浙江农业学报 ›› 2021, Vol. 33 ›› Issue (12): 2397-2405.DOI: 10.3969/j.issn.1004-1524.2021.12.20
高娉娉1,2(), 温华婷1,2, 赵美1,2, 王婧1,2,*(
)
收稿日期:
2020-08-25
出版日期:
2021-12-25
发布日期:
2022-01-10
通讯作者:
王婧
作者简介:
* 王婧,E-mail: wangjing@gsau.edu.cn基金资助:
GAO Pingping1,2(), WEN Huating1,2, ZHAO Mei1,2, WANG Jing1,2,*(
)
Received:
2020-08-25
Online:
2021-12-25
Published:
2022-01-10
Contact:
WANG Jing
摘要:
为了提高黑比诺干红葡萄酒的品质,本试验选用黑比诺葡萄为原料,采用粟酒裂殖酵母(Schizosaccharomyces pombe,S. pombe)单一菌株接种发酵及与商业酿酒酵母(Saccharomyces cerevisiae,S. cerevisiae)同时或顺序接种进行酒精发酵,并以S. cerevisiae单独接种完成酒精发酵后进行苹果酸-乳酸发酵的葡萄酒为对照,监测其发酵过程中苹果酸、生物胺等理化指标的变化,采用顶空固相微萃取结合气相色谱-质谱联用技术(HS-SPME-GC-MS)分析挥发性香气物质的变化,并进行感官评价。结果表明:S. pombe单独接种及与S. cerevisiae同时或顺序接种发酵的残糖、酒精度、总酸和挥发酸均符合国标GB 15037—2006《葡萄酒》对干红葡萄酒的要求;S. pombe单独接种及与S. cerevisiae同时或顺序接种发酵都能够完成酒精发酵;与对照相比,处理组的接种方式均能够显著降低葡萄酒中苹果酸和组胺的含量,其中,S. pombe和S. cerevisiae顺序接种发酵的葡萄酒中苹果酸和组胺含量明显低于S. pombe单独接种及与S. cerevisiae同时接种发酵。S. pombe和S. cerevisiae顺序接种发酵能够明显丰富葡萄酒中的醇类、酯类和萜烯类物质,使葡萄酒中具有浓郁的果香和花香。感官分析发现,S. pombe和S. cerevisiae顺序接种发酵的葡萄酒感官品质较优于其他处理组。综上所述,在S. pombe的不同接种方式中,S. pombe和S. cerevisiae顺序接种能够更好地增加黑比诺干红葡萄酒的醇类、酯类和萜烯类物质含量及种类,降低苹果酸含量,能够提升葡萄酒感官品质。
中图分类号:
高娉娉, 温华婷, 赵美, 王婧. 粟酒裂殖酵母接种方式对黑比诺干红葡萄酒品质的影响[J]. 浙江农业学报, 2021, 33(12): 2397-2405.
GAO Pingping, WEN Huating, ZHAO Mei, WANG Jing. Effect of inoculation of Schizosaccharomyces pombe on quality of Pinot Noir dry red wine[J]. Acta Agriculturae Zhejiangensis, 2021, 33(12): 2397-2405.
