浙江农业学报 ›› 2021, Vol. 33 ›› Issue (1): 34-42.DOI: 10.3969/j.issn.1004-1524.2021.01.05
收稿日期:
2020-08-01
出版日期:
2021-01-25
发布日期:
2021-01-25
通讯作者:
黄鹰
作者简介:
*黄鹰,E-mail:hy46457690@163.com基金资助:
Received:
2020-08-01
Online:
2021-01-25
Published:
2021-01-25
Contact:
HUANG Ying
摘要:
采用生物信息学方法分析粟酒裂殖酵母SpTrz2蛋白的生物学特性,利用PCR方法扩增粟酒裂殖酵母yAS56菌株SpTrz2的全长和N-末端一半的编码基因,通过NdeⅠ和XhoⅠ酶切位点将SpTrz2的全长和N-末端一半编码基因定向插入pET-28a(+)原核表达载体中,并转化大肠埃希菌BL21(DE3);经过IPTG诱导表达后采用SDS-PAGE电泳切胶纯化法获得重组蛋白,以此为抗原免疫新西兰大白兔获得多克隆抗体,通过Western blotting检测抗体特异性。结果表明,SpTrz2是一个跨膜蛋白,含有3个跨膜结构域,具有多个B细胞抗原表位。SDS-PAGE电泳分析发现,粟酒裂殖酵母SpTrz2的全长和N-末端一半(SpTrz2和SpTrz2N)都以包涵体形式高效表达,其理论相对分子质量分别约为75.99 ku和44.77 ku。Western blotting检测显示,制备的兔抗SpTrz2和SpTrz2N多克隆抗体可以特异性识别天然的SpTrz2蛋白。本研究成功诱导表达、纯化重组蛋白SpTrz2和SpTrz2N,并制备了多克隆抗体,为SpTrz2蛋白的生物学功能相关研究奠定了基础。
中图分类号:
刘金玉, 黄鹰. 粟酒裂殖酵母SpTrz2蛋白全长和N端的原核表达与多克隆抗体制备[J]. 浙江农业学报, 2021, 33(1): 34-42.
LIU Jinyu, HUANG Ying. Prokaryotic expression and antibody preparation of full-length and N-terminal half of SpTrz2 protein in Schizosaccharomyces pombe[J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 34-42.
引物名称 Primer name | 引物序列(5'→3') Sequences(5'→3') | 限制性内切酶 Restriction enzyme |
---|---|---|
trz2-fo | GGGAATTCCATATGAAAGCTTCTCTTCTGGTTCCA | NedⅠ |
trz2-re | CCGCTCGAGTATCGTTTCTCGCTGCTTGC | XhoⅠ |
trz2N-dw | CCGCTCGAGTCCTTCATTTTCAAAGGGTAAAGGA | XhoⅠ |
表1 用于扩增目的片段的引物序列
Table 1 PCR primers for the amplification of target gene fragments
引物名称 Primer name | 引物序列(5'→3') Sequences(5'→3') | 限制性内切酶 Restriction enzyme |
---|---|---|
trz2-fo | GGGAATTCCATATGAAAGCTTCTCTTCTGGTTCCA | NedⅠ |
trz2-re | CCGCTCGAGTATCGTTTCTCGCTGCTTGC | XhoⅠ |
trz2N-dw | CCGCTCGAGTCCTTCATTTTCAAAGGGTAAAGGA | XhoⅠ |
图1 长型tRNase ZL N-末端一半的氨基酸序列比对 ScTrz1-N,芽殖酵母长型tRNase ZL蛋白的N-末端一半序列;SpTrz2-N,粟酒裂殖酵母SpTrz2蛋白的N-末端一半序列;DmTrz1-N,果蝇tRNase ZL蛋白的N-末端一半序列;ELAC2-N,人的ELAC2蛋白的N-末端一半序列;黑线,假模体II、可变臂、GP模体和类Walker A模体;黑色标记表示相同氨基酸残基的保守性≥80%;灰色标记表示相似氨基酸残基;括号内的数字为氨基酸序列的位置。
Fig.1 Sequence alignment of the N-terminal halves of tRNase ZLs ScTrz1-N, the N-terminal halve of tRNase ZL protein from S. cerevisiae; SpTrz2-N, the N-terminal halve of SpTrz2 protein from S. pombe; DmTrz1-N, the N-terminal halve of tRNase ZL protein from D. melanogaster; ELAC2-N, the N-terminal halve of ELAC2 protein from Homo sapiens; Black lines indicated ψ motif II, flexible arm, GP and Walker A-like motifs; Identical residues that were conserved in at least 80% of the aligned sequences were shaded in black; Similar residues were shaded in grey; Numbers in parentheses were the positions of the amino acid sequences.
