浙江农业学报 ›› 2022, Vol. 34 ›› Issue (1): 79-88.DOI: 10.3969/j.issn.1004-1524.2022.01.10
收稿日期:2020-09-06
出版日期:2022-01-25
发布日期:2022-02-05
作者简介:* 芦建国,E-mail: ljgnj@sina.com通讯作者:
芦建国
基金资助:
ZHOU Beining(
), MAO Lian, HUA Zhuangzhuang, LU Jianguo*(
)
Received:2020-09-06
Online:2022-01-25
Published:2022-02-05
Contact:
LU Jianguo
摘要:
采用不同浓度的碱性盐(NaHCO3)溶液对3年生夏蜡梅实生苗进行处理,从形态生长和离子运输途径分析夏蜡梅对碱性盐胁迫的响应机制,为夏蜡梅的合理开发利用提供理论指导。结果表明:夏蜡梅苗高、地径相对生长量、生物量以及根冠比均随着盐碱胁迫的加重而不同程度的减少;随着碱性盐浓度的增加,各器官中 Na+含量均高于对照,其排序为:根>叶>茎;低浓度碱性盐胁迫下K+含量排序为:茎>根>叶,而高浓度胁迫下K+含量排序为:叶>茎>根;Ca2+含量排序为:叶>根>茎;夏蜡梅茎、叶中K+/Na+比值远大于根,叶中Ca2+/Na+比值远大于茎和根;夏蜡梅K+和Ca2+根系到茎部的选择运输能力排序:K+>Ca2+,从茎部到叶片排序为:Ca2+>K+,而从根系到叶片的选择运输能力基本相同。研究表明,碱性盐胁迫下,夏蜡梅的茎和叶通过吸收K+及Ca2+以阻止Na+的进入,将Na+贮存区隔在根系中以减轻盐离子对地上部分的伤害,叶片通过增加对矿质元素的吸收以维持离子平衡。
中图分类号:
周贝宁, 毛恋, 花壮壮, 芦建国. 碱性盐胁迫对夏蜡梅生长与离子分布的影响[J]. 浙江农业学报, 2022, 34(1): 79-88.
ZHOU Beining, MAO Lian, HUA Zhuangzhuang, LU Jianguo. Effects of alkaline salt stress on growth and ion allocation of Sinocalycanthus chinensis[J]. Acta Agriculturae Zhejiangensis, 2022, 34(1): 79-88.
图1 碱性盐胁迫对夏蜡梅苗高、地径相对生长量的影响 没有相同小写字母表示差异显著(P<0.05)。下同。
Fig.1 Effect of alkaline salt stress on relative height growth and diameter growth of Sinocalycanthus chinensis The bars with different lowercase letters indicated significant differences (P<0.05). The same as below.
| NaHCO3浓度 NaHCO3 concentration/% | 根重 Root weight/g | 茎重 Stem weight/g | 叶重 Leaf weight/g | 根冠比 Root shoot ratio | 总干重 Total dry weight/g |
|---|---|---|---|---|---|
| 0 | 6.744 0 a | 9.342 7 a | 7.440 0 a | 0.406 7 a | 23.526 7 a |
| 0.1 | 4.764 0 b | 9.086 7 a | 5.990 7 ab | 0.317 7 ab | 19.841 3 b |
| 0.2 | 4.922 3 b | 8.084 0 ab | 5.284 3 abc | 0.376 3 ab | 18.290 7 b |
| 0.3 | 5.271 7 b | 9.326 0 a | 5.398 7 abc | 0.366 3 ab | 19.996 3 b |
| 0.4 | 4.182 7 b | 7.178 3 bc | 3.855 7 bcd | 0.383 3 ab | 15.216 7 c |
| 0.5 | 2.473 7 c | 6.224 3 c | 3.606 3 cd | 0.250 0 b | 12.304 3 d |
| 0.6 | 2.604 0 c | 5.748 0 c | 3.011 3 d | 0.301 3 ab | 11.363 3 d |
| 0.7 | 1.945 7 c | 5.588 0 c | 2.376 3 d | 0.243 0 b | 9.910 0 d |
表1 碱性盐胁迫对夏蜡梅不同器官生物量的影响
Table 1 Effect of alkaline salt stress on biomass of different organs of Sinocalycanthus chinensis