理化指标 Physicochemical index | SP | SP+SC | SP..SC | SC+MLF |
---|---|---|---|---|
残糖含量Residual sugar content/(g·L-1) | 3.86±0.06 a | 3.22±0.04 a | 3.32±0.06 a | 3.01±0.06 b |
总酸含量Total acid content/(g·L-1) | 4.24±0.17 b | 4.95±0.10 b | 3.08±0.10 c | 5.27±0.17 a |
挥发酸含量Volatile acids/(g·L-1) | 0.71±0.08 a | 0.60±0.16 a | 0.72±0.04 a | 0.62±0.06 a |
酒精体积分数Alcohol degree/% | 11.31±0.12 a | 11.71±0.15 a | 11.20±0.07 a | 12.10±0.15 a |
乳酸Lactic acid/(g·L-1) | 0.13±0.03 c | 0.26±0.01 b | 0.06±0.01 c | 0.99±0.02 a |
单宁Tannin/(g·L-1) | 2.26±0.01 a | 2.23±0.01 a | 2.28±0.07 a | 2.24±0.07 a |
总花色苷Total anthocyanin/(mg·L-1) | 119.90±2.63 a | 120.66±4.02 a | 134.34±1.66 a | 117.35±2.65 a |
柔和指数Softness index | 6.22±0.13 b | 6.18±0.07 b | 6.87±0.10 a | 6.35±0.09 b |
色度Chroma | 0.93±0.01 a | 1.04±0.02 a | 1.03±0.01 a | 1.00±0.09 a |
色调Hue | 0.83±0.05 a | 0.79±0.01 a | 0.78±0.05 a | 0.80±0.17 a |
pH | 4.10±0.06 a | 4.00±0.02 b | 4.19±0.02 a | 3.93±0.02 b |
表1 不同接种方式下葡萄酒的理化指标变化
Table 1 Changes of physical and chemical indexes of wine under different inoculation methods
理化指标 Physicochemical index | SP | SP+SC | SP..SC | SC+MLF |
---|---|---|---|---|
残糖含量Residual sugar content/(g·L-1) | 3.86±0.06 a | 3.22±0.04 a | 3.32±0.06 a | 3.01±0.06 b |
总酸含量Total acid content/(g·L-1) | 4.24±0.17 b | 4.95±0.10 b | 3.08±0.10 c | 5.27±0.17 a |
挥发酸含量Volatile acids/(g·L-1) | 0.71±0.08 a | 0.60±0.16 a | 0.72±0.04 a | 0.62±0.06 a |
酒精体积分数Alcohol degree/% | 11.31±0.12 a | 11.71±0.15 a | 11.20±0.07 a | 12.10±0.15 a |
乳酸Lactic acid/(g·L-1) | 0.13±0.03 c | 0.26±0.01 b | 0.06±0.01 c | 0.99±0.02 a |
单宁Tannin/(g·L-1) | 2.26±0.01 a | 2.23±0.01 a | 2.28±0.07 a | 2.24±0.07 a |
总花色苷Total anthocyanin/(mg·L-1) | 119.90±2.63 a | 120.66±4.02 a | 134.34±1.66 a | 117.35±2.65 a |
柔和指数Softness index | 6.22±0.13 b | 6.18±0.07 b | 6.87±0.10 a | 6.35±0.09 b |
色度Chroma | 0.93±0.01 a | 1.04±0.02 a | 1.03±0.01 a | 1.00±0.09 a |
色调Hue | 0.83±0.05 a | 0.79±0.01 a | 0.78±0.05 a | 0.80±0.17 a |
pH | 4.10±0.06 a | 4.00±0.02 b | 4.19±0.02 a | 3.93±0.02 b |
指标Index | SP | SP+SC | SP..SC | SC+MLF |
---|---|---|---|---|
组胺Histamine/(mg·L-1) | 0.32±0.02 b | 0.25±0.01 b | 0.14±0.03 c | 1.46±0.06 a |
氨基甲酸乙酯Ethyl carbamate/(mg·L-1) | NA | NA | NA | NA |
表2 不同接种方式对组胺和氨基甲酸乙酯含量的影响
Table 2 Effects of different inoculation methods on the content of histamine and ethyl carbamate
指标Index | SP | SP+SC | SP..SC | SC+MLF |
---|---|---|---|---|
组胺Histamine/(mg·L-1) | 0.32±0.02 b | 0.25±0.01 b | 0.14±0.03 c | 1.46±0.06 a |
氨基甲酸乙酯Ethyl carbamate/(mg·L-1) | NA | NA | NA | NA |
图3 不同接种方式产香特性比较 柱形图表示香气物质含量,折线图表示香气物质数量。不同处理间没有相同小写字母表示差异显著(P<0.05)。
Fig. 3 Comparison of incense production characteristics of different inoculation methods The bar chart indicates the content of aroma substances, and the line chart indicates the amount of aroma substances.The bars with different lower case letters showed significant difference (P<0.05).
香气物质 Aroma compounds | 含量 Content/(μg·L-1) | 阈值 Threshold/(μg· L-1)[ | OAV | 气味描述 Odor description | ||||||
---|---|---|---|---|---|---|---|---|---|---|
SP | SP+SC | SP..SC | SC+MLF | SP | SP+SC | SP..SC | SC+MLF | |||
丁酸乙酯 Ethyl butyrate | 12.39 ±0.06 | — | 6.36 ±0.12 | 33.09 ±0.03 | 30 | 0.41 | — | 0.21 | 1.10 | 酸果香、草莓、果香 Sour fruit, strawberry, fruity |
乙酸异戊酯 Isoamyl acetate | 78.00 ±0.45 | 139.45 ±0.98 | 0.39 ±0.02 | 753.04 ±1.08 | 160 | 0.49 | 0.87 | 0.002 | 4.71 | 香蕉味 Banana flavour |
己酸乙酯 Ethyl caproate | 76.05 ±0.65 | 113.92 ±2.24 | 449.18 ±2.06 | 26.84 ±0.35 | 80 | 0.95 | 1.42 | 5.61 | 0.33 | 香蕉、青苹果 Bananas, green apples |
辛酸甲酯 Methyl caprylate | — | 21.22 ±0.06 | 10.84 ±0.09 | 601.76 ±2.06 | 200 | — | 0.11 | 0.05 | 3.01 | 柑橘香 Citrus fragrance |
辛酸乙酯 Ethyl octanoate | 181.40 ±1.53 | 209.83 ±0.90 | 1 629.36 ±3.06 | 937.28 ±2.13 | 580 | 0.31 | 0.36 | 2.81 | 1.62 | 香蕉、梨、花香 Bananas, pears, flowers |
癸酸乙酯 Ethyl decanoate | 824.77 ±1.16 | 189.67 ±0.96 | 1154.83 ±3.27 | 21.25 ±0.19 | 39 | 21.15 | 4.86 | 29.61 | 0.54 | 果香、脂肪味 Fruity, fatty |
月桂酸乙酯 Ethyl laurate | 267.39 ±1.01 | 988.98 ±1.02 | 342.58 ±1.16 | 0 | 800 | 0.33 | 1.24 | 0.43 | 0 | 甜香,花香,果香 Sweet, floral, fruity |
棕榈酸乙酯 Ethyl palmitate | 227.40 ±0.96 | 202.79 ±0.87 | 25.20 ±0.09 | 136.92 ±0.18 | 1.5 | 151.6 | 135.19 | 16.80 | 91.28 | 苹果、菠萝味 Apple, pineapple |
庚酸乙酯 Ethyl oenanthate | — | 61.77 ±0.23 | — | — | 2.2 | — | 28.08 | — | — | 果香 Fruity |
庚醇 Heptanol | 42.84 ±0.12 | 355.05 ±0.74 | 52.13 ±0.56 | 190.11 ±0.98 | 200 | 0.21 | 1.78 | 0.26 | 0.95 | 油腻味 Greasy taste |
正戊醇 n-Pentanol | 247.70 ±0.96 | — | 1 325.15 ±5.06 | 585.14 ±2.36 | 1 000 | 0.25 | — | 1.33 | 0.59 | 青草香 Grass fragrance |
苯乙醇 Phenylethyl alcohol | 139.54 ±0.74 | 313.47 ±1.06 | 1154.97 ±3.11 | — | 1 100 | 0.13 | 0.28 | 1.05 | — | 玫瑰花、蜂蜜味 Roses, honey |
己酸 Caproic acid | 759.33 ±3.10 | 452.50 ±0.99 | 290.53 ±1.06 | 886.58 ±1.7 | 420 | 1.81 | 1.08 | 0.69 | 2.11 | 脂肪味 Fatty |
辛酸 Octanoic acid | 100.03 ±0.78 | 21.79 ±0.57 | 610.54 ±1.86 | 479.26 ±1.52 | 500 | 0.20 | 0.04 | 1.22 | 0.96 | 奶酪味 Cheese flavour |
香茅醇 Citronellol | — | 21.94 ±0.08 | 43.31 ±0.17 | 5.57 ±0.07 | 40 | — | 0.55 | 1.08 | 0.14 | 玫瑰花香 Roses |
丁香酚 Eugenol | 4.06 ±0.02 | — | — | 12.71 ±0.06 | 6 | 0.68 | — | — | 2.12 | 丁香味,甘草香 Lilac fragrance, Licorice fragrance |
表3 关键性香气物质的OAV
Table 3 OAV of key volatile aroma compounds
香气物质 Aroma compounds | 含量 Content/(μg·L-1) | 阈值 Threshold/(μg· L-1)[ | OAV | 气味描述 Odor description | ||||||
---|---|---|---|---|---|---|---|---|---|---|
SP | SP+SC | SP..SC | SC+MLF | SP | SP+SC | SP..SC | SC+MLF | |||
丁酸乙酯 Ethyl butyrate | 12.39 ±0.06 | — | 6.36 ±0.12 | 33.09 ±0.03 | 30 | 0.41 | — | 0.21 | 1.10 | 酸果香、草莓、果香 Sour fruit, strawberry, fruity |
乙酸异戊酯 Isoamyl acetate | 78.00 ±0.45 | 139.45 ±0.98 | 0.39 ±0.02 | 753.04 ±1.08 | 160 | 0.49 | 0.87 | 0.002 | 4.71 | 香蕉味 Banana flavour |
己酸乙酯 Ethyl caproate | 76.05 ±0.65 | 113.92 ±2.24 | 449.18 ±2.06 | 26.84 ±0.35 | 80 | 0.95 | 1.42 | 5.61 | 0.33 | 香蕉、青苹果 Bananas, green apples |
辛酸甲酯 Methyl caprylate | — | 21.22 ±0.06 | 10.84 ±0.09 | 601.76 ±2.06 | 200 | — | 0.11 | 0.05 | 3.01 | 柑橘香 Citrus fragrance |
辛酸乙酯 Ethyl octanoate | 181.40 ±1.53 | 209.83 ±0.90 | 1 629.36 ±3.06 | 937.28 ±2.13 | 580 | 0.31 | 0.36 | 2.81 | 1.62 | 香蕉、梨、花香 Bananas, pears, flowers |
癸酸乙酯 Ethyl decanoate | 824.77 ±1.16 | 189.67 ±0.96 | 1154.83 ±3.27 | 21.25 ±0.19 | 39 | 21.15 | 4.86 | 29.61 | 0.54 | 果香、脂肪味 Fruity, fatty |
月桂酸乙酯 Ethyl laurate | 267.39 ±1.01 | 988.98 ±1.02 | 342.58 ±1.16 | 0 | 800 | 0.33 | 1.24 | 0.43 | 0 | 甜香,花香,果香 Sweet, floral, fruity |
棕榈酸乙酯 Ethyl palmitate | 227.40 ±0.96 | 202.79 ±0.87 | 25.20 ±0.09 | 136.92 ±0.18 | 1.5 | 151.6 | 135.19 | 16.80 | 91.28 | 苹果、菠萝味 Apple, pineapple |
庚酸乙酯 Ethyl oenanthate | — | 61.77 ±0.23 | — | — | 2.2 | — | 28.08 | — | — | 果香 Fruity |
庚醇 Heptanol | 42.84 ±0.12 | 355.05 ±0.74 | 52.13 ±0.56 | 190.11 ±0.98 | 200 | 0.21 | 1.78 | 0.26 | 0.95 | 油腻味 Greasy taste |
正戊醇 n-Pentanol | 247.70 ±0.96 | — | 1 325.15 ±5.06 | 585.14 ±2.36 | 1 000 | 0.25 | — | 1.33 | 0.59 | 青草香 Grass fragrance |
苯乙醇 Phenylethyl alcohol | 139.54 ±0.74 | 313.47 ±1.06 | 1154.97 ±3.11 | — | 1 100 | 0.13 | 0.28 | 1.05 | — | 玫瑰花、蜂蜜味 Roses, honey |
己酸 Caproic acid | 759.33 ±3.10 | 452.50 ±0.99 | 290.53 ±1.06 | 886.58 ±1.7 | 420 | 1.81 | 1.08 | 0.69 | 2.11 | 脂肪味 Fatty |
辛酸 Octanoic acid | 100.03 ±0.78 | 21.79 ±0.57 | 610.54 ±1.86 | 479.26 ±1.52 | 500 | 0.20 | 0.04 | 1.22 | 0.96 | 奶酪味 Cheese flavour |
香茅醇 Citronellol | — | 21.94 ±0.08 | 43.31 ±0.17 | 5.57 ±0.07 | 40 | — | 0.55 | 1.08 | 0.14 | 玫瑰花香 Roses |
丁香酚 Eugenol | 4.06 ±0.02 | — | — | 12.71 ±0.06 | 6 | 0.68 | — | — | 2.12 | 丁香味,甘草香 Lilac fragrance, Licorice fragrance |
[1] |
TERRADE N, MIRA DE ORDUÑA R. Determination of the essential nutrient requirements of wine-related bacteria from the genera Oenococcus and Lactobacillus[J]. International Journal of Food Microbiology, 2009, 133(1/2): 8-13.
DOI URL |
[2] | BELDA I, NAVASCUÉS E, MARQUINA D, et al. Dynamic analysis of physiological properties of Torulaspora delbrueckii in wine fermentations and its incidence on wine quality[J]. Applied Microbiology and Biotechnology, 2015, 99(4): 1911-1922. |
[3] | HERRAIZ T, REGLERO G, HERRAIZ M, et al. The influence of the yeast and type of culture on the volatile composition of wines fermented without sulfur dioxide[J]. American Journal of Enology and Viticulture, 1990, 41(4): 313-318. |
[4] |
ZIRONI R, ROMANO P, SUZZI G, et al. Volatile metabolites produced in wine by mixed and sequential cultures of Hanseniaspora guilliermondii or Kloeckera apiculata and Saccharomyces cerevisiae[J]. Biotechnology Letters, 1993, 15(3): 235-238.
DOI URL |
[5] |
BELDA I, CONCHILLO L B, RUIZ J, et al. Selection and use of pectinolytic yeasts for improving clarification and phenolic extraction in winemaking[J]. International Journal of Food Microbiology, 2016, 223: 1-8.
DOI URL |
[6] |
BENITO Á, JEFFARES D, PALOMERO F, et al. Selected schizosaccharomyces pombe strains have characteristics that are beneficial for winemaking[J]. PLoS One, 2016, 11(3): e0151102.
DOI URL |
[7] |
IZQUIERDO CAÑAS P M, GARCÍA-ROMERO E, HERAS MANSO J M, et al. Influence of sequential inoculation of Wickerhamomyces anomalus and Saccharomyces cerevisiae in the quality of red wines[J]. European Food Research and Technology, 2014, 239(2): 279-286.
DOI URL |
[8] |
BALIKCI E K, TANGULER H, JOLLY N P, et al. Influence of Lachancea thermotolerans on cv. Emir wine fermentation[J]. Yeast, 2016, 33(7): 313-321.
DOI URL |
[9] |
BENITO Á, CALDERÓN F, BENITO S. Mixed alcoholic fermentation of Schizosaccharomyces pombe and Lachancea thermotolerans and its influence on mannose-containing polysaccharides wine composition[J]. AMB Express, 2019, 9(1): 17.
DOI URL |
[10] |
PEINADO R A, MAESTRE O, MAURICIO J C, et al. Use of a Schizosaccharomyces pombe mutant to reduce the content in gluconic acid of must obtained from rotten grapes[J]. Journal of Agricultural and Food Chemistry, 2009, 57(6): 2368-2377.
DOI URL |
[11] |
LUBBERS M W, RODRIGUEZ S B, HONEY N K, et al. Purification and characterization of urease from Schizosaccharomyces pombe[J]. Canadian Journal of Microbiology, 1996, 42(2): 132-140.
DOI URL |
[12] |
CONTRERAS A, HIDALGO C, HENSCHKE P A, et al. Evaluation of non-saccharomyces yeasts for the reduction of alcohol content in wine[J]. Applied and Environmental Microbiology, 2014, 80(5): 1670-1678.
DOI URL |
[13] |
BENITO S. The impacts of Schizosaccharomyces on winemaking[J]. Applied Microbiology and Biotechnology, 2019, 103(11): 4291-4312.
DOI URL |
[14] | 白耀栋. 甘肃河西走廊地区酿酒葡萄发展的优劣势分析[J]. 中外葡萄与葡萄酒, 2016(2): 60-62. |
BAI Y D. Analysis on the advantages and disadvantages of wine grape development in Hexi Corridor of Gansu Province[J]. Sino-Overseas Grapevine and Wine, 2016(2): 60-62. (in Chinese) | |
[15] | 史肖, 张波, 牛见明, 等. 甘肃武威地区不同成熟期‘黑比诺’葡萄中的多酚测定[J]. 食品与发酵工业, 2020, 46(4): 258-265. |
SHI X, ZHANG B, NIU J M, et al. Determination of polyphenols in‘Pinot Noir’ grape at different ripening stages in Wuwei area of Gansu Province[J]. Food and Fermentation Industries, 2020, 46(4): 258-265.(in Chinese with English abstract) | |
[16] | 李华. 葡萄酒品尝学[M]. 北京: 科学出版社, 2006. |
[17] | 李素岳. 蛇龙珠果实成熟过程中的品质变化及浸渍工艺对其葡萄酒品质的影响[D]. 兰州:甘肃农业大学, 2013. |
LI S Y, The fruit quality changes of brewing grapes Gernischet during growth and the impregnation process influence on the quality of grape wine[D]. Lanzhou: Gansu Agricultural University, 2013. (in Chinese with English abstract) | |
[18] |
BUGLASS A J, LEE S H. Sequential analysis of malic acid and both enantiomers of lactic acid in wine using a high-performance liquid chromatographic column-switching procedure[J]. Journal of Chromatographic Science, 2001, 39(11): 453-458.