图3 SpTrz2蛋白的B细胞表位 A,SpTrz2蛋白的N-末端一半的B细胞表位;B,SpTrz2蛋白C-末端一半的B细胞表位。
Fig.3 B cell epitopes in SpTrz2 protein A,The B cell epitopes in the N-terminal halve of SpTrz2 protein; B, The B cell epitopes in the C-terminal halve of SpTrz2 protein.
编号 No. | 开始 Start | 结束 End | 肽段序列 Peptide sequence | 氨基酸长度 Length/aa |
---|---|---|---|---|
1 | 22 | 24 | YSW | 3 |
2 | 39 | 43 | KSKRN | 5 |
3 | 55 | 57 | LNP | 3 |
4 | 90 | 97 | QASNYGGK | 8 |
5 | 128 | 130 | GIQ | 3 |
6 | 134 | 138 | GLHAP | 5 |
7 | 164 | 173 | FSSEDNADAT | 10 |
8 | 202 | 208 | KEAAGVF | 7 |
9 | 219 | 228 | PFGPSNGKLC | 10 |
10 | 233 | 242 | VLSKDGTTWI | 10 |
11 | 246 | 254 | QVVGPPRKR | 9 |
12 | 325 | 333 | PVFQRNKGR | 9 |
13 | 349 | 360 | PSTLDTQTQLPE | 12 |
14 | 378 | 389 | CKISESPSYSPV | 12 |
表2 SpTrz2 蛋白N端B细胞表位的氨基酸序列
Table 2 Amino acid sequence of B cell epitope in the N-terminal halve of SpTrz2 protein
编号 No. | 开始 Start | 结束 End | 肽段序列 Peptide sequence | 氨基酸长度 Length/aa |
---|---|---|---|---|
1 | 22 | 24 | YSW | 3 |
2 | 39 | 43 | KSKRN | 5 |
3 | 55 | 57 | LNP | 3 |
4 | 90 | 97 | QASNYGGK | 8 |
5 | 128 | 130 | GIQ | 3 |
6 | 134 | 138 | GLHAP | 5 |
7 | 164 | 173 | FSSEDNADAT | 10 |
8 | 202 | 208 | KEAAGVF | 7 |
9 | 219 | 228 | PFGPSNGKLC | 10 |
10 | 233 | 242 | VLSKDGTTWI | 10 |
11 | 246 | 254 | QVVGPPRKR | 9 |
12 | 325 | 333 | PVFQRNKGR | 9 |
13 | 349 | 360 | PSTLDTQTQLPE | 12 |
14 | 378 | 389 | CKISESPSYSPV | 12 |
编号 No. | 开始 Start | 结束 End | 肽段序列 Peptide sequence | 氨基酸长度 Length/aa |
---|---|---|---|---|
1 | 9 | 14 | SATCPT | 6 |
2 | 48 | 53 | GTNTEP | 6 |
3 | 83 | 87 | KANTN | 5 |
4 | 128 | 130 | TVT | 3 |
5 | 167 | 177 | YSGDTRPNEKL | 11 |
6 | 193 | 198 | FEDDLK | 6 |
7 | 203 | 211 | QRQHSTASE | 9 |
8 | 232 | 248 | RSYDADFLPPDWTIYPK | 17 |
9 | 250 | 253 | KTIY | 4 |
表3 SpTrz2蛋白 C端B细胞表位的氨基酸序列
Table 3 Amino acid sequence of B cell epitope in the C-terminal halve of SpTrz2 protein
编号 No. | 开始 Start | 结束 End | 肽段序列 Peptide sequence | 氨基酸长度 Length/aa |
---|---|---|---|---|
1 | 9 | 14 | SATCPT | 6 |
2 | 48 | 53 | GTNTEP | 6 |
3 | 83 | 87 | KANTN | 5 |
4 | 128 | 130 | TVT | 3 |
5 | 167 | 177 | YSGDTRPNEKL | 11 |
6 | 193 | 198 | FEDDLK | 6 |
7 | 203 | 211 | QRQHSTASE | 9 |
8 | 232 | 248 | RSYDADFLPPDWTIYPK | 17 |
9 | 250 | 253 | KTIY | 4 |
图4 重组质粒pET28a-sptrz2和pET28a-sptrz2N的构建 M,DNA分子质量标准;1,sptrz2基因PCR扩增产物;2,sptrz2N基因PCR扩增产物;3~4,重组质粒pET28a-sptrz2的PCR鉴定;5~6,重组质粒pET28a-sptrz2N的PCR鉴定。
Fig.4 Construction of recombinant plasmids of pET28a-sptrz2 and pET28a-sptrz2N M, DNA marker; 1, PCR product of sptrz2; 2, PCR product of sptrz2N; 3 and 4, Identification of recombinant plasmid pET28a-sptrz2 by PCR; 5 and 6, Identification of recombinant plasmid pET28a-spTrz2N by PCR.
