浙江农业学报 ›› 2024, Vol. 36 ›› Issue (9): 1990-1999.DOI: 10.3969/j.issn.1004-1524.20231009
收稿日期:
2023-08-24
出版日期:
2024-09-25
发布日期:
2024-09-30
作者简介:
宋佳谕,E-mail: 860014880@qq.com通讯作者:
宋佳谕,E-mail: 基金资助:
CHEN Yutiao(), YAN Chuan, HONG Xiaofu, SONG Jiayu(
)
Received:
2023-08-24
Online:
2024-09-25
Published:
2024-09-30
摘要:
为研究分蘖期淹水胁迫对常规粳稻生长特性、产量、产量构成因子、钾素吸收与钾肥利用率的影响,阐明钾素对常规粳稻分蘖期耐淹性的调控作用,以常规粳稻浙粳99为供试材料开展盆栽试验,设置CK(不淹水,对照)和ST(分蘖期用43 cm水层淹水15 d)2个主处理,在主处理下进一步设置K0(不施钾)和K180(K2O施用量180 kg·hm-2)2个钾肥处理。结果显示,相比于对照组,淹水组2个钾肥处理的平均存活率、单位面积有效穗数、单位面积颖花数分别显著(P<0.05)下降16.8百分点、71.1%和68.0%,退水后1 d和成熟期的植株钾素积累量分别显著下降53.8%和44.6%,淹水期间和退水后的钾素积累速率分别显著下降66.7%和45.0%,但植株钾含量、钾肥偏生产力、钾肥回收利用率、钾素收获指数无显著变化。结果表明,分蘖期淹水胁迫显著抑制常规粳稻的正常生长,但在本试验条件下对水稻产量和钾肥利用无显著不利影响,增施钾肥对提高常规粳稻分蘖期的耐淹性有一定的促进作用。
中图分类号:
陈宇眺, 闫川, 洪晓富, 宋佳谕. 分蘖期淹水对常规粳稻生长特性、产量形成与钾素吸收的影响[J]. 浙江农业学报, 2024, 36(9): 1990-1999.
CHEN Yutiao, YAN Chuan, HONG Xiaofu, SONG Jiayu. Effects of submergence at tillering stage on growth characters, yield formation and potassium uptake of japonica inbred rice[J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 1990-1999.
图1 不同处理下常规粳稻的存活率 “*”表示差异显著(P<0.05),“ns”表示差异不显著(P≥0.05)。S,淹水主处理;K,钾肥处理;S×K,淹水与钾肥处理的交互作用,下同。
Fig.1 Survival rate of japonica inbred rice under treatments “*” indicate significant difference at P<0.05; “ns” indicate that there is no significant difference at P≥0.05. S, Main treatment of submergence; K, Potassium treatment; S×K, Interaction of submergence and potassium treatment. The same as below.
处理 Treatment | 产量 Yield/ (g·m-2) | 有效穗数 Effective panicle number/m-2 | 每穗颖花数 Spikelets number per panicle | 单位面积颖花数 Spikelets number per unit area/m-2 | 千粒重 1 000-grain weight/g | 结实率 Seed setting rate/% |
---|---|---|---|---|---|---|
CK-K0 | 499.2±148.0 a | 404.8±11.7 a | 165.4±6.3 a | 67 036±3 877 a | 20.8±0.16 a | 36.2±11.7 a |
CK-K180 | 369.9±179.0 a | 440.5±31.6 a | 160.2±12.2 a | 70 735±5 896 a | 19.8±0.71 a | 24.2±11.2 a |
ST-K0 | 364.2±124.9 a | 214.3±44.7 b | 173.9±5.9 a | 36 768±6 893 b | 21.0±0.36 a | 44.5±7.9 a |
ST-K180 | 369.4± 24.4 a | 279.8±25.9 b | 159.9±19.4 a | 44 262±5 261 b | 20.5±0.70 a | 41.7±4.5 a |
表1 不同处理常规粳稻的产量和产量构成因子
Table 1 Yield and yield components of japonica inbred rice under treatments
处理 Treatment | 产量 Yield/ (g·m-2) | 有效穗数 Effective panicle number/m-2 | 每穗颖花数 Spikelets number per panicle | 单位面积颖花数 Spikelets number per unit area/m-2 | 千粒重 1 000-grain weight/g | 结实率 Seed setting rate/% |
---|---|---|---|---|---|---|
CK-K0 | 499.2±148.0 a | 404.8±11.7 a | 165.4±6.3 a | 67 036±3 877 a | 20.8±0.16 a | 36.2±11.7 a |
CK-K180 | 369.9±179.0 a | 440.5±31.6 a | 160.2±12.2 a | 70 735±5 896 a | 19.8±0.71 a | 24.2±11.2 a |
ST-K0 | 364.2±124.9 a | 214.3±44.7 b | 173.9±5.9 a | 36 768±6 893 b | 21.0±0.36 a | 44.5±7.9 a |
ST-K180 | 369.4± 24.4 a | 279.8±25.9 b | 159.9±19.4 a | 44 262±5 261 b | 20.5±0.70 a | 41.7±4.5 a |
图2 不同处理常规粳稻的分蘖数 同一取样时间柱上无相同字母的表示处理间差异显著(P<0.05)。BS,淹水前1 d;AS,退水后1 d;MS,成熟期。图3同。
Fig.2 Tiller number of japonica inbred rice under treatments Bars marked without the same letters indicate significant difference at P<0.05 within treatments at the same sampling time. BS, One day before submergence; AS, One day after de-submergence; MS, Maturity stage. The same as in Fig. 3.
