浙江农业学报 ›› 2021, Vol. 33 ›› Issue (7): 1320-1328.DOI: 10.3969/j.issn.1004-1524.2021.07.18
秦宽1,2(
), 梁小龙1, 曹成茂1,2,*(
), 方梁菲1, 吴正敏3,4, 葛俊1
收稿日期:2020-07-16
出版日期:2021-07-25
发布日期:2021-08-06
作者简介:*曹成茂,E-mail: caochengmao@sina.com通讯作者:
曹成茂
基金资助:
QIN Kuan1,2(
), LIANG Xiaolong1, CAO Chengmao1,2,*(
), FANG Liangfei1, WU Zhengmin3,4, GE Jun1
Received:2020-07-16
Online:2021-07-25
Published:2021-08-06
Contact:
CAO Chengmao
摘要:
针对茶园机械化开沟减阻减耗需要,设计茶园节能型开沟刀,用于减小茶园开沟时的开沟功耗。通过理论分析确定节能型开沟刀侧切刃与正切刃曲线方程,通过离散元仿真方法确定侧切刃螺旋线终点处滑切角与正切刃在侧切刃平面内展开曲线终点处静态滑切角分别为62°、56°。对设计完成的节能型开沟刀进行田间试验,试验结果表明:在开沟深度为15、20、25 cm时,节能型开沟刀的开沟功耗分别为0.093、0.107、0.128 kW,均小于对照组通用开沟刀的开沟功耗,说明设计的节能型开沟刀在各个开沟深度均能够达到降低开沟功耗的目的。此外节能型开沟刀在不同开沟深度的沟深稳定性系数均大于90%,高于国家标准和对照组通用开沟刀试验结果,说明设计的节能型开沟刀在降低作业功耗的同时,可保证开沟质量。
中图分类号:
秦宽, 梁小龙, 曹成茂, 方梁菲, 吴正敏, 葛俊. 茶园节能型开沟刀设计与试验[J]. 浙江农业学报, 2021, 33(7): 1320-1328.
QIN Kuan, LIANG Xiaolong, CAO Chengmao, FANG Liangfei, WU Zhengmin, GE Jun. Design and experiment of tea garden energy-saving ditching blade[J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1320-1328.
图1 茶园节能型开沟作业平台 1,摇臂式导向与限深装置;2,挡土导流装置;3,开沟刀;4,驱动轮;5,齿轮变速箱;6,汽油机;7,手扶装置;8,链箱;9,带传动箱。
Fig.1 Energy saving ditch platform for tea garden 1, Rocker arm type guide and depth limiting device; 2, Retaining and diversion device; 3, Ditching blade; 4, Driving wheel; 5, Geared head; 6, Gasoline engine; 7, Walking device; 8, Chain box; 9, Belt transmission case.
| 项目 Project | 参数 Parameter | 项目 Project | 参数 Parameter |
|---|---|---|---|
| 土槽长×宽×高 Soil trench length × width × height/mm×mm×mm | 10000×1000×400 | 铁剪切模量 Iron shear modulus (G3)/Pa | 8×1010 |
| 机具前进速度 Forward speed of the machine (Vm)/(m·s-1) | 0.9 | 土壤—土壤恢复系数 Soil-soil restoration coefficient (e1) | 0.7 |
| 开沟刀转速 Speed of ditching blade (nz)/(r·min-1) | 350 | 土壤—铁恢复系数 Soil-iron recovery coefficient(e2) | 0.6 |
| 土壤密度 Soil density (ρ1)/(kg·m-3) | 1600 | 土壤—土壤静摩擦因数 Soil-soil static friction coefficient (fs1) | 0.5 |
| 土壤泊松比 Soil Poisson’s ratio (γ1) | 0.32 | 土壤—铁静摩擦因数 Coefficient of soil-iron static friction (fs2) | 0.7 |
| 土壤剪切模量 Shear modulus of soil (G1)/Pa | 1×106 | 土壤—土壤滚动摩擦因数 Soil-soil rolling friction factor (fd1) | 0.55 |
| 铁密度 The density of iron (ρ3)/(kg·m-3) | 7830 | 土壤—铁滚动摩擦因数 Coefficient of soil-iron rolling friction (fd2) | 0.04 |
| 铁泊松比Iron Poisson’s ratio (γ3) | 0.4 |
表1 节能型开沟刀仿真模型参数
Table 1 Simulation model parameters of energy saving ditching blade
| 项目 Project | 参数 Parameter | 项目 Project | 参数 Parameter |
|---|---|---|---|
| 土槽长×宽×高 Soil trench length × width × height/mm×mm×mm | 10000×1000×400 | 铁剪切模量 Iron shear modulus (G3)/Pa | 8×1010 |
| 机具前进速度 Forward speed of the machine (Vm)/(m·s-1) | 0.9 | 土壤—土壤恢复系数 Soil-soil restoration coefficient (e1) | 0.7 |