图5 重组蛋白SpTrz2和SpTrz2N诱导表达的SDS-PAGE分析 M,蛋白质分子质量标准;1,未经诱导的SpTrz2重组菌株;2,IPTG诱导的SpTrz2重组菌株;3,诱导后的上清;4,诱导后的沉淀,箭头标示重组蛋白SpTrz2;5,未经诱导的SpTrz2N重组菌株;6,IPTG诱导的SpTrz2N重组菌株;7,诱导后的上清;8,诱导后的沉淀,箭头标示重组蛋白SpTrz2N。
Fig.5 SDS-PAGE analysis of induced expression of recombinant protein SpTrz2 and SpTrz2N M, Protein molecular weight marker; 1, SpTrz2 recombinant strain non-induced; 2, SpTrz2 recombinant strain induced with IPTG; 3, The supernatant of SpTrz2 recombinant strain induced with IPTG; 4, The pellet of SpTrz2 recombinant strain induced with IPTG, the arrow indicated recombinant protein SpTrz2; 5, SpTrz2N recombinant strain non-induced; 6, SpTrz2N recombinant strain induced with IPTG; 7, The supernatant of SpTrz2N recombinant strain induced with IPTG; 8, The pellet of SpTrz2N recombinant strain induced with IPTG, the arrow indicated recombinant protein SpTrz2N.
图6 SpTrz2和SpTrz2N多克隆抗体的Western blotting检测 T,全细胞蛋白;PMS,去除线粒体的上清;Mt,线粒体。
Fig.6 Western blotting of polyclonal antibodies of SpTrz2 and SpTrz2N protein T, Total cell extracts; PMS, Postmitochondrial supernatants; Mt, Mitochondria.
[1] |
PHIZICKY E M, HOPPER A K. tRNA biology charges to the front[J]. Genes & Development, 2010,24(17):1832-1860.
URL PMID |
[2] |
MÖRL M, MARCHFELDER A. The final cut: the importance of tRNA 3'-processing[J]. EMBO Reports, 2001,2(1):17-20.
URL PMID |
[3] |
MARAIA R J, LAMICHHANE T N. 3' processing of eukaryotic precursor tRNAs[J]. Wiley Interdisciplinary Reviews: RNA, 2011,2(3):362-375.
URL PMID |
[4] |
VOGEL A, SCHILLING O, SPÄTH B, et al. The tRNase Z family of proteins: physiological functions, substrate specificity and structural properties[J]. Biological Chemistry, 2005,386(12):1253-1264.
URL PMID |
[5] |
DAIYASU H, OSAKA K, ISHINO Y, et al. Expansion of the zinc metallo-hydrolase family of the beta-lactamase fold[J]. FEBS Letters, 2001,503(1):1-6.
DOI URL PMID |
[6] |
WANG Z K, ZHENG J, ZHANG X J, et al. Identification and sequence analysis of metazoan tRNA 3'-end processing enzymes tRNase Zs[J]. PLoS One, 2012,7(9):e44264.
DOI URL PMID |
[7] | FAN L J, WANG Z K, LIU J Y, et al. A survey of green plant tRNA 3'-end processing enzyme tRNase Zs, homologs of the candidate prostate cancer susceptibility protein ELAC2[J]. BMC Evolutionary Biology, 2011,11:219. |
[8] | ZHAO W, YU H Y, LI S Z, et al. Identification and analysis of candidate fungal tRNA 3'-end processing endonucleases tRNase Zs, homologs of the putative prostate cancer susceptibility protein ELAC2[J]. BMC Evolutionary Biology, 2010,10(1):1-16. |
[9] |
TAVTIGIAN S V, SIMARD J, TENG D H F, et al. A candidate prostate cancer susceptibility gene at chromosome 17p[J]. Nature Genetics, 2001,27(2):172-180.
