浙江农业学报 ›› 2021, Vol. 33 ›› Issue (2): 223-229.DOI: 10.3969/j.issn.1004-1524.2021.02.05
收稿日期:
2020-05-20
出版日期:
2021-02-25
发布日期:
2021-02-25
通讯作者:
彭先文
作者简介:
彭先文,E-mail: pxwpal@163.com基金资助:
WU Junjing(), QIAO Mu, ZHOU Jiawei, MEI Shuqi, PENG Xianwen*(
)
Received:
2020-05-20
Online:
2021-02-25
Published:
2021-02-25
Contact:
PENG Xianwen
摘要:
长链非编码RNA(lncRNA)在免疫及病毒与宿主互作中发挥重要作用。本研究在猪PAM细胞中发现一种新的猪长链非编码RNA lnc-000649,其全序列长1 483 bp。利用荧光定量PCR技术检测了猪繁殖与呼吸综合征病毒(PRRSV)感染前后PAM细胞中lnc-000649的表达水平,发现其在PRRSV感染后表达显著(P<0.01)下调。为了进一步研究该lncRNA的功能,构建了猪lnc-000649超表达载体lnc-000649-pcDNA3.1,并转染PAM细胞,成功构建了lnc-000649超表达细胞模型。经PRRSV接种后发现,转染lnc-000649-pcDNA3.1组的PAM细胞内PRRSV RNA含量极显著(P<0.01)低于转染pcDNA3.1(+)空载体和未转染组,说明猪lnc-000649对PRRSV增殖具有抑制作用,但是其具体作用机制还有待进一步研究。
中图分类号:
吴俊静, 乔木, 周佳伟, 梅书棋, 彭先文. 猪长链非编码RNA lnc-000649在PRRSV感染增殖中的作用[J]. 浙江农业学报, 2021, 33(2): 223-229.
WU Junjing, QIAO Mu, ZHOU Jiawei, MEI Shuqi, PENG Xianwen. Function of porcine non-coding RNA lnc-000649 during PRRSV infection[J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 223-229.
引物名称 Primer name | 引物序列 Primer sequence (5'-3') | 退火温度 Annealing temperature/℃ | 片段长度 Product length/bp |
---|---|---|---|
Lnc-000649 F | CGAGGAAGTGCTGATGTTG | 55 | 184 |
Lnc-000649 R | TGGACCAGACGCTGAGAAT | ||
β-actin F | CCAGGTCATCACCATCGG | 55 | 158 |
β-actin R | CCGTGTTGGCGTAGAGGT | ||
PRRSV F | CATTGCCAAACACCACTTTG | 55 | 238 |
PRRSV R | CGCCAGTGTACATCACCATC |
表1 荧光定量PCR引物信息表
Table 1 Information of the qPCR primers
引物名称 Primer name | 引物序列 Primer sequence (5'-3') | 退火温度 Annealing temperature/℃ | 片段长度 Product length/bp |
---|---|---|---|
Lnc-000649 F | CGAGGAAGTGCTGATGTTG | 55 | 184 |
Lnc-000649 R | TGGACCAGACGCTGAGAAT | ||
β-actin F | CCAGGTCATCACCATCGG | 55 | 158 |
β-actin R | CCGTGTTGGCGTAGAGGT | ||
PRRSV F | CATTGCCAAACACCACTTTG | 55 | 238 |
PRRSV R | CGCCAGTGTACATCACCATC |
图1 PRRSV感染PAM细胞后猪lnc-000649的表达量变化 **表示差异极显著(P<0.01)。下同。
Fig.1 Expression levels of lnc-000649 in PRRSV-infected and mock control PAM cells ** represented the significant difference(P<0.01). The same as below.
图2 PAM细胞中猪lnc-000649的全长序列片段的PCR扩增图 图中泳道M为DL2000 DNA marker;泳道1、2、3为猪lnc-000649的全长PCR扩增片段。
Fig.2 PCR amplification of the full-length fragment of porcine lnc-000649 in PAM cells Lane M was DL2000 DNA marker; Lane 1, 2, 3 were porcine lnc-000649 PCR product.
图3 猪lnc-000649超表达载体lnc-000649-pcDNA3.1双酶切鉴定结果 泳道M为1 kb DNA ladder;泳道1为双酶切前的环形lnc-000649-pcDNA3.1载体;泳道2为lnc-000649-pcDNA3.1载体经HindⅢ和XbaⅠ双酶切后,线性化的pcDNA3.1(+)空载体片段与猪lnc-000649序列片段。
Fig.3 Identification result of porcine lnc-000649 overexpression vector lnc-000649-pcDNA3.1 by double enzyme digestion Lane M was 1 kb DNA ladder; Lane 1 was the annular Lnc-000649-pcDNA3.1 vector before enzyme digestion; Lane 2 was the linearized empty pcDNA3.1(+) vector and porcine lnc-000649 digested by HindⅢ and XbaⅠ.
[1] | 王晓杜, 镡忠斌, 王鲁彦, 等. 猪繁殖与呼吸综合征的抗病育种研究进展[J]. 浙江农业学报, 2014,26(5):1394-1398. |
WANG X D, TAN Z B, WANG L Y, et al. Research progresses on the breeding of anti PRRS(porcine reproductive and respiratory syndrome) pigs[J]. Acta Agriculturae Zhejiangensis, 2014,26(5):1394-1398.(in Chinese with English abstract) | |
[2] | ZHANG Q Z, YOO D. PRRS virus receptors and their role for pathogenesis[J]. Veterinary Microbiology, 2015,177(3/4):229-241. |
[3] |
WHITWORTH K M, ROWLAND R R R, EWEN C L , et al. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus[J]. Nature Biotechnology, 2016,34(1):20.
DOI URL PMID |
[4] |
CHEN J, WANG H, BAI J, et al. Generation of pigs resistant to highly pathogenic-porcine reproductive and respiratory syndrome virus through gene editing of CD163[J]. International Journal of Biological Sciences, 2019,15(2):481-492.
DOI URL PMID |
[5] | LEMLER D J, BROCHU H, YANG F, et al. Elucidating the role of host long non-coding RNA during viral infection: challenges and paths forward[J]. Vaccine, 2017,5(4):37. |
[6] |
VALADKHAN S, GUNAWARDANE L S. lncRNA-mediated regulation of the interferon response[J]. Virus Research, 2016,212:127-136.
DOI URL PMID |
[7] |
LIU W W, DING C. Roles of LncRNAs in viral infections[J]. Frontiers in Cellular and Infection Microbiology, 2017,7:205.
DOI URL PMID |
[8] |
WU J J, PENG X W, QIAO M, et al. Genome-wide analysis of long noncoding RNA and mRNA profiles in PRRSV-infected porcine alveolar macrophages[J]. Genomics, 2020,112(2):1879-1888.
DOI URL PMID |
[9] | BECKEDORFF F C, AMARAL M S, DEOCESANOPEREIRA C, et al. Long non-coding RNAs and their implications in cancer epigenetics[J]. Bioscience Reports, 2013,33(4):667-675. |
[10] |
BETANCUR J G. Pervasive lncRNA binding by epigenetic modifying complexes: the challenges ahead[J]. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2016,1859(1):93-101.
DOI URL PMID |
[11] |
MIRA-BONTENBAL H, GRIBNAU J. New xist-interacting proteins in X-chromosome inactivation[J]. Current Biology, 2016,26(8):R338-R342.
DOI URL PMID |
[12] |
GUPTA R A, SHAH N, WANG K C, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis[J]. Nature, 2010,464(7291):1071.
DOI URL PMID |
[13] |
MCHUGH C A, CHEN C K, CHOW A, et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3[J]. Nature, 2015,521(7551):232.
DOI URL PMID |
[14] |
SANTORO F, MAYER D, KLEMENT R M, et al. Imprinted Igf2r silencing depends on continuous Airn lncRNA expression and is not restricted to a developmental window[J]. Development, 2013,140(6):1184-1195.
DOI URL PMID |
[15] |
CARPENTER S, AIELLO D, ATIANAND M K, et al. A long noncoding RNA mediates both activation and repression of immune response genes[J]. Science, 2013,341(6147):789-792.
DOI URL PMID |
[16] |
WANG K C, CHANG H Y. Molecular mechanisms of long noncoding RNAs[J]. Molecular Cell, 2011,43(6):904-914.
DOI URL PMID |
[17] |
OUYANG J, HU J Y, CHEN J L. lncRNAs regulate the innate immune response to viral infection[J]. Wiley Interdisciplinary Reviews: RNA, 2016,7(1):129-143.
DOI URL PMID |
[18] |
ADRIAENS C, STANDAERT L, BARRA J, et al. P53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity[J]. Nature Medicine, 2016,22(8):861.
DOI URL PMID |
[19] |
OUYANG J, ZHU X M, CHEN Y H, et al. NRAV, a long noncoding RNA, modulates antiviral responses through suppression of interferon-stimulated gene transcription[J]. Cell Host & Microbe, 2014,16(5):616-626.
DOI URL PMID |
[20] |
RAPICAVOLI N A, QU K, ZHANG J J, et al. A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics[J]. eLife, 2013,2:e00762.
DOI URL PMID |
[21] |
XIONG Y L, YUAN J, ZHANG C J, et al. The STAT3-regulated long non-coding RNA Lethe promote the HCV replication[J]. Biomedicine & Pharmacotherapy, 2015,72:165-171.
DOI URL PMID |
[22] | 陈曦. 通城猪和大白猪PRRSV感染前后外周免疫器官中差异表达LncRNA的鉴定与功能研究[D]. 武汉: 华中农业大学, 2019. |
CHEN X. Identification and functional analysis of differentially expressed LncRNA in peripheral immune organs of Tongcheng and large white pigs before and after PRRSV infection[D]. Wuhan: Huazhong Agricultural University, 2019.(in Chinese with English abstract) | |
[23] | 甘利鹏, 张婧, 孙普, 等. LncRNA TCONS00179042对Marc-145细胞中PRRSV复制的影响[J]. 中国兽医科学, 2018,48(5):537-544. |
GAN L P, ZHANG J, SUN P, et al. Effect of LncRNA TCONS00179042 on the replication of porcine reproductive and respiratory syndrome virus in Marc-145 cells[J]. Chinese Veterinary Science, 2018,48(5):537-544.(in Chinese with English abstract) | |
[24] | WEBB E A, ALMUTAIR A, KELBERMAN D, et al. ARNT2 mutation causes hypopituitarism, post-natal microcephaly, visual and renal anomalies[J]. Brain, 2013,136(10):3096-3105. |
[25] | 刘爱玲, 潘杰, 庞运倩, 等. MDCK细胞ISG15基因的克隆表达及抗病毒活性分析[J]. 浙江农业学报, 2015,27(2):154-159. |
LIU A L, PAN J, PANG Y Q, et al. Clone and expression of ISG15 gene from MDCK cell and analysis of its antiviral activity[J]. Acta Agriculturae Zhejiangensis, 2015,27(2):154-159.(in Chinese with English abstract) | |
[26] |
LIU K, MA G N, LIU X Q, et al. Porcine reproductive and respiratory syndrome virus counteracts type I interferon-induced early antiviral state by interfering IRF7 activity[J]. Veterinary Microbiology, 2019,229:28-38.
DOI URL PMID |
[27] | 张华伟, 李连峰, 周末, 等. 抗伪狂犬病病毒干扰素刺激基因的筛选及IFIT3抗病毒活性的鉴定[J]. 中国预防兽医学报, 2019,41(4):338-344. |
ZHANG H W, LI L F, ZHOU M, et al. Screening of anti-pseudorabies virus interferon-stimulated genes and identification of anti-viral activity of IFIT3[J]. Chinese Journal of Preventive Veterinary Medicine, 2019,41(4):338-344.(in Chinese with English abstract) | |
[28] | 李燕. 猪干扰素刺激基因ISG20的克隆、真核表达及其对PRRSV增殖的影响[D]. 武汉: 华中农业大学, 2010. |
LI Y. Cloning, eukaryotic expression of porcine interferon-stimulated gene ISG20 and investigation of its anti viral effect on PRRSV proliferation[D]. Wuhan: Huazhong Agricultural University, 2010.(in Chinese with English abstract) | |
[29] |
FANG J Y, WANG H Y, BAI J, et al. Monkey viperin restricts porcine reproductive and respiratory syndrome virus replication[J]. PLoS One, 2016,11(5):e0156513.
DOI URL PMID |
[30] |
NIU P X, SHABIR N, KHATUN A, et al. Effect of polymorphisms in the GBP1, Mx1 and CD163 genes on host responses to PRRSV infection in pigs[J]. Veterinary Microbiology, 2016,182:187-195.
DOI URL PMID |
[31] |
LIU F, DU Y P, FENG W H. New perspective of host microRNAs in the control of PRRSV infection[J]. Veterinary Microbiology, 2017,209:48-56.
DOI URL PMID |
[32] |
WANG L L, ZHOU L, HU D M, et al. Porcine reproductive and respiratory syndrome virus suppresses post-transcriptionally the protein expression of IFN-β by upregulating cellular microRNAs in porcine alveolar macrophages in vitro[J]. Experimental and Therapeutic Medicine, 2017,15(1):115-126.
DOI URL PMID |
[33] |
LIU F, WANG H L, DU L, et al. MicroRNA-30c targets the interferon-alpha/beta receptor beta chain to promote type 2 PRRSV infection[J]. Journal of General Virology, 2018,99(12):1671-1680.
