浙江农业学报 ›› 2021, Vol. 33 ›› Issue (7): 1309-1319.DOI: 10.3969/j.issn.1004-1524.2021.07.17
收稿日期:
2020-06-28
出版日期:
2021-07-25
发布日期:
2021-08-06
通讯作者:
曹成茂
作者简介:
*曹成茂,E-mail: caochengmao@sina.com基金资助:
LI Zansong1(), CAO Chengmao2,*(
), WU Delin2, ZHANG Jianyu1
Received:
2020-06-28
Online:
2021-07-25
Published:
2021-08-06
Contact:
CAO Chengmao
摘要:
为提高山核桃采摘效率,降低采摘成本,针对目前我国山核桃高空作业机械化程度低等特点,设计并研制了一款手自一体式山核桃采摘机。文章阐述了该机关键部件的设计,并对偏心轮机构进行数学建模与分析计算。应用ANSYS对果树进行自由模态响应分析,初步确定山核桃树采摘的频率范围为7~20 Hz。根据山核桃采摘试验,结果表明:振动频率对果树的采摘率具有显著影响(P=0.05),果实采摘率随振动频率的增大而增大,当振动频率为22 Hz时,采摘率为95.1%;为了提高采摘率且尽可能减小芽枝和果树的损伤,建议控制采收频率为16~18 Hz,此时果实的平均采摘率为83.9%~88.0%。未采摘的果实通过人工或机械二次采摘。
中图分类号:
李赞松, 曹成茂, 伍德林, 张建宇. 手自一体式山核桃采摘机的设计与试验[J]. 浙江农业学报, 2021, 33(7): 1309-1319.
LI Zansong, CAO Chengmao, WU Delin, ZHANG Jianyu. Design and experiment of hand-operated self-integrated picking machine for Carya cathayensis[J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1309-1319.
图1 手自一体式山核桃采摘机示意图 1,汽油机;2,按压式转速调节器; 3,组合开关; 4,手柄; 5,丝杆机构; 6,伸缩杆; 7,偏心轮机构; 8,采摘头;9,频率传感器; 10,传动换向机构; 11,钢丝拉线; 12,快接接头; 13,直流减速电机; 14,Arduino控制器; 15,电源; 16,舵机。
Fig.1 Schematic diagram of hand-operated self-integrated picking machine for Carya cathayensis 1,Gasoline engine; 2, Press speed regulator; 3, Speed regulator; 4,Hand shank; 5, Lead screw drive actuator; 6, Expansion link; 7,Eccentric gear; 8, Picking the head; 9, Frequency sensor; 10, Transmission reversing mechanism; 11, Steel wire; 12, Quick union; 13, DC reduction motor; 14, Arduino controller; 15, Power source; 16, Steering engine.
图2 夹持机构结构示意图 1,丝杆; 2,法兰座; 3,复位弹簧; 4,动夹紧头; 5,橡胶垫片; 6,定夹紧头; 7,行程开关1; 8,铰链销; 9,行程开关2; 10,光轴; 11,行程开关3。
Fig.2 Schematic diagram of clamping mechanism 1, Lead screw; 2, Flanged housing; 3, Reset spring; 4, Dynamic clamping head; 5, Rubber gasket; 6,Fixed clamping head; 7,Travel switch 1; 8, Joint pin; 9,Travel switch 2; 10, Optical axis; 11,Travel switch 3.
图3 传动换向机构三维结构图 1,棘轮卡爪装置; 2,弧齿锥齿轮1; 3,销轴; 4,弧齿锥齿轮2; 5,弧齿锥齿轮4; 6,弧齿锥齿轮 3。
Fig.3 3d structure of transmission commutator mechanism 1, Ratchet clamping device; 2, Gleason spiral bevel gear 1; 3, Hinge pin; 4, Gleason spiral bevel gear 2; 5, Gleason spiral bevel gear 4; 6, Gleason spiral bevel gear 3.
图4 齿轮偏心轮机构三维示意图 71,小齿轮; 2,偏心轮; 3,环形连杆; 4,滑块; 5,机架; 6,大齿轮。
Fig.4 Three-dimensional diagram of eccentric gear mechanism 1, Pinion; 2,Eccentric gear; 3, Ring connecting rod; 4,Sliding block; 5, Frame; 6, Rack wheel.
振动频率 Vibrational frequency/Hz | 编号 Number | 落果数 The number of dropped fruit | 未落果数 The number of undropped fruit | 总数 Sum |
---|---|---|---|---|
7 | 1 | 80 | 81 | 161 |
2 | 85 | 72 | 157 | |
3 | 87 | 72 | 159 | |
4 | 57 | 70 | 127 | |
5 | 102 | 91 | 193 | |
6 | 121 | 91 | 212 | |
7 | 69 | 74 | 143 | |
8 | 102 | 72 | 174 | |
10 | 1 | 109 | 59 | 168 |
2 | 105 | 59 | 164 | |
3 | 101 | 49 | 150 | |
4 | 163 | 68 | 231 | |
5 | 78 | 51 | 129 | |
6 | 108 | 78 | 186 | |
7 | 123 | 80 | 203 | |
8 | 114 | 55 | 169 | |
13 | 1 | 93 | 43 | 136 |
2 | 113 | 46 | 159 | |
3 | 120 | 45 | 165 | |
4 | 123 | 61 | 184 | |
5 | 147 | 47 | 194 | |
6 | 197 | 56 | 253 | |
7 | 97 | 37 | 134 | |
8 | 142 | 45 | 187 | |
16 | 1 | 140 | 30 | 170 |
2 | 138 | 21 | 159 | |
3 | 142 | 23 | 165 | |
4 | 152 | 35 | 187 | |
5 | 201 | 33 | 234 | |
6 | 159 | 33 | 192 | |
7 | 158 | 43 | 201 | |
8 | 208 | 29 | 237 | |
19 | 1 | 151 | 15 | 166 |
2 | 181 | 20 | 201 | |
3 | 150 | 13 | 163 | |
4 | 213 | 29 | 242 | |
5 | 121 | 17 | 138 | |
6 | 231 | 16 | 247 | |
7 | 180 | 15 | 195 | |
8 | 196 | 18 | 214 | |
22 | 1 | 154 | 12 | 166 |
2 | 137 | 6 | 143 | |
3 | 165 | 6 | 171 | |
4 | 262 | 12 | 274 | |
5 | 110 | 4 | 114 | |
6 | 165 | 13 | 178 | |
7 | 238 | 9 | 247 | |
8 | 193 | 11 | 204 |
表1 不同震动频率下山核桃采摘数据
Table 1 Picking data under different vibrational frequency of Carya cathayensis
振动频率 Vibrational frequency/Hz | 编号 Number | 落果数 The number of dropped fruit | 未落果数 The number of undropped fruit | 总数 Sum |
---|---|---|---|---|
7 | 1 | 80 | 81 | 161 |
2 | 85 | 72 | 157 | |
3 | 87 | 72 | 159 | |
4 | 57 | 70 | 127 | |
5 | 102 | 91 | 193 | |
6 | 121 | 91 | 212 | |
7 | 69 | 74 | 143 | |
8 | 102 | 72 | 174 | |
10 | 1 | 109 | 59 | 168 |
2 | 105 | 59 | 164 | |
3 | 101 | 49 | 150 | |
4 | 163 | 68 | 231 | |
5 | 78 | 51 | 129 | |
6 | 108 | 78 | 186 | |
7 | 123 | 80 | 203 | |
8 | 114 | 55 | 169 | |
13 | 1 | 93 | 43 | 136 |
2 | 113 | 46 | 159 | |
3 | 120 | 45 | 165 | |
4 | 123 | 61 | 184 | |
5 | 147 | 47 | 194 | |
6 | 197 | 56 | 253 | |
7 | 97 | 37 | 134 | |
8 | 142 | 45 | 187 | |
16 | 1 | 140 | 30 | 170 |
2 | 138 | 21 | 159 | |
3 | 142 | 23 | 165 | |
4 | 152 | 35 | 187 | |
5 | 201 | 33 | 234 | |
6 | 159 | 33 | 192 | |
7 | 158 | 43 | 201 | |
8 | 208 | 29 | 237 | |
19 | 1 | 151 | 15 | 166 |
2 | 181 | 20 | 201 | |
3 | 150 | 13 | 163 | |
4 | 213 | 29 | 242 | |
5 | 121 | 17 | 138 | |
6 | 231 | 16 | 247 | |
7 | 180 | 15 | 195 | |
8 | 196 | 18 | 214 | |
22 | 1 | 154 | 12 | 166 |
2 | 137 | 6 | 143 | |
3 | 165 | 6 | 171 | |
4 | 262 | 12 | 274 | |
5 | 110 | 4 | 114 | |
6 | 165 | 13 | 178 | |
7 | 238 | 9 | 247 | |
8 | 193 | 11 | 204 |
振动频率 Vibrational frequency/Hz | 采摘率Picking rate/% | |
---|---|---|
平均值 Average value | 标均差 Standard deviation | |
7 | 52.5 f | 4.3 |
10 | 64.2 e | 4.0 |
13 | 72.6 d | 3.6 |
16 | 83.9 c | 3.0 |
19 | 90.8 b | 1.9 |
22 | 95.1 a | 1.5 |
表2 不同振动频率果实采摘率
Table 2 The fruit picking rates under different vibration frequencies
振动频率 Vibrational frequency/Hz | 采摘率Picking rate/% | |
---|---|---|
平均值 Average value | 标均差 Standard deviation | |
7 | 52.5 f | 4.3 |
10 | 64.2 e | 4.0 |
13 | 72.6 d | 3.6 |
16 | 83.9 c | 3.0 |
19 | 90.8 b | 1.9 |
22 | 95.1 a | 1.5 |
平方和 Quadratic sum | df | 均方 Mean square | F | Sig. | |
---|---|---|---|---|---|
回归 Regression | 1343.109 | 2 | 671.555 | 438.052 | <0.0001 |
残差 Residual | 4.599 | 3 | 1.533 | ||
总计Total | 1347.708 | 5 |
表3 多项式回归方差分析表(ANOVA)
Table 3 Polynomial regression analysis of variance (ANOVA)
平方和 Quadratic sum | df | 均方 Mean square | F | Sig. | |
---|---|---|---|---|---|
回归 Regression | 1343.109 | 2 | 671.555 | 438.052 | <0.0001 |
残差 Residual | 4.599 | 3 | 1.533 | ||
总计Total | 1347.708 | 5 |
未标准化系数 Unstandardized coefficient | 标准化系数 Standardized coefficient | t | Sig. | |||
---|---|---|---|---|---|---|
B | 标准误差 Standard error | Beta | ||||
一次项 Coefficient of primary term | 5.370 | 0.660 | 1.836 | 8.132 | 0.004 | |
二次项 Quadratic coefficient | -0.085 | 0.230 | -0.855 | -3.789 | 0.032 | |
常数项 Constant term coefficient | 18.832 | 4.412 | 4.266 | 0.024 |
表4 多项式回归参数估计和t检验表
Table 4 Polynomial regression parameter estimation and t-test table
未标准化系数 Unstandardized coefficient | 标准化系数 Standardized coefficient | t | Sig. | |||
---|---|---|---|---|---|---|
B | 标准误差 Standard error | Beta | ||||
一次项 Coefficient of primary term | 5.370 | 0.660 | 1.836 | 8.132 | 0.004 | |
二次项 Quadratic coefficient | -0.085 | 0.230 | -0.855 | -3.789 | 0.032 | |
常数项 Constant term coefficient | 18.832 | 4.412 | 4.266 | 0.024 |
[1] | 曹成茂, 蒋兰, 吴崇友, 等. 山核桃破壳机加载锤头设计与试验[J]. 农业机械学报, 2017, 48(10):307-315. |
CAO C M, JIANG L, WU C Y, et al. Design and test on hammerhead of pecan shell-breaking machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(10):307-315.(in Chinese with English abstract) | |
[2] | 周明亮, 王鸿飞, 赵丹. 山核桃油的提取工艺及其特性研究[J]. 农业机械学报, 2007, 38(3):95-98. |
ZHOU M L, WANG H F, ZHAO D. Studies on extracting technology and properties of Carya kernel oil[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(3):95-98.(in Chinese with English abstract) | |
[3] | 彭樟林, 姚立健. 山核桃采摘技术与装备研究现状[J]. 湖北农业科学, 2013, 52(14):3229-3232. |
PENG Z L, YAO L J. Research status on picking technology and equipment of Carya cathayensis[J]. Hubei Agricultural Sciences, 2013, 52(14):3229-3232.(in Chinese with English abstract) | |
[4] | 王冀平, 李亚南, 马建伟. 山核桃仁中主要营养成分的研究[J]. 食品科学, 1998, 19(4):44-46. |
WANG J P, LI Y N, MA J W. Studies on the main nutrients in pecan kernel[J]. Food Science, 1998, 19(4):44-46.(in Chinese)
DOI URL |
|
[5] | 曹成茂, 詹超, 孙燕, 等. 便携式山核桃高空拍打采摘机设计与试验[J]. 农业机械学报, 2018, 49(3):130-137. |
CAO C M, ZHAN C, SUN Y, et al. Design and experiment of portable walnut high-altitude pat-picking machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(3):130-137.(in Chinese with English abstract) | |
[6] | 傅松玲, 丁之恩, 周根土, 等. 安徽山核桃适生条件及丰产栽培研究[J]. 经济林研究, 2003, 21(2):1-4. |
FU S L, DING Z E, ZHOU G T, et al. The suitable condition and cultivation technique of cauya cathayensis[J]. Economic Forest Researches, 2003, 21(2):1-4.(in Chinese with English abstract) | |
[7] | 徐燕, 沈月琴, 黄坚钦, 等. 农户对山核桃生态化经营模式的意愿分析[J]. 浙江林学院学报, 2010, 27(5):750-756. |
XU Y, SHEN Y Q, HUANG J Q, et al. Farmers’ willingness to adopt ecological management model for Carya cathayensis[J]. Journal of Zhejiang Forestry College, 2010, 27(5):750-756.(in Chinese with English abstract) | |
[8] | 王长勤, 许林云, 周宏平, 等. 偏心式林果振动采收机的研制与试验[J]. 农业工程学报, 2012, 28(16):10-16. |
WANG C Q, XU L Y, ZHOU H P, et al. Development and experiment of eccentric-type vibratory harvester for forest-fruits[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(16):10-16.(in Chinese with English abstract) | |
[9] | 杨会民, 散鋆龙, 陈毅飞, 等. 不同振动特性参数对杏树振动响应的影响[J]. 农业工程学报, 2019, 35(2):10-16. |