DOI URL PMID |
[10] |
MA M, LI DE LA SIERRA-GALLAY I, LAZAR N, et al. The crystal structure of Trz1, the long form RNase Z from yeast[J]. Nucleic Acids Research, 2017,45(10):6209-6216.
DOI URL PMID |
[11] |
DUBROVSKY E B, DUBROVSKAYA V A, LEVINGER L, et al. Drosophila RNase Z processes mitochondrial and nuclear pre-tRNA 3' ends in vivo[J]. Nucleic Acids Research, 2004,32(1):255-262.
DOI URL PMID |
[12] |
GAN X H, YANG J, LI J, et al. The fission yeast Schizosaccharomyces pombe has two distinct tRNase ZLs encoded by two different genes and differentially targeted to the nucleus and mitochondria[J]. The Biochemical Journal, 2011,435(1):103-111.
DOI URL PMID |
[13] |
ZHAO Z, SU W C, YUAN S, et al. Functional conservation of tRNase ZL among Saccharomyces cerevisiae, Schizosaccharomyces pombe and humans[J]. The Biochemical Journal, 2009,422(3):483-492.
DOI URL PMID |
[14] | 刘金玉, 谷陈建, 杨杰, 等. 细菌和人短型tRNase ZS与粟酒裂殖酵母长型tRNase ZL功能保守性研究[J]. 生命科学研究, 2013,17(5):387-393. |
LIU J Y, GU C J, YANG J, et al. Functional conservation between bacterial and human tRNase ZS and Schizosaccharomyces pombe tRNase ZL[J]. Life Science Research, 2013,17(5):387-393.(in Chinese with English abstract) | |
[15] |
LARKIN M A, BLACKSHIELDS G, BROWN N P, et al. Clustal W and Clustal X version 2.0[J]. Bioinformatics (Oxford, England), 2007,23(21):2947-2948.
DOI URL PMID |
[16] |
MORENO S, KLAR A, NURSE P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe[J]. Methods in Enzymology, 1991,194:795-823.
DOI URL PMID |
[17] |
HAACK T B, KOPAJTICH R, FREISINGER P, et al. ELAC2 mutations cause a mitochondrial RNA processing defect associated with hypertrophic cardiomyopathy[J]. The American Journal of Human Genetics, 2013,93(2):211-223.
DOI URL PMID |
[18] |
LOPEZ SANCHEZ M I G, MERCER T R, DAVIES S M K, et al. RNA processing in human mitochondria[J]. Cell Cycle, 2011,10(17):2904-2916.
URL PMID |
[19] |
XIE X, DUBROVSKY E B. Knockout of Drosophila RNase ZL impairs mitochondrial transcript processing, respiration and cell cycle progression[J]. Nucleic Acids Research, 2015,43(21):10364-10375.
DOI URL PMID |
[20] |
VAFAI S B, MOOTHA V K. Mitochondrial disorders as windows into an ancient organelle[J]. Nature, 2012,491(7424):374-383.
DOI URL PMID |
[21] |
ZHANG X J, ZHAO Q Q, HUANG Y. Partitioning of the nuclear and mitochondrial tRNA 3'-end processing activities between two different proteins in Schizosaccharomyces pombe[J]. The Journal of Biological Chemistry, 2013,288(38):27415-27422.
DOI URL PMID |
[22] |
SHANG J J, WU L, YANG Y M, et al. Overexpression of Schizosaccharomyces pombe tRNA 3'-end processing enzyme Trz2 leads to an increased cellular iron level and apoptotic cell death[J]. Fungal Genetics and Biology, 2019,122:11-20.
DOI URL PMID |
[23] |
BUSSINEAU C M, SHUSTER J R. Genetic stability of protein expression systems in yeast[J]. Developments in Biological Standardization, 1994,83:13-19.
URL PMID |
[24] |
ÇELIK E, ÇALıK P. Production of recombinant proteins by yeast cells[J]. Biotechnology Advances, 2012,30(5):1108-1118.