DOI URL |
[34] |
ZHAO G W, HOU J Y, XU G X, et al. Cellular microRNA miR-10a-5p inhibits replication of porcine reproductive and respiratory syndrome virus by targeting the host factor signal recognition particle 14[J]. The Journal of General Virology, 2017,98(4):624-632.
DOI URL PMID |
[1] | 金俪雯, 刘增金, 刘爱军. 猪肉销售商可追溯体系参与行为及其影响因素——基于北京、上海、济南3市636位销售商的实证分析[J]. 浙江农业学报, 2021, 33(3): 541-552. |
[2] | 王伟, 滚双宝, 王鹏飞, 黄晓宇, 谢开会, 雒瑞瑞, 高小莉, 张博, 闫尊强, 杨巧丽, 马艳萍. 猪miR-204组织表达与重要靶基因筛选[J]. 浙江农业学报, 2020, 32(9): 1564-1573. |
[3] | 孙筱君, 沈琦, 吴逸飞, 姚晓红, 李园成, 孙宏, 王新, 汤江武, 葛向阳. 氨氮降解微生物的筛选和初步应用[J]. 浙江农业学报, 2020, 32(9): 1683-1691. |
[4] | 杜炎斌, 张港琛, 王瑜欣, 刘宝宝, 宫胜龙, 东笑, 汪洋. 猪链球菌rpoE基因克隆及生物信息学分析[J]. 浙江农业学报, 2020, 32(7): 1149-1154. |
[5] | 孙瑞萍, 王峰, 晁哲, 刘海隆, 邢漫萍, 刘圈炜, 黄丽丽, 郑心力, 魏立民. 屯昌猪PDK4基因克隆及其组织表达分析[J]. 浙江农业学报, 2020, 32(6): 978-985. |
[6] | 郭富城, 金丽, 苏强, 粟雨芯, 李方琳, 陈士恩, 马晓霞. PEDV N蛋白的原核表达纯化及B细胞抗原表位预测分析[J]. 浙江农业学报, 2020, 32(5): 762-769. |
[7] | 陈韫陆, 单颖, 罗浩, 徐计东, 赵灵燕, 方维焕, 李肖梁. 猪Ⅲ型干扰素原核表达及其抗病毒效果研究[J]. 浙江农业学报, 2020, 32(5): 779-788. |
[8] | 段倩倩, 毛天骄, 韩业芹, 韩雪姣, 魏建忠, 孙裴, 李郁. 猪链球菌2型灭活疫苗对小鼠的免疫效果评价[J]. 浙江农业学报, 2020, 32(4): 577-585. |
[9] | 俞洁雅, 倪梦萍, 丁良长, 胡洲铭, 肖建中, 郑强. 一株猪粪降解菌的筛选、评价及鉴定[J]. 浙江农业学报, 2020, 32(4): 586-592. |
[10] | 刘彬, 陈映, 蒋小兵, 郭芝忺, 何志平, 钟志君, 张顺华, 朱砺. 母猪妊娠期背膘厚度与体况评分及繁殖性能的关系[J]. 浙江农业学报, 2020, 32(3): 390-397. |
[11] | 王小朋, 赵靓, 刘自敏, 白彩霞, 杨侃侃, 张达, 孙裴, 蒋书东, 李永东, 王勇. 猪细小病毒7型Cap基因原核表达与生物信息学分析[J]. 浙江农业学报, 2020, 32(2): 200-209. |
[12] | 乔木, 黄藏宇, 吴俊静, 武华玉, 万绪玲, 周佳伟, 刘贵生, 梅书棋, 彭先文. 猪OLR1基因对肌内前脂肪细胞分化的影响[J]. 浙江农业学报, 2020, 32(12): 2147-2153. |
[13] | 王塑天, 孟繁明, 胡斌, 辛海云, 李宝红, 杜宗亮, 李剑豪. 藏猪在亚热带条件下的生长特性及其杂交利用效果[J]. 浙江农业学报, 2020, 32(11): 1963-1969. |
[14] | 徐丽华, 蓝胜芝, 余斌, 李军星, 张鹏超, 李宝臣, 苏菲, 袁秀芳. 浙江地区猪圆环病毒2型检测及遗传变异分析[J]. 浙江农业学报, 2020, 32(11): 1970-1977. |
[15] | 赵广民, 刘秀婷, 代兵, 杨华, 吕文涛, 王远霞, 肖英平. 早期断奶及谷氨酰胺添加对仔猪血清游离氨基酸及其代谢产物的影响[J]. 浙江农业学报, 2020, 32(10): 1764-1771. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1696
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1310
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||