ L, GONZALEZ-GUZMAN M, et al. News on ABA transport, protein degradation, and ABFs/WRKYs in ABA signalling[J]. Current Opinion in Plant Biology, 2011, 14(5): 547-553. [9] KASHIWAKURA Y I, KOBAYASHI D, JIKUMARU Y, et al. Highly sprouting tolerant wheat grain exhibits extreme dormancy and cold imbibition resistant accumulation of abscisic acid[J]. Plant and Cell Physiology, 2016, 57(4):715-732. [10] KOORNNEEF M, REULING G, KARSSEN C M. The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana[J]. Physiologia Plantarum, 1984, 61(3): 377-383. [11] FINKELSTEIN R R, SOMERVILLE C R. Three classes of abscisic acid (ABA)-insensitive mutations of Arabidopsis define genes that control overlapping subsets of ABA responses[J]. Plant Physiology, 1990, 94(3): 1172-1179. [12] MERLOT S, GOSTI F, GUERRIER D, et al. The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway[J]. The Plant Journal, 2001, 25(3): 295-303. [13] LEUNG J, MERLOT S, GIRAUDAT J. The Arabidopsis ABSCISIC ACID-INSENSITIVE2(ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction[J]. The Plant Cell, 1997, 9(5): 759-771. [14] REEVES W M, LYNCH T J, MOBIN R, et al. Direct targets of the transcription factors ABA-Insensitive (ABI)4 and ABI5 reveal synergistic action by ABI4 and several bZIP ABA response factors[J]. Plant Molecular Biology, 2011, 75(4-5): 347-363. [15] FENG C, CHEN Y, WANG C, et al. Arabidopsis RAV1 transcription factor, phosphorylated by SnRK2 kinases, regulates the expression of ABI3, ABI4, and ABI5 during seed germination and early seedling development[J]. The Plant Journal, 2014, 80(4): 654-668. [16] MITTAL A, GAMPALA S S, RITCHIE G L, et al. Related to ABA-Insensitive3 (ABI3)/Viviparous1 and AtABI5 transcription factor coexpression in cotton enhances drought stress adaptation[J]. Plant Biotechnology Journal, 2014, 12(5): 578-589. [17] 石桃雄,黎瑞源,郭菊卉,等. 基于微卫星标记普通荞麦种子序列表达标签的开发[J]. 贵州农业科学. 2014, 42(3): 1-5. SHI T X, NI R Y, GUO J H, et al. Development of SSR molecular markers based on expressed sequence tags from seeds of Fagopyrum esculentum[J]. Guizhou Agricultural Sciences, 2014, 42(3): 1-5. (in Chinese with English abstract) [18] 梁成刚,陈晴晴,石桃雄,等. 普通荞麦种内丝裂原活化蛋白激酶序列分析[J]. 华南农业大学学报. 2016, 37(4): 90-96. LIANG C G, CHEN Q Q, SHI T X, et al. Sequence analysis of mitogen-activated protein kinases of common buckwheat, Fagopyrum esculentum[J]. Journal of South China Agricultural University, 2016, 37(4): 90-96. (in Chinese with English abstract) [19] HAYASHI K, KINOSHITA T. Plant signaling: abscisic acid receptor hole-in-one [J]. Nature Chemical Biology, 2014, 10(6): 414-415. [20] GOMEZ-CADENAS A, VIVES V, ZANDALINAS S I, et al. Abscisic acid: a versatile phytohormone in plant signaling and beyond[J]. Current Protein and Peptide Science, 2015, 16(5): 413-434. [21] MELCHER K, NG L M, ZHOU X E, et al. A gate-latch-lock mechanism for hormone signaling by abscisic acid receptors[J]. Nature, 2009, 462(7273): 602-608. [22] RAGHAVENDRA A S, GONUGUNTA V K, CHRISTMANN A, et al. ABA perception and signaling[J]. Trends in Plant Science, 2010, 15(7): 395-401. [23] 苏亮,白建荣,王秀红,等. 玉米低磷胁迫诱导的ZmABI5基因的克隆及表达分析[J]. 山西农业科学, 2015, 43(04): 393-396. SU L, BAI J R, WANG X H, et al. Cloning and expression analysis of ZmABI5 gene induced by low phosphate stress in Maize[J]. Journal of Shanxi Agricultural Sciences, 2015, 43(04): 393-396. (in Chinese with English abstract) [24] LOPEZ MOLINA L, MONGRAND S, MCLACHLIN D T, et al. ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination[J]. The Plant Journal, 2002, 32(3): 317-328. [25] CARLES C, BIES ETHEVE N, ASPART L, et al. Regulation of Arabidopsis thaliana Em genes: role of ABI5[J]. The Plant Journal, 2002, 30(3): 373-383. [26] YAN F, DENG W, WANG X, et al. Maize (Zea mays L.) homologue of ABA-insensitive (ABI)5 gene plays a negative regulatory role in abiotic stresses response[J]. Plant Growth Regulation, 2012, 68(3): 383-393. |