DOI URL |
[19] | PÉREZ-RUIZ T, MARTı'NEZ-LOZANO C, TOMÁS V, et al. High-performance liquid chromatographic separation and quantification of citric, lactic, malic, oxalic and tartaric acids using a post-column photochemical reaction and chemiluminescence detection[J]. Journal of Chromatography A, 2004, 1026(1/2): 57-64. |
[20] | BENITO Á, CALDERÓN F, BENITO S. Schizosaccharomyces pombe biotechnological applications in winemaking[M]//Methods in molecular biology. New York: Springer New York, 2018: 217-226. |
[21] |
ALESSANDRINI M, GAIOTTI F, BELFIORE N, et al. Influence of vineyard altitude on Glera grape ripening (Vitis vinifera L.): effects on aroma evolution and wine sensory profile[J]. Journal of the Science of Food and Agriculture, 2017, 97(9): 2695-2705.
DOI URL |
[22] | BENITO S, PALOMERO F, MORATA A, et al. New applications for Schizosaccharomyces pombe in the alcoholic fermentation of red wines[J]. International Journal of Food Science & Technology, 2012, 47(10): 2101-2108. |
[23] |
REDZEPOVIC S, ORLIC S, MAJDAK A, et al. Differential malic acid degradation by selected strains of Saccharomyces during alcoholic fermentation[J]. International Journal of Food Microbiology, 2003, 83(1): 49-61.
DOI URL |
[24] | SILVA S, RAMÓN-PORTUGAL F, ANDRADE P, et al. Malic acid consumption by dry immobilized cells of Schizosaccharomyces pombe[J]. American Journal of Enology and Viticulture, 2003, 54(1): 50-55. |
[25] |
SUÁREZ-LEPE J A, PALOMERO F, BENITO S, et al. Oenological versatility of Schizosaccharomyces spp[J]. European Food Research and Technology, 2012, 235(3): 375-383.
DOI URL |
[26] |
VILANOVA M, MARTÍNEZ C. First study of determination of aromatic compounds of red wine from Vitis vinifera cv. Castañal grown in Galicia(NW Spain)[J]. European Food Research and Technology, 2007, 224(4): 431-436.
DOI URL |
[27] | 陈霞, 李敏, 张波, 等. 扩展青霉对‘蛇龙珠’葡萄酒棒曲霉素及风味品质的影响[J]. 食品科学, 2016, 37(20): 126-133. |
CHEN X, LI M, ZHANG B, et al. Effect of Penicillium expansum infection of grapes on patulin content and flavor quality of cabernet gernischt wine[J]. Food Science, 2016, 37(20): 126-133.(in Chinese with English abstract)
DOI URL |
|
[28] |
MASLOV L, TOMAZ I MIHALJEVIĆŽULJZ M, et al. Aroma characterization of predicate wines from Croatia[J]. European Food Research and Technology, 2017, 243(2): 263-274.
DOI URL |
[29] | 祝霞, 王媛, 刘琦, 等. 混菌发酵对贵人香低醇甜白葡萄酒的香气影响[J]. 食品与发酵工业, 2019, 45(4): 95-102. |
ZHU X, WANG Y, LIU Q, et al. Effects of co-fermentation on the aroma of Italian Riesling low-alcohol sweet white wine[J]. Food and Fermentation Industries, 2019, 45(4): 95-102.(in Chinese with English abstract) | |
[30] | 张众, 李辉, 张静, 等. 贺兰山东麓‘赤霞珠’干红葡萄酒陈酿香气特征[J]. 食品科学, 2019, 40(18): 203-209. |
ZHANG Z, LI H, ZHANG J, et al. Aroma characteristics of aged ‘Cabernet Sauvignon’ dry red wine from Eastern Foothill of Helan Mountain[J]. Food Science, 2019, 40(18): 203-209. (in Chinese with English abstract)
DOI URL |
[1] | 刘金玉, 黄鹰. 粟酒裂殖酵母SpTrz2蛋白全长和N端的原核表达与多克隆抗体制备[J]. 浙江农业学报, 2021, 33(1): 34-42. |
[2] | 肖明礼;杨庆;林锐峰;普元柱;*;包秀萍;李仙. 风味蛋白酶提升烟叶抽吸品质的研究[J]. , 2014, 26(1): 0-185. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||