YANG H M, SAN Y L, CHEN Y F, et al. Influence of different vibration characteristic parameters on vibration response of apricot trees[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(2):10-16.(in Chinese with English abstract) | |
[10] |
Patterson J. D, Whitney and J. M. Development of a Citrus removal device using oscillating forced air[J]. Transactions of the ASAE, 1972, 15(5):849-855.
DOI URL |
[11] |
TORREGROSA A, MARTÃ-N B, ORTIZ C, et al. Mechanical harvesting of processed apricots objectives[J]. Applied Engineering in Agriculture, 2006, 22(4):499-506.
DOI URL |
[12] |
POLAT R, GEZER I, GUNER M, et al. Mechanical harvesting of pistachio nuts[J]. Journal of Food Engineering, 2007, 79(4):1131-1135.
DOI URL |
[13] |
TORREGROSA A, ORTÍ E, MARTÍN B, et al. Mechanical harvesting of oranges and mandarins in Spain[J]. Biosystems Engineering, 2009, 104(1):18-24.
DOI URL |
[14] |
BLANCO-ROLDÁN G L, GIL-RIBES J A, KOURABA K, et al. Effects of trunk shaker duration and repetitions on removal efficiency for the harvesting of oil olives[J]. Applied Engineering in Agriculture, 2009, 25(3):329-334.
DOI URL |
[15] |
PACHECO A, REHKUGLER G E. Design and development of a spring activated impact shaker for apple harvesting[J]. Transactions of the ASAE, 1980, 23(4):826-830.
DOI URL |
[16] | 张最, 肖宏儒, 丁文芹, 等. 振动式枸杞采摘机理仿真分析与样机试验[J]. 农业工程学报, 2015, 31(10):20-28. |
ZHANG Z, XIAO H R, DING W Q, et al. Mechanism simulation analysis and prototype experiment of Lycium barbarum harvest by vibration mode[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(10):20-28.(in Chinese with English abstract) | |
[17] | 孔德刚, 刘魏, 霍俊伟, 等. 蓝莓成熟期结合力变化规律的测试与分析[J]. 东北农业大学学报, 2014, 45(4):99-106. |
KONG D G, LIU W, HUO J W, et al. Test and analysis on variation of blueberry binding force during mature period[J]. Journal of Northeast Agricultural University, 2014, 45(4):99-106.(in Chinese with English abstract) | |
[18] | 李斌, 陆华忠, 吕恩利, 等. 荔枝树枝能量传递特性与去梗式振动采摘作业参数[J]. 农业工程学报, 2018, 34(8):18-25. |
LI B, LU H Z, LÜ E L, et al. Characterizing energy transfer of Litchi branches and working parameters of destemmed vibrational picking[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(8):18-25.(in Chinese with English abstract) | |
[19] | 付威, 张志元, 刘玉冬, 等. 振动激励下枣树力传递效果室内模拟试验[J]. 农业工程学报, 2017, 33(17):65-72. |
FU W, ZHANG Z Y, LIU Y D, et al. Simulation experiment in lab on force transfer effect of jujube under vibration excitation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(17):65-72.(in Chinese with English abstract) | |
[20] | 杜小强, 倪柯楠, 潘珂, 等. 可调振幅单向拽振式林果采收机构参数优化[J]. 农业工程学报, 2014, 30(16):25-32. |
DU X Q, NI K N, PAN K, et al. Parameter optimization of stroke-adjustable and monodirectional pulling fruit harvester[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(16):25-32.(in Chinese with English abstract) | |
[21] | 刘继展. 番茄采摘机器人真空吸持系统分析与优化控制研究[D]. 镇江: 江苏大学, 2010. |
LIU J Z. Analysis and optimal control of vacuum suction system for tomato harvesting robot[D]. Zhenjiang: Jiangsu University, 2010.(in Chinese with English abstract) | |
[22] | 王杰. 硫化机上下料机器人夹持机构的设计与实现[D]. 重庆: 重庆大学, 2014. |
WANG J. Design and realization of the clamping device of the robot used for loading and unloading process of vulcanizing machine[D]. Chongqing: Chongqing University, 2014.(in Chinese with English abstract) | |
[23] |
FRIDLEY P A, ADRIAN R B. Dynamics and design criteria of inertia-type tree shakers[J]. Transactions of the ASAE, 1965, 8(1):12-14.