| NaHCO3浓度 NaHCO3 concentration/% | 根重 Root weight/g | 茎重 Stem weight/g | 叶重 Leaf weight/g | 根冠比 Root shoot ratio | 总干重 Total dry weight/g |
|---|---|---|---|---|---|
| 0 | 6.744 0 a | 9.342 7 a | 7.440 0 a | 0.406 7 a | 23.526 7 a |
| 0.1 | 4.764 0 b | 9.086 7 a | 5.990 7 ab | 0.317 7 ab | 19.841 3 b |
| 0.2 | 4.922 3 b | 8.084 0 ab | 5.284 3 abc | 0.376 3 ab | 18.290 7 b |
| 0.3 | 5.271 7 b | 9.326 0 a | 5.398 7 abc | 0.366 3 ab | 19.996 3 b |
| 0.4 | 4.182 7 b | 7.178 3 bc | 3.855 7 bcd | 0.383 3 ab | 15.216 7 c |
| 0.5 | 2.473 7 c | 6.224 3 c | 3.606 3 cd | 0.250 0 b | 12.304 3 d |
| 0.6 | 2.604 0 c | 5.748 0 c | 3.011 3 d | 0.301 3 ab | 11.363 3 d |
| 0.7 | 1.945 7 c | 5.588 0 c | 2.376 3 d | 0.243 0 b | 9.910 0 d |
| NaHCO3浓度 NaHCO3 concentration/% | 主根长 Length of axial root/cm | 一级侧根数(d>2 mm) Number of primary lateralroots(d>2 mm) | 根体积 Root volume/cm3 |
|---|---|---|---|
| 0 | 17.333 3 a | 26.333 3 a | 3.333 3 a |
| 0.1 | 12.633 3 bc | 20.666 7 ab | 2.666 7 ab |
| 0.2 | 13.866 7 b | 16.666 7 bc | 2.400 0 abc |
| 0.3 | 12.166 7 bc | 14.666 7 bc | 3.333 3 a |
| 0.4 | 9.366 7 cd | 12.666 7 cd | 1.666 7 bc |
| 0.5 | 8.200 0 d | 13.666 7 cd | 1.733 3 bc |
| 0.6 | 8.333 3 d | 11.000 0 cd | 1.666 7 bc |
| 0.7 | 5.900 0 d | 8.000 0 d | 1.366 7 c |
表2 碱性盐胁迫对夏蜡梅根系形态的影响
Table 2 Effect of alkaline salt stress on root morphology of Sinocalycanthus chinensis
| NaHCO3浓度 NaHCO3 concentration/% | 主根长 Length of axial root/cm | 一级侧根数(d>2 mm) Number of primary lateralroots(d>2 mm) | 根体积 Root volume/cm3 |
|---|---|---|---|
| 0 | 17.333 3 a | 26.333 3 a | 3.333 3 a |
| 0.1 | 12.633 3 bc | 20.666 7 ab | 2.666 7 ab |
| 0.2 | 13.866 7 b | 16.666 7 bc | 2.400 0 abc |
| 0.3 | 12.166 7 bc | 14.666 7 bc | 3.333 3 a |
| 0.4 | 9.366 7 cd | 12.666 7 cd | 1.666 7 bc |
| 0.5 | 8.200 0 d | 13.666 7 cd | 1.733 3 bc |
| 0.6 | 8.333 3 d | 11.000 0 cd | 1.666 7 bc |
| 0.7 | 5.900 0 d | 8.000 0 d | 1.366 7 c |
| NaHCO3浓度 NaHCO3 concentration/% | 根 Root | 茎 Stem | 叶 Leaf | |||
|---|---|---|---|---|---|---|
| K+/Na+ | Ca2+/Na+ | K+/Na+ | Ca2+/Na+ | K+/Na+ | Ca2+/Na+ | |
| 0 | 5.60±0.68 a | 4.76±0.57 a | 27.24±1.90 ab | 28.34±2.59 a | 22.94±5.22 ab | 57.37±15.11 a |
| 0.1 | 2.97±0.05 b | 3.47±050 b | 30.53±5.20 a | 22.51±6.16 a | 22.98±4.38 ab | 47.22±3.35 ab |