| 开沟刀转速 Speed of ditching blade (nz)/(r·min-1) | 350 | 土壤—铁恢复系数 Soil-iron recovery coefficient(e2) | 0.6 |
| 土壤密度 Soil density (ρ1)/(kg·m-3) | 1600 | 土壤—土壤静摩擦因数 Soil-soil static friction coefficient (fs1) | 0.5 |
| 土壤泊松比 Soil Poisson’s ratio (γ1) | 0.32 | 土壤—铁静摩擦因数 Coefficient of soil-iron static friction (fs2) | 0.7 |
| 土壤剪切模量 Shear modulus of soil (G1)/Pa | 1×106 | 土壤—土壤滚动摩擦因数 Soil-soil rolling friction factor (fd1) | 0.55 |
| 铁密度 The density of iron (ρ3)/(kg·m-3) | 7830 | 土壤—铁滚动摩擦因数 Coefficient of soil-iron rolling friction (fd2) | 0.04 |
| 铁泊松比Iron Poisson’s ratio (γ3) | 0.4 |
| 平均开沟阻力Average trenching resistance (FZ)/N | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| τs/° | τn/° | ||||||||||
| 50 | 51.5 | 53 | 54.5 | 56 | 57.5 | 59 | 60.5 | 62 | 63.5 | 65 | |
| 50 | 256.5 | 268.1 | 239.6 | 203.2 | 198.6 | 231.6 | 251.9 | 186.3 | 252.3 | 230.4 | 257.5 |
| 52 | 214.3 | 205.9 | 195.0 | 194.4 | 175.3 | 204.1 | 156.3 | 174.7 | 184.6 | 213.6 | 221.7 |
| 54 | 258.6 | 237.8 | 224.3 | 243.1 | 208.7 | 233.9 | 204.2 | 218.4 | 213.6 | 198.2 | 200.4 |
| 56 | 198.6 | 207.8 | 223.0 | 215.3 | 199.2 | 193.7 | 186.5 | 163.1 | 152.3 | 175.8 | 163.8 |
| 58 | 186.3 | 216.5 | 231.6 | 195.2 | 203.9 | 193.4 | 187.6 | 186.4 | 211.2 | 207.6 | 234.9 |
| 60 | 217.3 | 165.4 | 217.8 | 184.0 | 186.7 | 227.5 | 214.8 | 205.6 | 217.3 | 224.7 | 231.6 |
表2 仿真试验结果
Table 2 The results of simulation experiment
| 平均开沟阻力Average trenching resistance (FZ)/N | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| τs/° | τn/° | ||||||||||
| 50 | 51.5 | 53 | 54.5 | 56 | 57.5 | 59 | 60.5 | 62 | 63.5 | 65 | |
| 50 | 256.5 | 268.1 | 239.6 | 203.2 | 198.6 | 231.6 | 251.9 | 186.3 | 252.3 | 230.4 | 257.5 |
| 52 | 214.3 | 205.9 | 195.0 | 194.4 | 175.3 | 204.1 | 156.3 | 174.7 | 184.6 | 213.6 | 221.7 |
| 54 | 258.6 | 237.8 | 224.3 | 243.1 | 208.7 | 233.9 | 204.2 | 218.4 | 213.6 | 198.2 | 200.4 |
| 56 | 198.6 | 207.8 | 223.0 | 215.3 | 199.2 | 193.7 | 186.5 | 163.1 | 152.3 | 175.8 | 163.8 |
| 58 | 186.3 | 216.5 | 231.6 | 195.2 | 203.9 | 193.4 | 187.6 | 186.4 | 211.2 | 207.6 | 234.9 |
| 60 | 217.3 | 165.4 | 217.8 | 184.0 | 186.7 | 227.5 | 214.8 | 205.6 | 217.3 | 224.7 | 231.6 |
图4 开沟刀具田间试验平台 1,机架;2,电源;3,前进驱动电机;4,电机速度控制器;5,汽油机;6,变速箱;7,链传动系统;8,刀盘安装轴;9,扭矩传感器;10,上位机;11,开沟深度调节装置;12,行走轮;13,限深轮。
Fig.4 The experiment platform of ditching blade 1, Rack; 2, Power supply; 3, Forward drive motor; 4, Motor speed controller; 5, Gasoline engine; 6, Gearbox; 7, Chain drive; 8, Blade head mounting shaft; 9, Torque transducer; 10, Upper computer; 11, Ditch depth regulating device; 12, Road wheel; 13, Depth roller.