DOI URL |
[24] | LOGHAVI M, MOHSENI S H. The effects of shaking frequency and amplitude on detachment of lime fruits[J]. Iran Agricultural Research, 2006, 24(2):27-38. |
[25] | 邹运梅. 背负式可调高枝修剪机修剪稳定性分析与参数优化[D]. 长沙: 湖南农业大学, 2006. |
ZOU Y M. Pruning-stability analysis and parameter optimization on shouldering adjustable-high pruning machine[D]. Changsha: Hunan Agricultural University, 2006.(in Chinese with English abstract) | |
[26] |
TSATSARELIS C A. Vibratory olive harvesting: The response of the fruit-stem system to fruit removing actions[J]. Journal of Agricultural Engineering Research, 1987, 38(2):77-90.
DOI URL |
[27] |
TINOCO H A, OCAMPO D A, PEÑA F M, et al. Finite element modal analysis of the fruit-peduncle of Coffea arabica L. var. Colombia estimating its geometrical and mechanical properties[J]. Computers and Electronics in Agriculture, 2014, 108:17-27.
DOI URL |
[28] |
YUNG C, FRIDLEY R B. Simulation of vibration of whole tree systems using finite elements[J]. Transactions of the ASAE, 1975, 18(3):475-481.
DOI URL |
[29] |
SELLIER D, FOURCAUD T, LAC P. A finite element model for investigating effects of aerial architecture on tree oscillations[J]. Tree Physiology, 2006, 26(6):799-806.
DOI URL |
[30] | 贺磊盈. 面向振动采收的果树枝干三维重建方法及其动力学特性研究[D]. 杭州: 浙江理工大学, 2014. |
HE L Y. Researches on 3D reconstruction of fruit tree’s trunk and its dynamic characteristics for vibratory harvesting[D]. Hangzhou: Zhejiang Sci-Tech University, 2014.(in Chinese with English abstract) |
[1] | 高竞, 方伟, 顾佳悦, 严淑娴, 邵帅, 梁辰飞, 秦华, 陈俊辉, 徐秋芳. 荧光标记解淀粉芽孢杆菌WK1在山核桃树体和土壤中的定殖规律[J]. 浙江农业学报, 2021, 33(1): 77-86. |
[2] | 邵泱峰, 马燕萍, 应学兵, 徐健, 李松昊, 何勇. 不同山核桃蒲壳配方基质对番茄产量和果实品质的影响[J]. 浙江农业学报, 2018, 30(2): 255-260. |
[3] | 赵伟明;王艳艳;马嘉伟;胡杨勇;童根平;赵科理;叶正钱;*. 临安山核桃林地土壤磷素状况及其淋失风险分析[J]. , 2014, 26(1): 0-158. |
[4] | 陶欣桐;江洪;*;郭凯 . 模拟不同类型酸雨胁迫对山核桃生理特征的影响[J]. , 2013, 25(4): 0-803. |
[5] | 黄伟娇;黄炎和;金志凤. 基于GIS的杭州市山核桃种植生态适宜性评价[J]. , 2013, 25(4): 0-851. |
[6] | 陈丽敏;郜海燕;陈杭君;*;房祥军;穆宏磊;刘大群. 尿素包合法分离纯化山核桃油中亚油酸的研究[J]. , 2013, 25(2): 0-353. |
[7] | 刘建军;姚立健;彭樟林. 基于机器视觉的山核桃等级检测技术[J]. , 2010, 22(6): 854-858. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||