| 0.2 | 2.01±0.22 c | 1.60±0.08 cd | 19.19±0.93 bc | 9.35±0.52 b | 23.22±4.66 ab | 35.44±4.79 abc |
| 0.3 | 1.24±0.18 cd | 1.87±0.40 cd | 21.89±2.13 bc | 10.76±0.24 b | 37.84±7.60 a | 52.59±10.57 ab |
| 0.4 | 1.23±0.25 cd | 2.63±0.42 bc | 17.61±1.62 cd | 10.87±0.19 b | 38.28±9.09 a | 39.11±3.00 ab |
| 0.5 | 1.04±0.38 cd | 1.49±0.26 cd | 14.13±2.94 cd | 8.17±0.89 b | 7.83±1.85 b | 13.63±3.43 c |
| 0.6 | 0.59±0.17 d | 1.11±0.13 d | 9.81±1.20 d | 6.34±1.07 b | 9.14±1.46 b | 13.04±0.99 c |
| 0.7 | 0.53±0.13 d | 0.80±0.10 d | 13.92±2.00 cd | 8.44±1.50 b | 20.14±6.98 ab | 31.77±4.58 bc |
表3 碱性盐胁迫下夏蜡梅不同器官K+/Na+、Ca2+/Na+比值变化及方差分析
Table 3 The change of K+/Na+, Ca2+/Na+ratio in different organs of Sinocalycanthus chinensis under alkaline salt stress and variance analysis
| NaHCO3浓度 NaHCO3 concentration/% | 根 Root | 茎 Stem | 叶 Leaf | |||
|---|---|---|---|---|---|---|
| K+/Na+ | Ca2+/Na+ | K+/Na+ | Ca2+/Na+ | K+/Na+ | Ca2+/Na+ | |
| 0 | 5.60±0.68 a | 4.76±0.57 a | 27.24±1.90 ab | 28.34±2.59 a | 22.94±5.22 ab | 57.37±15.11 a |
| 0.1 | 2.97±0.05 b | 3.47±050 b | 30.53±5.20 a | 22.51±6.16 a | 22.98±4.38 ab | 47.22±3.35 ab |
| 0.2 | 2.01±0.22 c | 1.60±0.08 cd | 19.19±0.93 bc | 9.35±0.52 b | 23.22±4.66 ab | 35.44±4.79 abc |
| 0.3 | 1.24±0.18 cd | 1.87±0.40 cd | 21.89±2.13 bc | 10.76±0.24 b | 37.84±7.60 a | 52.59±10.57 ab |
| 0.4 | 1.23±0.25 cd | 2.63±0.42 bc | 17.61±1.62 cd | 10.87±0.19 b | 38.28±9.09 a | 39.11±3.00 ab |
| 0.5 | 1.04±0.38 cd | 1.49±0.26 cd | 14.13±2.94 cd | 8.17±0.89 b | 7.83±1.85 b | 13.63±3.43 c |
| 0.6 | 0.59±0.17 d | 1.11±0.13 d | 9.81±1.20 d | 6.34±1.07 b | 9.14±1.46 b | 13.04±0.99 c |
| 0.7 | 0.53±0.13 d | 0.80±0.10 d | 13.92±2.00 cd | 8.44±1.50 b | 20.14±6.98 ab | 31.77±4.58 bc |
| NaHCO3浓度 NaHCO3 concentration/% | 根-茎 Root-stem | 茎-叶 Stem-leaf | 根-叶 Root-leaf | |||
|---|---|---|---|---|---|---|
| SK,Na | SCa,Na | SK,Na | SCa,Na | SK,Na | SCa,Na | |
| 0 | 4.95±0.41 c | 6.15±0.93 b | 0.83±0.17 bc | 2.03±0.51 cd | 3.98±0.53 d | 11.62±2.07 c |
| 0.1 | 10.24±1.58 bc | 6.72±1.73 ab | 0.84±0.29 bc | 2.47±0.74 bcd | 7.78±1.58 cd | 14.09±1.79 bc |
| 0.2 | 9.96±1.76 bc | 5.85±0.19 b | 1.19±0.18 bc | 3.76±0.30 abc | 12.50±4.17 bcd | 22.01±2.16 bc |
| 0.3 | 18.83±3.88 ab | 6.37±1.48 b | 1.71±0.27 ab | 4.87±0.95 a | 33.34±9.74 ab | 33.68±13.15 ab |
| 0.4 | 15.35±3.12 bc | 4.42±0.88 b | 2.26±0.60 a | 3.59±0.21 abc | 31.11±5.26 abc | 16.23±4.23 bc |
| 0.5 | 15.28±2.22 bc | 5.78±0.96 b | 0.55±0.04 c | 1.62±0.23 d | 8.41±1.37 bcd | 9.72±2.61 c |
| 0.6 | 20.82±7.52 ab | 6.16±1.91 b | 0.94±0.14 bc | 2.12±0.18 bcd | 19.14±7.69 abcd | 12.37±2.62 Bc |
| 0.7 | 28.96±6.62 a | 10.63±1.79 a | 1.38±0.30 abc | 3.94±0.78 ab | 43.58±16.15 a | 41.71±9.14 Aa |
表4 碱性盐胁迫下夏蜡梅不同器官离子选择运输的变化
Table 4 The change of ion selective transport in different organs of Sinocalycanthus chinensis under alkaline salt stress and the result of variance analysis
| NaHCO3浓度 NaHCO3 concentration/% | 根-茎 Root-stem | 茎-叶 Stem-leaf | 根-叶 Root-leaf | |||
|---|---|---|---|---|---|---|
| SK,Na | SCa,Na | SK,Na | SCa,Na | SK,Na | SCa,Na | |
| 0 | 4.95±0.41 c | 6.15±0.93 b | 0.83±0.17 bc | 2.03±0.51 cd | 3.98±0.53 d | 11.62±2.07 c |
| 0.1 | 10.24±1.58 bc | 6.72±1.73 ab | 0.84±0.29 bc | 2.47±0.74 bcd | 7.78±1.58 cd | 14.09±1.79 bc |
| 0.2 | 9.96±1.76 bc | 5.85±0.19 b | 1.19±0.18 bc | 3.76±0.30 abc | 12.50±4.17 bcd | 22.01±2.16 bc |
| 0.3 | 18.83±3.88 ab | 6.37±1.48 b | 1.71±0.27 ab | 4.87±0.95 a | 33.34±9.74 ab | 33.68±13.15 ab |
| 0.4 | 15.35±3.12 bc | 4.42±0.88 b | 2.26±0.60 a | 3.59±0.21 abc | 31.11±5.26 abc | 16.23±4.23 bc |
| 0.5 | 15.28±2.22 bc | 5.78±0.96 b | 0.55±0.04 c | 1.62±0.23 d | 8.41±1.37 bcd | 9.72±2.61 c |
| 0.6 | 20.82±7.52 ab | 6.16±1.91 b | 0.94±0.14 bc | 2.12±0.18 bcd | 19.14±7.69 abcd | 12.37±2.62 Bc |
| 0.7 | 28.96±6.62 a | 10.63±1.79 a | 1.38±0.30 abc | 3.94±0.78 ab | 43.58±16.15 a | 41.71±9.14 Aa |
| [1] | WANG J C, YAO L R, LI B C, et al. Comparative proteomic analysis of cultured suspension cells of the halophyte Halogeton glomeratus by iTRAQ provides insights into response mechanisms to salt stress[J]. Frontiers in Plant Science, 2016, 7: 110. |
| [2] | 毛恋, 芦建国, 江海燕. 植物响应盐碱胁迫的机制[J]. 分子植物育种, 2020, 18(10): 3441-3448. |
| MAO L, LU J G, JIANG H Y. Mechanisms of plant responses to salt-alkali stress[J]. Molecular Plant Breeding, 2020, 18(10): 3441-3448.(in Chinesewith English abstract) | |
| [3] |
MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59(1): 651-681.
DOI URL |
| [4] | 郑万钧, 章绍尧, 洪涛, 等. 中国经济树木新种及学名订正[J]. 林业科学, 1963(1): 1-14. |
| ZHENG W J, ZHANG S Y, HONG T, et al. New species and revision of scientific names of economic trees in China[J]. Scientia Silvae Sinicae, 1963(1): 1-14.(in Chinese) | |
| [5] | 张丽萍, 陈香波, 金荷仙. 夏蜡梅研究进展[J]. 浙江林业科技, 2009, 29(1): 65-70. |
| ZHANG L P, CHEN X B, JIN H X. Advances of researches on Calycanthus chinensis[J]. Journal of Zhejiang Forestry Science and Technology, 2009, 29(1): 65-70.(in Chinese with English abstract) | |
| [6] | 芦建国, 孙姿, 唐桂兰. 珍稀树种夏蜡梅研究进展[J]. 林业科技开发, 2015, 29(4): 1-6. |
| LU J G, SUN Z, TANG G L. Research progress on the rare species of Calycanthus chinensis[J]. China Forestry Science and Technology, 2015, 29(4): 1-6. | |
| [7] | 赵宏波, 周莉花, 郝日明, 等. 中国特有濒危植物夏蜡梅的交配系统[J]. 生态学报, 2011, 31(3): 602-610. |
| ZHAO H B, ZHOU L H, HAO R M, et al. Mating system of Sinocalycanthus chinensis(Cheng et S.Y.Chang), an endangered, indigenous species in China[J]. ActaEcologicaSinica, 2011, 31(3): 602-610.(in Chinese with English abstract) | |
| [8] | 纪凯婷. 夏蜡梅幼苗年生长规律和耐盐性研究[D]. 南京: 南京林业大学, 2014. |
| JI K T. Studies on annual growth rhythm and salt-tolerance of Sinocalycanthus chinensis seedlings[D]. Nanjing: Nanjing Forestry University, 2014. (in Chinese with English abstract) | |
| [9] | 章华婷. 盐胁迫对夏蜡梅幼苗生长的影响及机理研究[D]. 上海:上海师范大学, 2018. |
| ZHANG H T. Effects of salt stress on the growth and its mechanism of the endangered species Sinocalycanthus chinensis seedlings[D]. Shanghai: Shanghai Normal University, 2018. (in Chinese with English abstract) | |
| [10] | 陈丽飞. 遮荫及干旱胁迫对大花萱草生理特性的影响[D]. 长春: 吉林农业大学, 2007. |
| CHEN L F. The effects of shading and water stress on physiology characteristics of Hemerocallis middendorfii[D]. Changchun: Jilin Agricultural University, 2007. (in Chinese with English abstract) | |
| [11] | 郑必昭. 土壤分析技术指南[M]. 北京: 中国农业出版社, 2013. |
| [12] | 王志强, 吴翠云, 杨哲, 等. 盐碱胁迫对酸枣幼苗生长及生理生化特性的影响[J]. 干旱地区农业研究, 2018, 36(2): 153-160. |
| WANG Z Q, WU C Y, YANG Z, et al. Effect of saline-alkali stress on growth, physiological and biochemical characteristics of wild jujube seedlings[J]. Agricultural Research in the Arid Areas, 2018, 36(2): 153-160.(in Chinese with English abstract) | |
| [13] | 李峰, 谢永宏, 覃盈盈. 盐胁迫条件下湿地植物的适应策略[J]. 生态学杂志, 2009, 28(2): 314-321. |
| LI F, XIE Y H, QIN Y Y. Adaptive strategies of wetland plants in salt stress environment[J]. Chinese Journal of Ecology, 2009, 28(2): 314-321.(in Chinese with English abstract) | |
| [14] | 毛桂莲, 梁文裕, 王盛, 等. 碱性盐胁迫对宁夏枸杞生长、结构及光合参数的影响[J]. 干旱地区农业研究, 2017, 35(4): 236-242. |
| MAO G L, LIANG W Y, WANG S, et al. Effects of alkali stress on growth, structure and photosynthetic parameters of Lycium barbarum L.[J]. Agricultural Research in the Arid Areas, 2017, 35(4): 236-242.(in Chinese with English abstract) | |
| [15] | YEO A. Molecular biology of salt tolerance in the context of whole-plant physiology[J]. Journal of Experimental Botany, 1998, 49(323): 915-929. |
| [16] | 杜远鹏, 晋学娟, 郭淑华, 等. 不同盐碱类型胁迫对红地球/贝达葡萄植株离子分布的影响[J]. 应用生态学报, 2015, 26(6): 1801-1806. |
| DU Y P, JIN X J, GUO S H, et al. Effects of different salt and alkali stresses on ion distribution in Red globe/Beta grapevines[J]. Chinese Journal of Applied Ecology, 2015, 26(6): 1801-1806.(in Chinese with English abstract) | |
| [17] | 石婧, 刘东洋, 张凤华. 棉花幼苗对盐胁迫的生理响应与耐盐机理[J]. 浙江农业学报, 2020, 32(7): 1141-1148. |
| SHI J, LIU D Y, ZHANG F H. Physiological response and salt tolerance mechanism of cotton seedlings to salt stress[J]. Acta Agriculturae Zhejiangensis, 2020, 32(7): 1141-1148.(in Chinese with English abstract) | |
| [18] |
YANG C W, WANG P, LI C Y, et al. Comparison of effects of salt and alkali stresses on the growth and photosynjournal of wheat[J]. Photosynthetica, 2008, 46(1): 107-114.
DOI URL |
| [19] |
SUN M Z, JIA B W, CUI N, et al. Functional characterization of a Glycine soja Ca(2+)ATPase in salt-alkaline stress responses[J]. Plant Molecular Biology, 2016, 90(4/5): 419-434.
DOI URL |
| [20] | 颜路明, 郭祥泉. 盐碱胁迫对香樟幼苗离子吸收与分配的影响[J]. 土壤, 2015, 47(6): 1176-1180. |
| YAN L M, GUO X Q. Effects of saline-alkali stress on Ion absorption and distribution of camphor seedling[J]. Soils, 2015, 47(6): 1176-1180.(in Chinese with English abstract) | |
| [21] |
ABBAS Z K, MOBIN M. Comparative growth and physiological responses of two wheat (Triticum aestivum L.) cultivars differing in salt tolerance to salinity and cyclic drought stress[J]. Archives of Agronomy and Soil Science, 2016, 62(6): 745-758.
DOI URL |
| [22] |
郭瑞, 李峰, 周际, 等. 亚麻响应盐、碱胁迫的生理特征[J]. 植物生态学报, 2016, 40(1): 69-79.
DOI |
|
GUO R, LI F, ZHOU J, et al. Eco-physiological responses of linseed (Linum usitatissimum) to salt and alkali stresses[J]. Chinese Journal of Plant Ecology, 2016, 40(1): 69-79. (in Chinese with English abstract)
DOI URL |
|
| [23] |
WAKEEL A, FAROOQ M, QADIR M, et al. Potassium substitution by sodium in plants[J]. Critical Reviews in Plant Sciences, 2011, 30(4): 401-413.
DOI URL |
| [24] | 齐琪, 马书荣, 徐维东. 盐胁迫对植物生长的影响及耐盐生理机制研究进展[J]. 分子植物育种, 2020, 18(8): 2741-2746. |
| QI Q, MA S R, XU W D. Advances in the effects of salt stress on plant growth and physiological mechanisms of salt tolerance[J]. Molecular Plant Breeding, 2020, 18(8): 2741-2746.(in Chinese with English abstract) | |
| [25] | 陈展宇, 常雨婷, 邓川, 等. 盐碱生境对甜高粱幼苗抗氧化酶活性和生物量的影响[J]. 吉林农业大学学报, 2017, 39(1): 15-19. |
| CHEN Z Y, CHANG Y T, DENG C, et al. Effect of saline-alkali habitat on antioxidant enzyme activity and biomass of sweet sorghum seedlings[J]. Journal of Jilin Agricultural University, 2017, 39(1): 15-19.(in Chinese with English abstract) | |
| [26] |
TIAN X Y, HE M R, WANG Z L, et al. Application of nitric oxide and calcium nitrate enhances tolerance of wheat seedlings to salt stress[J]. Plant Growth Regulation, 2015, 77(3): 343-356.
DOI URL |
| [27] |
WANG X P, GENG S J, MA Y Q, et al. Growth, photosynjournal, solute accumulation, and ion balance of tomato plant under sodium-or potassium-salt stress and alkali stress[J]. Agronomy Journal, 2015, 107(2): 651-661.
DOI URL |
| [28] | 石德成, 盛艳敏, 赵可夫. 不同盐浓度的混合盐对羊草苗的胁迫效应[J]. 植物学报, 1998, 40(12): 3-5. |
| SHI D C, SHENG Y M, ZHAO K F. Stress effects of mixed salts with various salinities on the seedlings of aneuro Lepidium chinense[J]. Acta Botanica Sinica, 1998, 40(12): 3-5.(in Chinese with English abstract) | |
| [29] | 赵昕, 杨小菊, 石勇, 等. 盐胁迫下荒漠共生植物红砂与珍珠的根茎叶中离子吸收与分配特征[J]. 生态学报, 2014, 34(4): 963-972. |
| ZHAO X, YANG X J, SHI Y, et al. Ion absorption and distribution of symbiotic Reaumuria soongorica and Salsol apasserina seedlings under NaCl stress[J]. Acta Ecologica Sinica, 2014, 34(4): 963-972.(in Chinese with English abstract) | |
| [30] |
BLUMWALD E. Sodium transport and salt tolerance in plants[J]. Current Opinion in Cell Biology, 2000, 12(4): 431-434.
DOI URL |
| [31] | 周琦, 祝遵凌. NaCl胁迫对2种鹅耳枥幼苗生长及离子吸收、分配与运输的影响[J]. 北京林业大学学报, 2015, 37(12): 7-16. |
| ZHOU Q, ZHU Z L. Effects of NaCl stress on seedling growth and mineral ions uptake, distribution and transportation of two varieties of Carpinus L.[J]. Journal of Beijing Forestry University, 2015, 37(12): 7-16.(in Chinese with English abstract) | |
| [32] |
张科, 田长彦, 李春俭. 一年生盐生植物耐盐机制研究进展[J]. 植物生态学报, 2009, 33(6): 1220-1231.
