浙江农业学报 ›› 2022, Vol. 34 ›› Issue (1): 70-78.DOI: 10.3969/j.issn.1004-1524.2022.01.09
收稿日期:
2020-08-21
出版日期:
2022-01-25
发布日期:
2022-02-05
通讯作者:
宋国涛
作者简介:
* 宋国涛,E-mail: sgtendeavor@hotmail.com基金资助:
YE Jing(), YANG Yuanling, SHI Qingqiu, WU Longfei, SONG Guotao*(
)
Received:
2020-08-21
Online:
2022-01-25
Published:
2022-02-05
Contact:
SONG Guotao
摘要:
为了解杜仲 miR172 家族成员的进化特征及其在杜仲生长发育过程中的作用。从杜仲小RNA高通量测序结果(登录号:SRP216820)及已发表文献中获取杜仲miR172家族前体和成熟体序列,进行序列比对、WebLogo保守性分析、系统发育树构建、前体茎环结构预测、启动子结构分析、靶基因预测及功能预测。结果表明,杜仲miR172家族共有8条前体和8条成熟体序列,且前体序列均能形成稳定的茎环结构;序列比对和 WebLogo 分析表明,除eu-miR172d-5p以外的其他7个成员的成熟体序列保守性较高,但前体序列的保守性均较低;进化分析表明,该家族成熟体进化高度保守,而前体的进化保守性较低;启动子分析表明,杜仲miR172家族启动子包含丰富的光反应原件及激素响应元件和胁迫响应元件,说明其可能调控杜仲的花器官形成和发育及逆境胁迫响应等过程;靶基因预测表明,杜仲miR172家族的靶基因数目较多,其靶基因参与杜仲的生长发育和逆境胁迫等过程,该小RNA家族成员主要调控AP2基因的表达。表明杜仲miR172家族成员在进化过程中既保守又有一定分化,其主要通过调控AP2基因的表达在杜仲生长发育过程中发挥重要调控作用。
中图分类号:
叶靖, 杨元玲, 史庆秋, 吴龙飞, 宋国涛. 杜仲miR172基因家族的生物信息学分析与功能预测[J]. 浙江农业学报, 2022, 34(1): 70-78.
YE Jing, YANG Yuanling, SHI Qingqiu, WU Longfei, SONG Guotao. Bioinformatics analysis and function prediction of miR172 gene family in Eucommia ulmoides[J]. Acta Agriculturae Zhejiangensis, 2022, 34(1): 70-78.
图1 杜仲 miR172 家族成员成熟体序列保守性分析 A,碱基序列保守性;B,序列比对。
Fig.1 Conservation analysis of mature sequences of miR172 family members from E. ulmoides A, Base sequence conservation; B, Multiple sequence alignment.
图2 植物miR172家族进化树 eu,杜仲;ath,拟南芥;nta,烟草;ptc,毛果杨;mdm,苹果;csi,柑橘;vvi,葡萄;ppe,碧桃。下同。
Fig.2 Phylogenetic tree of miR172 family in plant eu, Eucommia ulmoides; ath, Arabidopsis thaliana; nta, Nicotiana tabacum; ptc, Citrus trifoliata; mdm, Malus domestica; csi, Citrus reticulata; vvi, Vitis vinifera; ppe, Prunus persica. The same as below.
miRNA名称 miRNA name | 光照 Light | 干旱 Drought | 生物逆境 Biotic stress | 激素 Hormone | 分生组织表达 Meristem expression | 缺氧 Anoxic | 昼夜节律控制 Circadian control | 类黄酮生物合成 Flavonoid biosynthetic | 胚乳表达 Endosperm expression |
---|---|---|---|---|---|---|---|---|---|
eu-miR172a | GT1-motif, MRE, Box 4, TCT-motif, LAMP-element, AT1-motif, AE-box, | — | — | TCA-element | — | ARE | — | MBSI | GCN4_motif |
eu-miR172a-3p | Sp1, GT1-motif, Box 4, GA-motif, chs-CMA2a, chs-CMA1a, LAMP-element, | MBS | TC-rich repeats | — | CAT-box | ARE | circadian | — | — |
eu-miR172b-3p | Sp1, GT1-motif, Box 4, GA-motif, chs-CMA2a, chs-CMA1a, LAMP-element, | MBS | TC-rich repeats | — | CAT-box | ARE | circadian | — | — |
eu-miR172c | Box 4, GA-motif, chs-CMA1a, chs-CMA2a, LAMP-element, | MBS | TC-rich repeats | — | CAT-box | ARE | circadian | — | — |
eu-miR172c-3p | GT1-motif, MRE, Box 4, TCT-motif, LAMP-element, AT1-motif, AE-box, | MBS | — | TCA-element | — | ARE | — | MBSI | GCN4_motif |
eu-miR172d-5p | GT1-motif, Box 4, ATC-motif, GATA-motif, I-box, TCT-motif, AE-box | — | TC-rich repeats | SARE, TCA-element, AuxRR-core | — | — | — | — | — |
eu-miR172e-3p | GT1-motif, MRE, Box 4, I-box, TCT-motif, GATA-motif, AE-box | — | TC-rich repeats | SARE, TCA-element, AuxRR-core | — | — | — | — | — |
eu-miR172j | GT1-motif, MRE, Box 4, TCCC-motif, LAMP-element, TCT-motif | — | — | TCA-element | — | — | — | MBSI | GCN4_motif |
表1 杜仲miR172家族启动子区域主要顺式作用元件
Table 1 The main cis-regulatory elements in the promoter regions of eu-miR172 family
miRNA名称 miRNA name | 光照 Light | 干旱 Drought | 生物逆境 Biotic stress | 激素 Hormone | 分生组织表达 Meristem expression | 缺氧 Anoxic | 昼夜节律控制 Circadian control | 类黄酮生物合成 Flavonoid biosynthetic | 胚乳表达 Endosperm expression |
---|---|---|---|---|---|---|---|---|---|
eu-miR172a | GT1-motif, MRE, Box 4, TCT-motif, LAMP-element, AT1-motif, AE-box, | — | — | TCA-element | — | ARE | — | MBSI | GCN4_motif |
eu-miR172a-3p | Sp1, GT1-motif, Box 4, GA-motif, chs-CMA2a, chs-CMA1a, LAMP-element, | MBS | TC-rich repeats | — | CAT-box | ARE | circadian | — | — |
eu-miR172b-3p | Sp1, GT1-motif, Box 4, GA-motif, chs-CMA2a, chs-CMA1a, LAMP-element, | MBS | TC-rich repeats | — | CAT-box | ARE | circadian | — | — |
eu-miR172c | Box 4, GA-motif, chs-CMA1a, chs-CMA2a, LAMP-element, | MBS | TC-rich repeats | — | CAT-box | ARE | circadian | — | — |
eu-miR172c-3p | GT1-motif, MRE, Box 4, TCT-motif, LAMP-element, AT1-motif, AE-box, | MBS | — | TCA-element | — | ARE | — | MBSI | GCN4_motif |
eu-miR172d-5p | GT1-motif, Box 4, ATC-motif, GATA-motif, I-box, TCT-motif, AE-box | — | TC-rich repeats | SARE, TCA-element, AuxRR-core | — | — | — | — | — |
eu-miR172e-3p | GT1-motif, MRE, Box 4, I-box, TCT-motif, GATA-motif, AE-box | — | TC-rich repeats | SARE, TCA-element, AuxRR-core | — | — | — | — | — |
eu-miR172j | GT1-motif, MRE, Box 4, TCCC-motif, LAMP-element, TCT-motif | — | — | TCA-element | — | — | — | MBSI | GCN4_motif |
miRNA 名称 miRNA name | 靶基因ID Target ID | 功能注释 Functional annotation |
---|---|---|
eu-miR172e-3p, eu-miR172j, eu-miR172a, eu-miR172a-3p, eu-miR172b-3p, eu-miR172c, eu-miR172c-3p | c138631.graph_c1 | AP2转录因子Transcription factor APETALA2 (AP2) |
eu-miR172a, eu-miR172a-3p, eu-miR172b-3p, eu-miR172c, eu-miR172c-3p, eu-miR172j | c138848.graph_c4 | 泛素羧基末端水解酶12 Ubiquitin carboxyl-terminal hydrolase 12 (UBP12) |
eu-miR172e-3p, eu-miR172j | c135016.graph_c0 | tRNA (鸟嘌呤(9)-N1)-甲基转移酶 tRNA (guanine(9)-N1)-methyltransferase |
eu-miR172a, eu-miR172a-3p, eu-miR172b-3p, eu-miR172c, eu-miR172c-3p, eu-miR172e-3p | c131305.graph_c0 | rho GTPase激活蛋白7亚型X2 rho GTPase-activating protein 7 isoform X2 |
eu-miR172a, eu-miR172a-3p, eu-miR172b-3p, eu-miR172c, eu-miR172c-3p, eu-miR172e-3p, eu-miR172j | c134382.graph_c0 | 长链酰基辅酶A合成酶6,过氧化物酶 Long chain acyl-CoA synthetase 6, peroxisoma |
eu-miR172a, eu-miR172a-3p, eu-miR172b-3p, eu-miR172c, eu-miR172c-3p | c129479.graph_c0 | 乙酰氨基葡萄糖氨基转移酶活性 Acetylglucosaminyltransferase activity |
eu-miR172c-3p | c136450.graph_c1 | ATP绑定,锌离子绑定ATP binding, zinc ion binding |
eu-miR172d-5p | c124598.graph_c0 | RNA绑定,核糖体结构与生物发生RNA binding, structural constituent of ribosome |
eu-miR172e-3p, eu-miR172j | c124042.graph_c0 | 同源盒亮氨酸拉链蛋白REVOLUTA Homeobox-leucine zipper protein REVOLUTA |
eu-miR172j, eu-miR172j | c138622.graph_c0 | 抗病蛋白RPS6 Disease resistance protein RPS6 |
eu-miR172e-3p, eu-miR172j | c136215.graph_c5 | 转录调节因子ATRX Transcriptional regulator ATRX |
eu-miR172e-3p | c138257.graph_c2 | 磷脂:二酰基甘油酰基转移酶1 Phospholipid: diacylglycerol acyltransferase 1 |
eu-miR172j | c137029.graph_c0 | 钙调神经磷酸酶样磷酸酯酶 Calcineurin-like phosphoesterase |
eu-miR172j | c93630.graph_c0 | 假设蛋白K437DRAFT_294601 Hypothetical protein K437DRAFT_294601 |
表2 杜仲miR172家族成员的靶基因预测及功能注释
Table 2 Targets prediction and functional annotation of eu-miR172 gene family
miRNA 名称 miRNA name | 靶基因ID Target ID | 功能注释 Functional annotation |
---|---|---|
eu-miR172e-3p, eu-miR172j, eu-miR172a, eu-miR172a-3p, eu-miR172b-3p, eu-miR172c, eu-miR172c-3p | c138631.graph_c1 | AP2转录因子Transcription factor APETALA2 (AP2) |
eu-miR172a, eu-miR172a-3p, eu-miR172b-3p, eu-miR172c, eu-miR172c-3p, eu-miR172j | c138848.graph_c4 | 泛素羧基末端水解酶12 Ubiquitin carboxyl-terminal hydrolase 12 (UBP12) |
eu-miR172e-3p, eu-miR172j | c135016.graph_c0 | tRNA (鸟嘌呤(9)-N1)-甲基转移酶 tRNA (guanine(9)-N1)-methyltransferase |
eu-miR172a, eu-miR172a-3p, eu-miR172b-3p, eu-miR172c, eu-miR172c-3p, eu-miR172e-3p | c131305.graph_c0 | rho GTPase激活蛋白7亚型X2 rho GTPase-activating protein 7 isoform X2 |
eu-miR172a, eu-miR172a-3p, eu-miR172b-3p, eu-miR172c, eu-miR172c-3p, eu-miR172e-3p, eu-miR172j | c134382.graph_c0 | 长链酰基辅酶A合成酶6,过氧化物酶 Long chain acyl-CoA synthetase 6, peroxisoma |
eu-miR172a, eu-miR172a-3p, eu-miR172b-3p, eu-miR172c, eu-miR172c-3p | c129479.graph_c0 | 乙酰氨基葡萄糖氨基转移酶活性 Acetylglucosaminyltransferase activity |
eu-miR172c-3p | c136450.graph_c1 | ATP绑定,锌离子绑定ATP binding, zinc ion binding |
eu-miR172d-5p | c124598.graph_c0 | RNA绑定,核糖体结构与生物发生RNA binding, structural constituent of ribosome |
eu-miR172e-3p, eu-miR172j | c124042.graph_c0 | 同源盒亮氨酸拉链蛋白REVOLUTA Homeobox-leucine zipper protein REVOLUTA |
eu-miR172j, eu-miR172j | c138622.graph_c0 | 抗病蛋白RPS6 Disease resistance protein RPS6 |
eu-miR172e-3p, eu-miR172j | c136215.graph_c5 | 转录调节因子ATRX Transcriptional regulator ATRX |
eu-miR172e-3p | c138257.graph_c2 | 磷脂:二酰基甘油酰基转移酶1 Phospholipid: diacylglycerol acyltransferase 1 |
eu-miR172j | c137029.graph_c0 | 钙调神经磷酸酶样磷酸酯酶 Calcineurin-like phosphoesterase |
eu-miR172j | c93630.graph_c0 | 假设蛋白K437DRAFT_294601 Hypothetical protein K437DRAFT_294601 |
[1] |
JOVER-GIL S, CANDELA H, PONCE M R. Plant microRNAs and development[J]. The International Journal of Developmental Biology, 2005, 49(5/6): 733-744.
DOI URL |
[2] |
XU L, WANG Y, ZHAI L L, et al. Genome-wide identification and characterization of cadmium-responsive microRNAs and their target genes in radish (Raphanus sativus L.) roots[J]. Journal of Experimental Botany, 2013, 64(14): 4271-4287.
DOI URL |
[3] |
VOINNET O. Origin, biogenesis, and activity of plant MicroRNAs[J]. Cell, 2009, 136(4): 669-687.
DOI URL |
[4] |
WAHEED S, ZENG L H. The critical role of miRNAs in regulation of flowering time and flower development[J]. Genes, 2020, 11(3): 319.
DOI URL |
[5] |
LUO Y, GUO Z H, LI L. Evolutionary conservation of microRNA regulatory programs in plant flower development[J]. Developmental Biology, 2013, 380(2): 133-144.
DOI URL |
[6] |
SHAMIMUZZAMAN M, VODKIN L. Identification of soybean seed developmental stage-specific and tissue-specific miRNA targets by degradome sequencing[J]. BMC Genomics, 2012, 13: 310.
DOI URL |
[7] | 李栋栋. 脱落酸调控草莓果实成熟的分子机理和关键miRNA调控因子的探究[D]. 杭州: 浙江大学, 2019. |
LI D D. The mechanism of abscisic acid regulated strawberry fruit ripening and identification of key miRNAs involved[D]. Hangzhou: Zhejiang University, 2019. (in Chinese with English abstract) | |
[8] |
鲁海琴, 陈丽, 陈磊, 等. Bna-novel-miR311-HSC70-1模块调控甘蓝型油菜响应热胁迫的机制[J]. 作物学报, 2020, 46(10): 1474-1484.
DOI |
LU H Q, CHEN L, CHEN L, et al. Mechanism research of Bna-novel-miR311-HSC70-1 module regulating heat stress response in Brassica napus L[J]. Acta Agronomica Sinica, 2020, 46(10): 1474-1484.(in Chinese with English abstract) | |
[9] | 吴隽香, 刘益勇, 赵恩鹏, 等. 茄科蔬菜中miRNA响应低温胁迫研究进展[J]. 分子植物育种, 2021, 19(4): 1163-1168. |
WU J X, LIU Y Y, ZHAO E P, et al. Research progress on miRNA response to low temperature stress in Solanaceae vegetables[J]. Molecular Plant Breeding, 2021, 19(4): 1163-1168.(in Chinese with English abstract) | |
[10] | 孟淑君, 张雪海, 王琪月, 等. 水稻根系盐胁迫响应miRNA和tRF的鉴定[J]. 中国农业科学, 2020, 53(4): 669-682. |
MENG S J, ZHANG X H, WANG Q Y, et al. Identification of miRNAs and tRFs in response to salt stress in rice roots[J]. Scientia Agricultura Sinica, 2020, 53(4): 669-682.(in Chinese with English abstract) | |
[11] |
杨丽娟, 李世访, 卢美光. miRNA在植物病原调控方面的研究进展[J]. 生物技术通报, 2020, 36(1): 101-109.
DOI |
YANG L J, LI S F, LU M G. miRNA-mediated Regulation Involved in Plant Pathogen[J]. Biotechnology Bulletin, 2020, 36(1): 101-109.(in Chinese with English abstract) | |
[12] | 李昕晏, 崔杰, 李俊良, 等. miRNA调控植物抗逆机制的研究现状[J]. 江苏农业科学, 2019, 47(21): 63-66. |
LI X Y, CUI J, LI J L, et al. Research status of miRNA regulating plant stress resistance mechanism[J]. Jiangsu Agricultural Sciences, 2019, 47(21): 63-66.(in Chinese) | |
[13] |
王劲东, 周豫, 余佳雯, 等. miR172-AP2模块调控植物生长发育及逆境响应的研究进展[J]. 植物学报, 2020, 55(2): 205-215.
DOI |
WANG J D, ZHOU Y, YU J W, et al. Advances in the regulation of plant growth and development and stress response by miR172-AP2 module[J]. Chinese Bulletin of Botany, 2020, 55(2): 205-215.(in Chinese with English abstract) | |
[14] |
PARK W, LI J J, SONG R T, et al. CARPEL FACTORY, a dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana[J]. Current Biology, 2002, 12(17): 1484-1495.
DOI URL |
[15] |
GLAZIŃSKA P, ZIENKIEWICZ A, WOJCIECHOWSKI W, et al. The putative miR172 target gene InAPETALA2-like is involved in the photoperiodic flower induction of Ipomoea nil[J]. Journal of Plant Physiology, 2009, 166(16): 1801-1813.
DOI URL |
[16] | WANG L, SUN S Y, JIN J Y, et al. Coordinated regulation of vegetative and reproductive branching in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(50): 15504-15509. |
[17] | LAUTER N, KAMPANI A, CARLSON S, et al. microRNA172 down-regulates glossy15 to promote vegetative phase change in maize[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(26): 9412-9417. |
[18] |
WANG Y W, LI P C, CAO X F, et al. Identification and expression analysis of miRNAs from nitrogen-fixing soybean nodules[J]. Biochemical and Biophysical Research Communications, 2009, 378(4): 799-803.
DOI URL |
[19] |
MARTIN A, ADAM H, DÍAZ-MENDOZA M, et al. Graft-transmissible induction of potato tuberization by the microRNA miR172[J]. Development (Cambridge, England), 2009, 136(17): 2873-2881.
DOI URL |
[20] |
ZHOU L G, LIU Y H, LIU Z C, et al. Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa[J]. Journal of Experimental Botany, 2010, 61(15): 4157-4168.
DOI URL |
[21] | ZHOU X F, WANG G D, SUTOH K, et al. Identification of cold-inducible microRNAs in plants by transcriptome analysis[J]. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2008, 1779(11): 780-788. |
[22] |
HAN Y Y, ZHANG X, WANG W, et al. The suppression of WRKY44 by GIGANTEA-miR172 pathway is involved in drought response of Arabidopsis thaliana[J]. PLoS One, 2013, 8(11): e73541.