DOI URL PMID |
[25] |
KHOW O, SUNTRARACHUN S. Strategies for production of active eukaryotic proteins in bacterial expression system[J]. Asian Pacific Journal of Tropical Biomedicine, 2012,2(2):159-162.
DOI URL PMID |
[1] | 赵秀平, 王双, 闫星伊, 段强, 张帅, 陈永胜, 李国瑞. 稻瘟病菌MGG-01005的表达纯化与生物信息学分析[J]. 浙江农业学报, 2021, 33(3): 470-478. |
[2] | 苏学思, 张玉宝, 王若愚, 王亚军, 唐国亮, 金卫杰. 车前草花叶病毒衣壳蛋白的原核表达和多克隆抗体制备[J]. 浙江农业学报, 2021, 33(1): 104-111. |
[3] | 黄小珍, 乔中全, 曾慧杰, 李永欣, 何钢, 王晓明. 紫薇花器官发育调控基因LiFUL1的分离与表达分析[J]. 浙江农业学报, 2020, 32(7): 1206-1214. |
[4] | 陈韫陆, 单颖, 罗浩, 徐计东, 赵灵燕, 方维焕, 李肖梁. 猪Ⅲ型干扰素原核表达及其抗病毒效果研究[J]. 浙江农业学报, 2020, 32(5): 779-788. |
[5] | 蒲路莎, 苏世博, 陈肖韩, 赵丽丽, 陈洪岩. 鹅源星状病毒ORF2基因原核表达及遗传进化分析[J]. 浙江农业学报, 2020, 32(5): 789-797. |
[6] | 王元红, 邢雪, 李传峰, 朱杰, 王勇, 刘光清. 猫传染性腹膜炎病毒AH1905株N基因的生物信息学分析及原核表达[J]. 浙江农业学报, 2020, 32(3): 406-414. |
[7] | 王小朋, 赵靓, 刘自敏, 白彩霞, 杨侃侃, 张达, 孙裴, 蒋书东, 李永东, 王勇. 猪细小病毒7型Cap基因原核表达与生物信息学分析[J]. 浙江农业学报, 2020, 32(2): 200-209. |
[8] | 李仙春, 芦艳, 毛耀芳, 杨海峰, 余海山, 马永华, 万学瑞. 鸡Prnp基因原核表达载体的构建及其在大肠埃希菌中的表达[J]. 浙江农业学报, 2020, 32(12): 2138-2146. |
[9] | 张浩杰, 刘梅, 李春燕, 何冉, 兰景超, 罗娌, 古小彬, 谢跃, 杨光友. 犬恶丝虫核苷二磷酸激酶(NDPK)基因的原核表达及其免疫荧光定位[J]. 浙江农业学报, 2019, 31(9): 1453-1460. |
[10] | 潘传燕, 林勇, 冯鹏霏, 张永德, 罗洪林. 尼罗罗非鱼Hsc70的原核表达和多克隆抗体制备[J]. 浙江农业学报, 2019, 31(8): 1272-1279. |
[11] | 刘正奎, 吴瑗, 陈琳, 王磊, 牟泓烨, 祝徐航, 王晓杜. 猪流行性腹泻病毒Nsp5基因的原核表达及生物信息学分析[J]. 浙江农业学报, 2019, 31(4): 532-538. |
[12] | 张康, 张璇, 闫遵祥, 王磊, 张凯, 张景艳, 罗永江, 仇正英, 薛欢, 李建喜. 牛病毒性腹泻病毒Core蛋白的原核表达及多克隆抗体制备[J]. 浙江农业学报, 2019, 31(11): 1819-1824. |
[13] | 彭琪琪, 羊健, 廖乾生, 张恒木. 一个植物半胱氨酸蛋白酶多克隆抗体的制备及其应用[J]. 浙江农业学报, 2018, 30(6): 881-885. |
[14] | 张莉, 刘腾, 缪秋红, 唐井玉, 朱杰, 董丹丹, 陈宗艳, 王桂军, 刘光清. 山羊BST-2基因的表达及其亚细胞定位[J]. 浙江农业学报, 2018, 30(5): 702-706. |
[15] | 薛生玲, 江敏, 常嘉琪, 刘洋, 魏淋, 周建坤, 张芬, 孙勃. 芥蓝1-脱氧-D-木酮糖-5-磷酸合成酶基因BaDXS1的克隆及原核表达[J]. 浙江农业学报, 2018, 30(5): 771-777. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1976
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 846
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||