| 处理 Treatment | 开沟功耗 The power consumption of the ditch/kW | 沟深稳定性系数 Stability coefficient of ditch depth/% | ||||
|---|---|---|---|---|---|---|
| 开沟深度 Trenching depth/cm | 开沟深度Trenching depth/cm | |||||
| 15 | 20 | 25 | 15 | 20 | 25 | |
| 茶园节能型开沟刀(试验组) | 0.093 | 0.107 | 0.128 | 91.2 | 92.8 | 91.7 |
| Energy-saving ditching blade for tea garden(Experimental group) | ||||||
| 通用开沟刀(对照组) | 0.102 | 0.123 | 0.157 | 90.8 | 89.3 | 89.8 |
| General ditching blade(Control group) | ||||||
表3 田间试验结果
Table 3 The results of field experiment
| 处理 Treatment | 开沟功耗 The power consumption of the ditch/kW | 沟深稳定性系数 Stability coefficient of ditch depth/% | ||||
|---|---|---|---|---|---|---|
| 开沟深度 Trenching depth/cm | 开沟深度Trenching depth/cm | |||||
| 15 | 20 | 25 | 15 | 20 | 25 | |
| 茶园节能型开沟刀(试验组) | 0.093 | 0.107 | 0.128 | 91.2 | 92.8 | 91.7 |
| Energy-saving ditching blade for tea garden(Experimental group) | ||||||
| 通用开沟刀(对照组) | 0.102 | 0.123 | 0.157 | 90.8 | 89.3 | 89.8 |
| General ditching blade(Control group) | ||||||
| [1] | 李为宁, 柏宣丙, 李兵. 滚筒式茶叶提香机结构参数优化[J]. 浙江农业学报, 2020, 32(2):348-358. |
| LI W N, BAI X B, LI B. Optimization of structural parameters of drum type tea re-dryer[J]. Acta Agriculturae Zhejiangensis, 2020, 32(2):348-358.(in Chinese with English abstract) | |
| [2] | 刘仲华. 中国茶叶深加工产业发展历程与趋势[J]. 茶叶科学, 2019, 39(2):115-122. |
| LIU Z H. The development process and trend of Chinese tea comprehensive processing industry[J]. Journal of Tea Science, 2019, 39(2):115-122.(in Chinese with English abstract) | |
| [3] | 肖宏儒, 韩余, 宋志禹, 等. 茶园机械化耕作技术[J]. 中国茶叶, 2018, 40(1):5-9. |
| XIAO H R, HAN Y, SONG Z Y, et al. Mechanization farming technology of tea plantation[J]. China Tea, 2018, 40(1):5-9.(in Chinese) | |
| [4] | 代红朝. 茶田翻耕机主要部件设计与试验研究[D]. 北京: 中国农业科学院, 2017. |
| DAI H C. Design and experiment on the main parts of tea field tillage machine[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017.(in Chinese with English abstract) | |
| [5] | 韩余, 肖宏儒, 宋志禹, 等. 我国茶园机械化作业模式研究[J]. 中国农业科技导报, 2016, 18(3):74-81. |
| HAN Y, XIAO H R, SONG Z Y, et al. Research on mechanization technology mode of tea plantation and management[J]. Journal of Agricultural Science and Technology, 2016, 18(3):74-81.(in Chinese with English abstract) | |
| [6] | 刘大为, 谢方平, 叶强, 等. 1K-50型果园开沟机开沟部件功耗影响因素分析与试验[J]. 农业工程学报, 2019, 35(18):19-28. |
| LIU D W, XIE F P, YE Q, et al. Analysis and experiment on influencing factors on power of ditching parts for 1K-50 orchard ditching[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(18):19-28.(in Chinese with English abstract) | |
| [7] | 康建明, 李树君, 杨学军, 等. 密植果园开沟施肥机开沟刀片设计与试验[J]. 农业机械学报, 2017, 48(2):68-74. |
| KANG J M, LI S J, YANG X J, et al. Design and experiment of ditching blade installed in close planting orchard ditching machinery[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(2):68-74.(in Chinese with English abstract) | |
| [8] | 康建明, 李树君, 杨学军, 等. 正弦指数曲线型开沟刀片结构参数优化[J]. 农业机械学报, 2016, 47(11):91-99. |
| KANG J M, LI S J, YANG X J, et al. Structure parameters optimization of sine exponential curve type ditching blade[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(11):91-99.(in Chinese with English abstract) | |
| [9] | 康建明, 李树君, 杨学军, 等. 基于多体动力学的圆盘式开沟机虚拟仿真与功耗测试[J]. 农业机械学报, 2017, 48(1):57-63. |
| KANG J M, LI S J, YANG X J, et al. Virtual simulation and power test of disc type ditcher based on multi-body dynamics[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(1):57-63.(in Chinese with English abstract) | |
| [10] |
TARVERDYAN A P, SARGSYAN S F, ALTUNYAN A V. Investigation results of kinematic and dynamic indicators of tiller with vertical rotation axis in orchards soil cultivation[J]. Annals of Agrarian Science, 2017, 15(2):163-168.
DOI URL |
| [11] |
KAKAHY A N N, AHMAD D, AKHIR M D, et al. Effects of rotary mower blade cutting angles on the pulverization of sweet potato vine[J]. Agriculture and Agricultural Science Procedia, 2014, 2:95-101.
DOI URL |
| [12] | 叶强, 谢方平, 孙松林, 等. 葡萄园反转双旋耕轮开沟机的研制[J]. 农业工程学报, 2013, 29(3):9-15. |
| YE Q, XIE F P, SUN S L, et al. Development of vineyard ditcher with reversal twin rotary tillage wheels[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(3):9-15.(in Chinese with English abstract) | |
| [13] | 农业部农业机械化管理司,农业部南京农业机械化研究所. 茶园机械化生产技术指导意见[J]. 农机科技推广, 2017(12):48-51. |
| DEPARTMENT OF AGRICULTURAL MECHANIZATION MANAGEMENT, MINISTRY OF AGRICULTURE, NANJING INSTITUTE OF AGRICULTURAL MECHANIZATION, MINISTRY OF AGRICULTURE. Technical guidance on mechanized production of tea garden of Nanjing Institute of agricultural mechanization, Ministry of Agriculture[J].Agriculture Machinery Technology Extension, 2017(12):48-51.(in Chinese) | |
| [14] | 丁为民, 王耀华, 彭嵩植. 反转旋耕刀滑切角分析与计算[J]. 农业机械学报, 2001, 32(6):26-29. |
| DING W M, WANG Y H, PENG S Z. Calculation and analysis of grass removing angles of up-cut rotary blade[J]. Transactions of the Chinese Society of Agricultural Machinery, 2001, 32(6):26-29.(in Chinese with English abstract) | |
| [15] | 丁为民, 彭嵩植. 旋耕刀正切刃设计方法的研究[J]. 农业机械学报, 1995, 26(4):56-61. |
| DING W M, PENG S Z. Research on design of sidelong edge of rotary blade[J]. Transactions of the Chinese Society of Agricultural Machinery, 1995, 26(4):56-61.(in Chinese with English abstract) | |
| [16] | 丁为民, 王耀华, 彭嵩植. 旋耕弯刀正切刃展开线的计算与模拟[J]. 农业工程学报, 2003, 19(4):104-106. |
| DING W M, WANG Y H, PENG S Z. Calculation and simulation of expansion graph of sidelong edge for rotary blade[J]. Transactions of the Chinese Society of Agricultural Engineering, 2003, 19(4):104-106.(in Chinese with English abstract) | |
| [17] | 丁为民, 王耀华, 彭嵩植. 反转旋耕刀正切面分析及参数选择[J]. 农业机械学报, 2004, 35(4):40-43. |
| DING W M, WANG Y H, PENG S Z. Analysis on sidelong portion of a up-cut rotary blade[J]. Transactions of the Chinese Society of Agricultural Machinery, 2004, 35(4):40-43.(in Chinese with English abstract) | |
| [18] | 中国农业科学院茶叶研究所. 茶树栽培技术[M]. 北京: 农业出版社, 1982. |
| [19] |
KATINAS E, KATINAS E, CHOTĚBORSKY R, LINDA M, et al. Wear modelling of soil ripper tine in sand and sandy clay by discrete element method[J]. Biosystems Engineering, 2019, 188:305-319.