DOI URL |
[23] | HWANG E W, SHIN S J, PARK S C, et al. Identification of miR172 family members and their putative targets responding to drought stress in Solanum tuberosum[J]. Genes & Genomics, 2011, 33(2): 105-110. |
[24] | 张志翔. 中国林业出版社[M]. 北京: 中国林业出版社, 2008. |
[25] |
TAKENO S, BAMBA T, NAKAZAWA Y, et al. Quantification of trans-1, 4-polyisoprene in Eucommia ulmoides by Fourier transform infrared spectroscopy and pyrolysis-gas chromatography/mass spectrometry[J]. Journal of Bioscience and Bioengineering, 2008, 105(4): 355-359.
DOI URL |
[26] | 黎云昆. 一个树种的国家战略[J]. 中国林业产业, 2011(7): 18-22. |
LI Y K. National strategy for a tree species[J]. China Forestry Industry, 2011(7): 18-22.(in Chinese) | |
[27] | WANG L, DU H Y, WUYUN T N. Genome-wide identification of MicroRNAs and their targets in the leaves and fruits of Eucommia ulmoides using high-throughput sequencing[J]. Frontiers in Plant Science, 2016, 7: 1632. |
[28] |
徐子涵, 胡凤荣. miR172参与植物发育调控的研究进展[J]. 生物技术通报, 2020, 36(8): 173-184.
DOI |
XU Z H, HU F R. Research progress of miR172 in plant development and regulation[J]. Biotechnology Bulletin, 2020, 36(8): 173-184.(in Chinese with English abstract) | |
[29] | 刘炜婳, 林玉玲, 林争春, 等. 植物miR172家族成员进化与分子特性分析[J]. 热带作物学报, 2018, 39(3): 525-533. |
LIU W H, LIN Y L, LIN Z C, et al. Analysis of evolution and molecular characteristics of miR172 family members in plants[J]. Chinese Journal of Tropical Crops, 2018, 39(3): 525-533.(in Chinese with English abstract) | |
[30] | 李文静, 王杏茹, 刘涛, 等. 芥蓝miR172家族成员进化特性比较及时空表达分析[J]. 西北植物学报, 2018, 38(8): 1443-1450. |
LI W J, WANG X R, LIU T, et al. Evolutionary characteristics and analysis of miR172 family members in Chinese kale[J]. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(8): 1443-1450.(in Chinese with English abstract) |
[1] | 蔡方阳, 赵懿琛, 李义, 赵德刚. 杜仲ABC转运蛋白基因家族成员鉴定与分析[J]. 浙江农业学报, 2021, 33(9): 1581-1591. |
[2] | 陈雯, 张伟伟, 邵淑丽, 付学鹏, 黄鑫, 李铁. miR-423-5p在牛肌肉组织中表达及其靶基因预测[J]. 浙江农业学报, 2021, 33(5): 785-793. |
[3] | 王伟, 滚双宝, 王鹏飞, 黄晓宇, 谢开会, 雒瑞瑞, 高小莉, 张博, 闫尊强, 杨巧丽, 马艳萍. 猪miR-204组织表达与重要靶基因筛选[J]. 浙江农业学报, 2020, 32(9): 1564-1573. |
[4] | 陈小洁, 王其, 张欣悦, 丁婷. 杜仲内生细菌拮抗小麦赤霉病菌研究[J]. 浙江农业学报, 2019, 31(5): 766-776. |
[5] | 阮先乐, 王俊生, 刘红占, 陈良兵, 赵锦慧. 油菜miR169基因家族的生物信息学分析及靶基因预测[J]. 浙江农业学报, 2018, 30(8): 1273-1280. |
[6] | 董波, 安永帅, 戴爱玲, 李晓华, 杨小燕. 闽西地区猪流行性腹泻病毒M基因遗传进化及分子结构特征分析[J]. 浙江农业学报, 2018, 30(6): 939-945. |
[7] | 王丽丽,葛金涛,刘兴满,赵统利*. 葡萄miR164家族生物信息学分析及靶基因预测[J]. 浙江农业学报, 2016, 28(3): 441-. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 916
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 586
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||