DOI |
|
ZHANG K, TIAN C Y, LI C J. Review of progress of studies on salt-tolerance mechanisms of annual halophytes[J]. Chinese Journal of Plant Ecology, 2009, 33(6): 1220-1231.(in Chinese with English abstract)
DOI |
|
| [33] | 顾大形, 陈双林, 顾李俭, 等. 盐胁迫对四季竹细胞膜透性和矿质离子吸收、运输和分配的影响[J]. 生态学杂志, 2011, 30(7): 1417-1422. |
| GU D X, CHEN S L, GU L J, et al. Impacts of NaCl stress on Oligostachyum lubricum cell membrane permeability and mineral ion uptake, transportation, and allocation[J]. Chinese Journal of Ecology, 2011, 30(7): 1417-1422.(in Chinese with English abstract) |
| [1] | 张若楠, 门小明, 秦凯鹏, 王彬彬, 吴杰, 丁向彬, 徐子伟, 齐珂珂. 绿嘉黑猪的不同杂交组合生长性能、胴体品质、产肉性能和收益比较研究[J]. 浙江农业学报, 2025, 37(6): 1203-1211. |
| [2] | 邹俊燕, 王筠竹, 赵婉秋, 尹志浩, 杜建科, 孙崇波. 兰科植物原球茎和类原球茎研究进展[J]. 浙江农业学报, 2025, 37(6): 1372-1389. |
| [3] | 苏扬, 商小兰, 钱忠明, 吴林根, 黄佳琦, 庄海峰, 赵宇飞, 党洪阳, 徐立军. 腐熟剂与生物炭协同强化秸秆还田对土壤质量和水稻生长的影响[J]. 浙江农业学报, 2025, 37(5): 1139-1148. |
| [4] | 胡心柔, 王梅, 张雅芬, 蔡为明, 金群力. 非生物胁迫对灵芝生长发育及其响应机制的影响[J]. 浙江农业学报, 2025, 37(5): 1182-1190. |
| [5] | 任安琪, 黄依然, 万映伶, 刘燕. 生长素对芍药花茎表型和解剖结构的影响[J]. 浙江农业学报, 2025, 37(3): 591-602. |
| [6] | 任元龙, 马蓉, 王晓卓, 张雪艳. 叶面喷施褪黑素对甘蓝幼苗干旱胁迫的缓解作用[J]. 浙江农业学报, 2025, 37(2): 338-348. |
| [7] | 刘雅丽, 杨福生, 宋榜桂, 杜雪, 俞奇力, 陈菲, 陈国宏. 甜菊糖苷对黄羽肉鸡生长的影响[J]. 浙江农业学报, 2025, 37(10): 2049-2056. |
| [8] | 李文杨, 刘洋, 李勇, 邱雯雯, 王辉. 光质和补光时间对南方红豆杉生长发育的影响[J]. 浙江农业学报, 2025, 37(10): 2077-2086. |
| [9] | 陈宇眺, 闫川, 洪晓富, 宋佳谕. 分蘖期淹水对常规粳稻生长特性、产量形成与钾素吸收的影响[J]. 浙江农业学报, 2024, 36(9): 1990-1999. |
| [10] | 闵江艳, 唐卓磊, 杨雪, 黄小燕, 黄凯丰, 何佩云. 不同干旱-复水模式对苦荞生长与产量的影响[J]. 浙江农业学报, 2024, 36(9): 2000-2009. |
| [11] | 李紫薇, 张雅文, 宋斌, 侯凤香, 金俊杰, 赵燕, 卢立志. 温州红鸡生长曲线拟合与最佳上市周龄分析[J]. 浙江农业学报, 2024, 36(8): 1741-1752. |
| [12] | 高国际, 龙玲, 宋晓云, 李彦彤, 刘高强, 丁功涛. 亮斑扁角水虻幼虫代替豆粕对北京鸭生长发育和血清生化指标的影响[J]. 浙江农业学报, 2024, 36(8): 1764-1772. |
| [13] | 李飞, 苏甜甜, 苏康杰, 徐可, 马力, 刘子明. 螺旋藻和红球藻对斑马鱼生长性能、抗氧化酶、磷酸酶和热休克蛋白的影响[J]. 浙江农业学报, 2024, 36(7): 1511-1518. |
| [14] | 傅志强, 刘祯, 马春花, 温梦玲, 奚如春. 生物炭及炭基肥对土壤质量与植物生长的影响[J]. 浙江农业学报, 2024, 36(7): 1634-1645. |
| [15] | 朱学慧, 谢辉, 韩守安, 王敏, 白世践, 马云龙, 王艳蒙, 麦斯乐, 潘明启, 张雯. 两种植物生长调节剂对无核白鸡心葡萄果实品质的影响[J]. 浙江农业学报, 2024, 36(6): 1309-1319. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||