图4 不同处理常规粳稻淹水期间茎秆的伸长率 柱上无相同字母的表示差异显著(P<0.05)。
Fig.4 Shoot elongation rate during submergence of japonica inbred rice under treatments Bars marked without the same letters indicate significant difference at P<0.05.
处理 Treatment | 不同时期的地上部干重 Aboveground dry weight at different period/(g·m-2) | 不同时期的生长速率 Growth rate at different period/(g·m-2·d-1) | |||
---|---|---|---|---|---|
BS | AS | MS | BS—AS | AS—MS | |
CK-K0 | 13.1±1.1 a | 96.2±22.2 a | 2 536.3±39.8 a | 5.5±1.5 a | 22.1±0.2 a |
CK-K180 | 19.1±2.3 a | 98.2±6.7 a | 2 563.7±245.3 a | 5.3±0.5 a | 22.4±2.1 a |
ST-K0 | 15.5±2.3 a | 39.4±7.1 b | 1 434.5±272.2 b | 1.6±0.4 b | 12.7±2.3 b |
ST-K180 | 15.5±1.1 a | 51.3±5.3 b | 1 707.1±169.0 b | 2.4±0.5 b | 15.0±1.5 b |
表2 不同处理常规粳稻的地上部干重和生长速率
Table 2 Above ground dry weight and growth rate of japonica inbred rice under treatments
处理 Treatment | 不同时期的地上部干重 Aboveground dry weight at different period/(g·m-2) | 不同时期的生长速率 Growth rate at different period/(g·m-2·d-1) | |||
---|---|---|---|---|---|
BS | AS | MS | BS—AS | AS—MS | |
CK-K0 | 13.1±1.1 a | 96.2±22.2 a | 2 536.3±39.8 a | 5.5±1.5 a | 22.1±0.2 a |
CK-K180 | 19.1±2.3 a | 98.2±6.7 a | 2 563.7±245.3 a | 5.3±0.5 a | 22.4±2.1 a |
ST-K0 | 15.5±2.3 a | 39.4±7.1 b | 1 434.5±272.2 b | 1.6±0.4 b | 12.7±2.3 b |
ST-K180 | 15.5±1.1 a | 51.3±5.3 b | 1 707.1±169.0 b | 2.4±0.5 b | 15.0±1.5 b |
处理 Treatment | 不同时期的钾含量Potassium content at different time | ||||
---|---|---|---|---|---|
BS | AS | MS | |||
秸秆Straw | 饱粒Filled grains | 秕粒+枝梗Unfilled grains+branch | |||
CK-K0 | 18.1±1.1 b | 22.4±0.9 b | 10.7±0.3 ab | 3.8±0.1 a | 6.9±0.3 a |
CK-K180 | 38.6±0.8 a | 26.4±1.9 a | 11.9±0.3 a | 4.2±0.2 a | 6.9±0.1 a |
ST-K0 | 17.2±0.3 b | 21.8±0.6 b | 10.0±0.6 b | 4.0±0.1 a | 6.4±0.4 a |
ST-K180 | 33.3±6.5 a | 26.9±0.6 a | 10.9±0.2 ab | 4.3±0.2 a | 6.6±0.3 a |
表3 不同处理各时期常规粳稻的植株钾含量
Table 3 Potassium content of japonica inbred rice under treatments at different period mg·g-1
处理 Treatment | 不同时期的钾含量Potassium content at different time | ||||
---|---|---|---|---|---|
BS | AS | MS | |||
秸秆Straw | 饱粒Filled grains | 秕粒+枝梗Unfilled grains+branch | |||
CK-K0 | 18.1±1.1 b | 22.4±0.9 b | 10.7±0.3 ab | 3.8±0.1 a | 6.9±0.3 a |
CK-K180 | 38.6±0.8 a | 26.4±1.9 a | 11.9±0.3 a | 4.2±0.2 a | 6.9±0.1 a |
ST-K0 | 17.2±0.3 b | 21.8±0.6 b | 10.0±0.6 b | 4.0±0.1 a | 6.4±0.4 a |
ST-K180 | 33.3±6.5 a | 26.9±0.6 a | 10.9±0.2 ab | 4.3±0.2 a | 6.6±0.3 a |
处理 Treatment | 不同时期的钾素积累量 Potassium accumulation at different period | ||
---|---|---|---|
BS | AS | MS | |
CK-K0 | 0.24±0.02 c | 1.66±0.86 ab | 22.5±0.7 a |
CK-K180 | 0.73±0.08 a | 1.94±0.79 a | 25.9±1.9 a |
ST-K0 | 0.27±0.06 c | 0.62±0.60 c | 11.4±1.8 b |
ST-K180 | 0.50±0.03 b | 1.04±0.64 bc | 15.4±1.9 b |
表4 不同处理各时期常规粳稻植株的钾素积累量
Table 4 Potassium accumulation of japonica inbred rice under treatments at different period g·m-2
处理 Treatment | 不同时期的钾素积累量 Potassium accumulation at different period | ||
---|---|---|---|
BS | AS | MS | |
CK-K0 | 0.24±0.02 c | 1.66±0.86 ab | 22.5±0.7 a |
CK-K180 | 0.73±0.08 a | 1.94±0.79 a | 25.9±1.9 a |
ST-K0 | 0.27±0.06 c | 0.62±0.60 c | 11.4±1.8 b |
ST-K180 | 0.50±0.03 b | 1.04±0.64 bc | 15.4±1.9 b |
处理 Treatment | 不同时期的钾素积累速率 Potassium accumulatin rate at different period | |
---|---|---|
BS—AS | AS—MS | |
CK-K0 | 0.09±0.03 a | 0.19±0.01 a |
CK-K180 | 0.08±0.01 a | 0.22±0.02 a |
ST-K0 | 0.02±0.01 b | 0.10±0.02 b |
ST-K180 | 0.04±0.01 ab | 0.13±0.02 b |
表5 不同处理各时期常规粳稻植株的钾素积累速率
Table 5 Potassium accumulation rate of japonica inbred rice under treatments at different period g·m-2·d-1
处理 Treatment | 不同时期的钾素积累速率 Potassium accumulatin rate at different period | |
---|---|---|
BS—AS | AS—MS | |
CK-K0 | 0.09±0.03 a | 0.19±0.01 a |
CK-K180 | 0.08±0.01 a | 0.22±0.02 a |
ST-K0 | 0.02±0.01 b | 0.10±0.02 b |
ST-K180 | 0.04±0.01 ab | 0.13±0.02 b |
图5 不同处理常规粳稻的钾肥偏生产力和钾肥回收利用率
Fig.5 Partial factor productivity of potassium fertilizer and potassium recovery use efficiency of japonica inbred rice under treatments
[1] | GONZAGA Z J C, CARANDANG J, SANCHEZ D L, et al. Mapping additional QTLs from FR13A to increase submergence tolerance in rice beyond SUB1[J]. Euphytica, 2016, 209(3): 627-636. |
[2] | 杨建莹, 霍治国, 吴立, 等. 西南地区水稻洪涝等级评价指标构建及风险分析[J]. 农业工程学报, 2015, 31(16): 135-144. |
YANG J Y, HUO Z G, WU L, et al. Evaluation level construction and analysis of risk on rice flood in Southwest China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(16): 135-144. (in Chinese with English abstract) | |
[3] | 晏军, 吴启侠, 朱建强, 等. 拔节期杂交中稻对淹水胁迫的响应及指示性指标探讨[J]. 中国稻米, 2017, 23(1): 17-25. |
YAN J, WU Q X, ZHU J Q, et al. Response of hybrid mid-season rice to flooding and discussion of indicative index at the jointing stage[J]. China Rice, 2017, 23(1): 17-25. (in Chinese)
DOI |
|
[4] | 刘建. 关键生育期淹水处理组胁迫对水稻生长的影响及应用研究[D]. 扬州: 扬州大学, 2019. |
LIU J. Research on effects of waterlogging on rice growth at critical growing stage and its application[D]. Yangzhou: Yangzhou University, 2019. (in Chinese with English abstract) | |
[5] | XIANG J, WU H, ZHANG Y P, et al. Transcriptomic analysis of gibberellin-and paclobutrazol-treated rice seedlings under submergence[J]. International Journal of Molecular Sciences, 2017, 18(10): 2225. |
[6] | SAKAGAMI J I, JOHO Y, ITO O. Contrasting physiological responses by cultivars of Oryza sativa and O. glaberrima to prolonged submergence[J]. Annals of Botany, 2009, 103(2): 171-180. |
[7] |
MITTLER R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science, 2002, 7(9): 405-410.
DOI PMID |
[8] | BIN RAHMAN A N M R, ZHANG J H. Flood and drought tolerance in rice: opposite butmaycoexist[J]. Food and Energy Security, 2016, 5(2): 76-88. |
[9] | 郝红威. 耐淹水稻种质资源的利用及淹水对水稻碳水化合物积累和转化的影响[D]. 武汉: 华中农业大学, 2012. |
HAO H W. The utilization of tolerant rice germplasm and the influence of submergence on carbohydrate accumulation and transformation[D]. Wuhan: Huazhong Agricultural University, 2012. (in Chinese with English abstract) | |
[10] | ELLA E S, DIONISIO-SESE M L, ISMAIL A M. Seed pre-treatment in rice reduces damage, enhances carbohydrate mobilization and improves emergence and seedling establishment under flooded conditions[J]. AoB PLANTS, 2011, 2011: plr007. |
[11] | ELLA E S, ISMAIL A M. Seedling nutrient status before submergence affects survival after submergence in rice[J]. Crop Science, 2006, 46(4): 1673-1681. |
[12] | ELLA E, DIONISIO-SESE M, ISMAIL A. Application of silica before sowing negatively affects growth and survival of rice following submergence[J]. Philippine Journal of Crop Science, 2011, 36: 1-11. |
[13] | GAUTAM P, LAL B, RAJA R, et al. Effect of nutrient application and water turbidity on submergence tolerance of rice (Oryza sativa)[J]. Annals of Applied Biology, 2015, 166(1): 90-104. |
[14] | BEHERA U K, SINGH S, SARANGI S K, et al. Post-submergence nitrogen fertilizer management for enhancing rainfed lowland rice productivity in eastern India[J]. International Journal of Bio-Resource and Stress Management, 2019, 10(4): 419-428. |
[15] | 薛欣欣. 水稻钾素营养特性及钾肥高效施用技术研究[D]. 武汉: 华中农业大学, 2016. |
XUE X X. Study on the characteristics of potassium nutrition and high-efficient application technologies of potassium fertilizer in rice[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese with English abstract) | |
[16] |
王峰, 叶静, 高敬文, 等. 外源增钾缓解铵胁迫下小麦根系受抑[J]. 浙江农业学报, 2020, 32(11): 1923-1933.
DOI |
WANG F, YE J, GAO J W, et al. Potassium alleviates inhibition of ammonium stress on wheat root[J]. Acta Agriculturae Zhejiangensis, 2020, 32(11): 1923-1933. (in Chinese with English abstract)
DOI |
|
[17] | YOUSRA M, AKHTAR J, SAQIB Z A, et al. Effect of potassium application on ammonium nutrition in maize (Zea mays L.) under salt stress[J]. Pakistan Journal of Agricultural Sciences, 2013, 50: 43-48. |
[18] | 谷贺贺, 李静, 张洋洋, 等. 钾肥与我国主要作物品质关系的整合分析[J]. 植物营养与肥料学报, 2020, 26(10): 1749-1757. |
GU H H, LI J, ZHANG Y Y, et al. Meta-analysis of the relationship between potassium fertilizer and the quality of main crops in China[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(10): 1749-1757. (in Chinese with English abstract) | |
[19] | GAUTAM P, LAL B, TRIPATHI R, et al. Beneficial effects of potassium application in improving submergence tolerance of rice (Oryza sativa L.)[J]. Environmental and Experimental Botany, 2016, 128: 18-30. |
[20] | 周玲红, 黄晶, 王伯仁, 等. 南方酸化红壤钾素淋溶对施石灰的响应[J]. 土壤学报, 2020, 57(2): 457-467. |
ZHOU L H, HUANG J, WANG B R, et al. Response of acidifing red soil to liming in potassium leaching in South China[J]. Acta Pedologica Sinica, 2020, 57(2): 457-467. (in Chinese with English abstract) | |
[21] | BRAR S K, MAHAL S S, BRAR A S, et al. Transplanting time and seedling age affect water productivity, rice yield and quality in north-west India[J]. Agricultural Water Management, 2012, 115: 217-222. |
[22] | 宁金花, 霍治国, 陆魁东, 等. 不同生育期淹涝胁迫对杂交稻形态特征和产量的影响[J]. 中国农业气象, 2013, 34(6): 678-684. |
NING J H, HUO Z G, LU K D, et al. Effects of water logging on morphological characteristics and yield of hybrid rice during growth stages[J]. Chinese Journal of Agrometeorology, 2013, 34(6): 678-684. (in Chinese with English abstract) | |
[23] | BAILEY-SERRES J, VOESENEK L A. Life in the balance: a signaling network controlling survival of flooding[J]. Current Opinion in Plant Biology, 2010, 13(5): 489-494. |
[24] | HUANG S H, JIA Y Y, LIU P, et al. Effect of ultrasonic seed treatment on rice seedlings under waterlogging stress[J]. Chilean Journal of Agricultural Research, 2020, 80(4): 561-571. |
[25] | KATO Y, COLLARD B C Y, SEPTININGSIH E M, et al. Physiological analyses of traits associated with tolerance of long-term partial submergence in rice[J]. AoB PLANTS, 2014, 6: plu058. |
[26] | DAS K K, PANDA D, SARKAR R K, et al. Submergence tolerance in relation to variable floodwater conditions in rice[J]. Environmental and Experimental Botany, 2009, 66(3): 425-434. |
[27] | ZHU G L, CHEN Y T, ELLA E S, et al. Mechanisms associated with tiller suppression under stagnant flooding in rice[J]. Journal of Agronomy and Crop Science, 2019, 205(2): 235-247. |
[28] | GAUTAM P, LAL B, RAJA R, et al. Effect of simulated flash flooding on rice and its recovery after flooding with nutrient management strategies[J]. Ecological Engineering, 2015, 77: 250-256. |
[29] | BANERJEE A, ROYCHOUDHURY A. Physiological and genetic basis of submergence tolerance in rice[M]// ROYCHOUDHURY A. Rice research for quality improvement:genomics and genetic engineering. Singapore: Springer, 2020: 399-406. |
[30] | 张晓龙, 张玉平, 高德才, 等. 不同施肥模式对旱地土壤氮磷钾径流流失的影响[J]. 水土保持学报, 2014, 28(6): 36-40. |
ZHANG X L, ZHANG Y P, GAO D C, et al. Effects of different kinds of fertilization modes on soil nitrogen, phosphorus and potassium runoff in dryland field[J]. Journal of Soil and Water Conservation, 2014, 28(6): 36-40. (in Chinese with English abstract) | |
[31] | 高杨, 宋付朋, 马富亮, 等. 模拟降雨条件下3种类型土壤氮磷钾养分流失量的比较[J]. 水土保持学报, 2011, 25(2): 15-18. |
GAO Y, SONG F P, MA F L, et al. Comparison of loss amount of nitrogen, phosphorus and potassium in three types of soil under simulated rainfall[J]. Journal of Soil and Water Conservation, 2011, 25(2): 15-18. (in Chinese with English abstract) | |
[32] | ZHEN F X, LIU Y J, ALI I, et al. Short-term heat stress at booting stage inhibited nitrogen remobilization to grain in rice[J]. Journal of Agriculture and Food Research, 2020, 2: 100066. |
[33] | 钟楚. 水分胁迫下水稻氮素利用及其适应机理[D]. 武汉: 华中农业大学, 2018. |
ZHONG C. Nitrogen utilization and its adaptive mechanism of rice (Oryza Sativa L.) under water stress[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese with English abstract) | |
[34] | 鲁艳红, 廖育林, 聂军, 等. 五年定位试验钾肥用量对双季稻产量和施钾效应的影响[J]. 植物营养与肥料学报, 2014, 20(3): 598-605. |
LU Y H, LIAO Y L, NIE J, et al. Effect of potassium rates on rice yields and potassium application efficiency in double-rice cropping system under a 5-year located experiment[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(3): 598-605. (in Chinese with English abstract) | |
[35] | 郭鑫年, 蒙静, 田旭东, 等. 钾肥用量对水稻钾素分配累积、钾肥利用效率及平衡的影响[J]. 中国土壤与肥料, 2019(6): 154-160. |
GUO X N, MENG J, TIAN X D, et al. Effects of potassium application on the distribution, utilization efficiency of potassium in rice and soil potassium balance[J]. Soil and Fertilizer Sciences in China, 2019(6): 154-160. (in Chinese with English abstract) | |
[36] | 魏媛媛, 杜春颖, 刘梦红, 等. 施钾量及配比对寒地水稻干物质积累量及产量的影响[J]. 北方水稻, 2019, 49(5): 5-12. |
WEI Y Y, DU C Y, LIU M H, et al. Effects of potassium application and ratio on dry matter accumulation and yield of rice in cold region[J]. North Rice, 2019, 49(5): 5-12. (in Chinese with English abstract) | |
[37] | 陈琛, 舒小伟, 徐杰姣, 等. 不同库容群体水稻磷、钾养分吸收利用的基本特点[J]. 扬州大学学报(农业与生命科学版), 2020, 41(4): 9-15. |
CHEN C, SHU X W, XU J J, et al. Fundamental features of P, K absorption and utilization in rice populations with different sink capacity[J]. Journal of Yangzhou University(Agricultural and Life Science Edition), 2020, 41(4): 9-15. (in Chinese with English abstract) | |
[38] | HUANG L Y, YANG D S, LI X X, et al. Coordination of high grain yield and high nitrogen use efficiency through large sink size and high post-heading source capacity in rice[J]. Field Crops Research, 2019, 233: 49-58. |
[1] | 王铁, 黄胜佳, 杨友婷, 谭丽平, 邱霞, 董甜甜, 黎思辰, 孙国超, 熊博, 王均, 汪志辉. 不同中间砧对媛小春柑橘生长与光合特性的影响[J]. 浙江农业学报, 2021, 33(3): 413-421. |
[2] | 陈贵, 陈梅, 张红梅, 王士磊, 施卫明, 程旺大. 籼粳杂交稻与常规粳稻产量、干物质氮素累积转运及氮素利用差异研究[J]. 浙江农业学报, 2018, 30(12): 1992-2000. |
[3] | 樊霆, 伍玲丽, 李云云, 刘亚楼, 刘如, 叶文玲, 陈海燕, 潘丹丹. 一株极端耐盐菌的分离鉴定及特性[J]. 浙江农业学报, 2018, 30(10): 1722-1728. |
[4] | 张英虎,陈和,陈健,陶红,乔海龙,臧慧,栾海业,沈会权*. 2007—2014年江苏沿海地区大麦品种(系)产量与产量构成分析[J]. 浙江农业学报, 2015, 27(9): 1510-. |
[5] | 李向龙,张晓东,张中宝,张立全,吴忠义*. 密度对不同玉米杂交组合穗部性状及产量构成因素的影响[J]. 浙江农业学报, 2015, 27(5): 713-. |
[6] | 李小华1,2,叶胜海2,赵小燕2,3,姚坚4,刘继云2,陈蕾2,翟荣荣2,金庆生2,张小明2,*. 浙江省46个粳稻新品种SSR指纹图谱构建及遗传多样性分析 [J]. 浙江农业学报, 2014, 26(5): 1158-. |
[7] | 郑春芳;陈琛;彭益全;冀德伟;於俊琦;陈少波;谢起浪;曾国权;*;刘伟成;*. 海水养殖废水灌溉对碱蓬和海蓬子生长和品质的影响[J]. , 2012, 24(4): 0-669. |
[8] | 徐春梅;周昌南;郑根深;王丹英;胡培松;章秀福;*. 施氮量和栽培密度对超级稻‘中嘉早17’物质生产特性的影响[J]. , 2010, 22(4): 0-508. |
[9] | 王丹英;章秀福;*;周昌南;郑根生;张根贤;徐锡虎;金炳华;张文松;陈宏伟;李瑾. 浙江省水稻产量构成差异调查与合理种植密度分析[J]. , 2010, 22(3): 0-336. |
[10] | 王志刚;王 磊;廖西元*. 我国中籼稻区试产量构成的特征分析[J]. , 2009, 21(4): 0-349. |
[11] | 王亚琴;蒋永清;徐宁迎;董路;章哲明;郑会超. 不同牧草日粮对浙东白鹅肉鹅的饲喂效果[J]. , 2008, 20(3): 0-171. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||