DOI URL |
| [20] | 陈红卫, 黄玲, 冯露, 等. 生物质炭基肥对农田土壤温室气体排放年际变化的影响[J]. 浙江农业学报, 2017, 29(6):977-981. |
| CHEN H W, HUANG L, FENG L, et al. Effects of biochar based fertilizer on seasonal variation of greenhouse gas emissions[J]. Acta Agriculturae Zhejiangensis, 2017, 29(6):977-981.(in Chinese with English abstract) | |
| [21] | 曾德超. 机械土壤动力学[M]. 北京: 北京科学技术出版社, 1995. |
| [22] |
UCGUL M, FIELKE J M, SAUNDERS C. Three-dimensional discrete element modelling (DEM) of tillage: Accounting for soil cohesion and adhesion[J]. Biosystems Engineering, 2015, 129:298-306.
DOI URL |
| [23] | 方会敏, 姬长英, Ahmed Ali Tagar, 等. 秸秆-土壤-旋耕刀系统中秸秆位移仿真分析[J]. 农业机械学报, 2016, 47(1):60-67. |
| FANG H M, JI C Y, TAGAR A, et al. Simulation analysis of straw movement in straw-soil-rotary blade system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(1):60-67.(in Chinese with English abstract) | |
| [24] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 旋耕机 GB/T 5668—2017[S]. 北京: 中国标准出版社, 2017. |
| [25] | 中华人民共和国工业和信息化部. 农用圆盘开沟机 JB/T 11908—2014[S]. 北京: 机械工业出版社, 2014. |
| [1] | 任宁, 俞国红, 郑航, 陈志东. 基于离散元法的茶园土壤参数标定[J]. 浙江农业学报, 2025, 37(6): 1353-1359. |
| [2] | 刘悦萱, 陈延玲, 张培强, 颜鹏. 茶园土壤酸化及其调控研究进展[J]. 浙江农业学报, 2025, 37(1): 245-254. |
| [3] | 熊厚全, 江洁. 黄色赤红壤与开沟部件互作的离散元参数标定及试验[J]. 浙江农业学报, 2024, 36(6): 1400-1412. |
| [4] | 孔德, 叶自然, 谭向峰, 代梦迪, 赵先亮, 孔德栋. 生菜种子物理接触参数测定与离散元仿真标定[J]. 浙江农业学报, 2024, 36(4): 932-942. |
| [5] | 吴筱萌, 徐悦, 程鸿浩, 陈诗燕, 周夏芝, 邹运鼎, 毕守东. 六种茶园茶尺蠖与其蜘蛛类天敌的空间和数量关系[J]. 浙江农业学报, 2023, 35(6): 1349-1359. |
| [6] | 俞巧钢, 姜铭北, 孙万春, 黄郑宸, 王峰, 王强, 马军伟. 秸秆覆盖和绿肥种植对丘陵茶园氮磷流失的影响[J]. 浙江农业学报, 2023, 35(4): 903-912. |
| [7] | 彭才望, 周婷, 孙松林, 谢烨林, 魏源. 基于堆积试验的黑水虻离散元仿真参数标定与分析[J]. 浙江农业学报, 2022, 34(4): 814-823. |
| [8] | 林孝腾, 孙茜, 郑书河. 基于OpenCV的低能耗植物工厂照明系统设计与试验[J]. 浙江农业学报, 2022, 34(3): 626-635. |
| [9] | 姚龙仁, 王肖君, 卓超, 冷明珠, 倪吾钟. 模拟酸雨对茶园土壤磷素溶出特征与形态的影响[J]. 浙江农业学报, 2022, 34(12): 2700-2709. |
| [10] | 刘明勇, 胡成龙, 谢柏林. 基于离散元法的铧式犁仿真优化分析及试验[J]. 浙江农业学报, 2022, 34(11): 2542-2552. |
| [11] | 王锋, 张锋伟, 戴飞, 张陆海, 赵伟, 杨小平. 双层平筛式半夏收获机设计与试验[J]. 浙江农业学报, 2021, 33(10): 1946-1955. |
| [12] | 刘春林, 张建, 彭益书, 倪莘然, 杨瑞东. 贵州雷山茶区土壤-茶叶重金属含量特征及饮茶风险评价[J]. 浙江农业学报, 2020, 32(6): 1049-1059. |
| [13] | 李为宁, 柏宣丙, 李兵. 滚筒式茶叶提香机结构参数优化[J]. 浙江农业学报, 2020, 32(2): 348-358. |
| [14] | 袁大刚,蒲光兰,程伟丽,王昌全,何刚. 川西稻田改为茶园后土壤pH和腐殖质组成剖面分布变化特征[J]. 浙江农业学报, 2016, 28(1): 104-. |
| [15] | 殷剑美;张培通;韩晓勇;彭琦;郭文琦;张恒友. 南京地区大棚茶园小气候特征及对茶青产量和品质效应[J]. , 2012, 24(5): 0-835. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||