浙江农业学报 ›› 2018, Vol. 30 ›› Issue (12): 2102-2111.DOI: 10.3969/j.issn.1004-1524.2018.12.16

• 环境科学 • 上一篇    下一篇

基于模型驱动的田间数据压缩采集方法研究

饶元1, 许文俊1, 赵刚1, Arthur GENIS2, 李绍稳1   

  1. 1.安徽农业大学 信息与计算机学院,安徽 合肥 230036;
    2.Katif沿海沙漠开发研究中心,以色列 内提沃特 8771002
  • 收稿日期:2018-05-15 出版日期:2018-12-25 发布日期:2018-12-28
  • 作者简介:饶元(1982—),男,安徽合肥人,博士,副教授,主要从事农业信息学研究。E-mail: raoyuan@ahau.edu.cn
  • 基金资助:
    国家自然科学基金(61203217,61402013);原农业部引进国际先进农业科学技术948项目(2015-Z44,2016-X34);安徽省自然科学基金(1608085QF126);安徽省高校优秀青年人才支持计划重点项目(gxyqZD2017020)

Model-driven in-situ data compressive gathering

RAO Yuan1, XU Wenjun1, ZHAO Gang1, Arthur GENIS2, LI Shaowen1   

  1. 1. College of Information and Computer Sciences, Anhui Agricultural University, Hefei 230036, China;
    2. Katif Research Center for Coastal Deserts Development, Netivot 8771002, Israel
  • Received:2018-05-15 Online:2018-12-25 Published:2018-12-28

摘要: 基于模型驱动的数据采集方法可有效降低数据传输能耗。阐述了差分自回归移动平均模型(ARIMA)、支持向量回归模型(SVR)、线性模型(DBP)和时钟驱动循环神经网络(CW-RNN)等数据预测模型的运行机制。结合空气温度、土壤湿度、果实膨大和风速等数据,探索预测模型的训练参数和误差阈值设置方法。综合考虑数据采集误差、业务数据传输率、模型更新及预测代价等指标,运用熵权逼近最优排序法(TOPSIS)评价模型适用性。结果表明:最佳训练参数与模型机制和数据对象有关,基于前期采样值自动获取误差阈值可行。模型的适用性与数据对象、节点运算资源和网络带宽有关。常量模型Constant的适用性最高,DBP模型次之。ARIMA模型可应用于带宽受限、节点运算资源较为充沛的应用场景,SVR模型可应用于高带宽、节点运算资源受限的应用场景。

关键词: 模型驱动, 田间数据, 压缩采集, 适用性评价

Abstract: The energy consumption of data transmission is effectively reduced when model-driven in-situ data compressive gathering method is employed. The mechanism was elaborated on about several data-prediction models, such as autoregressive integrated moving average model (ARIMA), support vector regression (SVR), derivative-based prediction (DBP) and clock work recurrent neural networks (CW-RNN). Moreover, their setting strategies of training parameters and error thresholds were explored based on air temperature, soil moisture, fruit growth and wind speed. Based on the gathered data error, data transmission ratio, model update and prediction overhead, the applicability of data-prediction models was evaluated using entropy weight technique for order preference by similarity to and ideal solution (TOPSIS). It was demonstrated that the optimal training parameters were relevant to model mechanism and data objects, and it was feasible to automatically acquire error thresholds based on previously gathered data. The model applicability was dependent on data objects, computation resources of nodes and network bandwidth. More specifically, Constant model had the greatest applicability, followed by DBP. ARIMA model was suitable to scenarios with limited bandwidth, but abundant computation resources. On the contrary, SVR model could be applied to scenarios with high bandwidth, but limited computation resources.

Key words: model-driven, in-situ data, compressive gathering, applicability evaluation

中图分类号: