浙江农业学报 ›› 2025, Vol. 37 ›› Issue (5): 1182-1190.DOI: 10.3969/j.issn.1004-1524.20231365
• 综述 • 上一篇
胡心柔1,2(), 王梅2, 张雅芬1, 蔡为明2,*(
), 金群力2,*(
)
收稿日期:
2024-01-02
出版日期:
2025-05-25
发布日期:
2025-06-11
作者简介:
胡心柔(1998—),女,浙江金华人,硕士,研究方向为药食同源功能因子的研究。E-mail:1325804057@qq.com
通讯作者:
*蔡为明,E-mail:caiwm527@126.com;基金资助:
HU Xinrou1,2(), WANG Mei2, ZHANG Yafen1, CAI Weiming2,*(
), JIN Qunli2,*(
)
Received:
2024-01-02
Online:
2025-05-25
Published:
2025-06-11
摘要:
在灵芝生长发育过程中,会受到高温、干旱、光照、金属污染等非生物胁迫。非生物胁迫会影响灵芝生长速度,改变灵芝的表型,蛋白质、磷脂酸等调节渗透物质含量发生变化,调节抗氧化系统清除活性氧(ROS),刺激合成灵芝三萜、灵芝多糖等次生代谢物来缓解胁迫对灵芝造成的破坏;灵芝会通过ROS等信号分子,调节相应基因和生理反应来响应胁迫。本文从温度胁迫、水分胁迫、光质胁迫和金属胁迫4个方面进行梳理,分析非生物胁迫对灵芝形态特征、生理生化、代谢物和分子响应的影响,旨在为灵芝抗逆机制研究、选育抗性和高产活性成分品种,以及高效栽培提供理论参考。
中图分类号:
胡心柔, 王梅, 张雅芬, 蔡为明, 金群力. 非生物胁迫对灵芝生长发育及其响应机制的影响[J]. 浙江农业学报, 2025, 37(5): 1182-1190.
HU Xinrou, WANG Mei, ZHANG Yafen, CAI Weiming, JIN Qunli. Effect of abiotic stress on growth development and response mechanism of Ganoderma[J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1182-1190.
[1] | CAO Y, WU S H, DAI Y C. Species clarification of the prize medicinal Ganoderma mushroom “Lingzhi”[J]. Fungal Diversity, 2012, 56(1): 49-62. |
[2] | WASSER S P. Reishi or Ling Zhi (Ganoderma lucidum) in encyclopedia of dietary supplements[EB/OL]. New York: Taylor and Francis, (2013-04-15) [2024-01-02], 603-622. http://dx.doi.org/10.1081/E-EDS-120022119. |
[3] | REN Z L, DING H, ZHOU M, et al. Ganoderma lucidum modulates inflammatory responses following 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) administration in mice[J]. Nutrients, 2022, 14(18): 3872. |
[4] | 中华人民共和国国家卫生健康委员会, 国家市场监督管理总局. 关于党参等9种新增按照传统既是食品又是中药材的物质公告[EB/OL]. (2023-11-09) [2024-01-02]. . |
[5] | GALAPPATHTHI M C A, PATABENDIGE N M, PREMARATHNE B M, et al. A review of Ganoderma triterpenoids and their bioactivities[J]. Biomolecules, 2022, 13(1): 24. |
[6] | WANG G, ZHAO J, LIU J W, et al. Enhancement of IL-2 and IFN-γ expression and NK cells activity involved in the anti-tumor effect of ganoderic acid Me in vivo[J]. International Immunopharmacology, 2007, 7(6): 864-870. |
[7] | YUAN H, XU Y, LUO Y, et al. Ganoderic acid D prevents oxidative stress-induced senescence by targeting 14-3-3ε to activate CaM/CaMKII/NRF2 signaling pathway in mesenchymal stem cells[J]. Aging Cell, 2022, 21(9): e13686. |
[8] | XU J, XIAO C M, XU H S, et al. Anti-inflammatory effects of Ganoderma lucidum sterols via attenuation of the p38 MAPK and NF-κB pathways in LPS-induced RAW 264.7 macrophages[J]. Food and Chemical Toxicology, 2021, 150: 112073. |
[9] | LI L, LI R C, SONG Y H, et al. Effects of a Ganoderma atrum polysaccharide against pancreatic damage in streptozotocin-induced diabetic mice[J]. Food & Function, 2019, 10(11): 7227-7238. |
[10] | ZHU K X, NIE S P, LI C, et al. A newly identified polysaccharide from Ganoderma atrum attenuates hyperglycemia and hyperlipidemia[J]. International Journal of Biological Macromolecules, 2013, 57: 142-150. |
[11] | 何嘉烽, 吴小勇, 尹辉, 等. 水溶性灵芝粉的制备及其免疫调节活性评价[J]. 广东药科大学学报, 2018, 34(3): 288-292. |
HE J F, WU X Y, YIN H, et al. Preparation of water-soluble Ganoderma lucidum powder and its immunomodulatory effect[J]. Journal of Guangdong Pharmaceutical University, 2018, 34(3): 288-292. (in Chinese with English abstract) | |
[12] | GUO W L, CAO Y J, YOU S Z, et al. Ganoderic acids-rich ethanol extract from Ganoderma lucidum protects against alcoholic liver injury and modulates intestinal microbiota in mice with excessive alcohol intake[J]. Current Research in Food Science, 2022, 5: 515-530. |
[13] | 中国食用菌协会公共服务平台[EB/OL]. [2024-01-02]. http://bigdata.cefa.org.cn/output.html. |
[14] | 张力元. 灵芝大健康产业新型消费风生水起[EB/OL]. (2023-06-07) [2024-01-02]. http://www.jjckb.cn/2023-06/07/c_1310725249.htm. |
[15] | ZHU J K. Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(2): 313-324. |
[16] | ZHANG H M, ZHU J H, GONG Z Z, et al. Abiotic stress responses in plants[J]. Nature Reviews Genetics, 2022, 23(2): 104-119. |
[17] | ZHANG X, REN A, LI M J, et al. Heat stress modulates Mycelium growth, heat shock protein expression, ganoderic acid biosynthesis, and hyphal branching of Ganoderma lucidum via cytosolic Ca2+[J]. Applied and Environmental Microbiology, 2016, 82(14): 4112-4125. |
[18] | 张会平, 郭盼盼. 灵芝生长气候环境的人工生态设计[J]. 中国食用菌, 2020, 39(9): 233-235. |
ZHANG H P, GUO P P. Artificial ecological design of Ganoderma lucidum growth climate environment[J]. Edible Fungi of China, 2020, 39(9): 233-235. (in Chinese with English abstract) | |
[19] | 曾绩. 灵芝生物学特性及仿野生栽培技术[J]. 农村科技, 2018(2): 63-64. |
ZENG J. Biological characteristics of Ganoderma lucidum and its wild-like cultivation techniques[J]. Rural Science & Technology, 2018(2): 63-64. (in Chinese) | |
[20] | CHEN Z L, GALLI M, GALLAVOTTI A. Mechanisms of temperature-regulated growth and thermotolerance in crop species[J]. Current Opinion in Plant Biology, 2022, 65: 102134. |
[21] | VERGHESE J, ABRAMS J, WANG Y Y, et al. Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system[J]. Microbiology and Molecular Biology Reviews, 2012, 76(2): 115-158. |
[22] | MITTLER R, FINKA A, GOLOUBINOFF P. How do plants feel the heat?[J]. Trends in Biochemical Sciences, 2012, 37(3): 118-125. |
[23] | LIU Y N, ZHANG T J, LU X X, et al. Membrane fluidity is involved in the regulation of heat stress induced secondary metabolism in Ganoderma lucidum[J]. Environmental Microbiology, 2017, 19(4): 1653-1668. |
[24] | 张雪. 热胁迫通过胞内Ca2+和ROS调控灵芝的HSP表达、菌丝生长和次生代谢[D]. 南京: 南京农业大学, 2016. |
ZHANG X. Heat stress regulates HSP expression, mycelium growth and secondary metabolism of Ganoderma lucidum through intracellular Ca2+ and ROS[D]. Nanjing: Nanjing Agricultural University, 2016. (in Chinese with English abstract) | |
[25] | LIU R, ZHANG X, REN A, et al. Heat stress-induced reactive oxygen species participate in the regulation of HSP expression, hyphal branching and ganoderic acid biosynthesis in Ganoderma lucidum[J]. Microbiological Research, 2018, 209: 43-54. |
[26] | LIU Y N, LU X X, CHEN D, et al. Phospholipase D and phosphatidic acid mediate heat stress induced secondary metabolism in Ganoderma lucidum[J]. Environmental Microbiology, 2017, 19(11): 4657-4669. |
[27] | HAN X F, WANG Z, SHI L Y, et al. Phospholipase D and phosphatidic acid mediate regulation in the biosynthesis of spermidine and ganoderic acids by activating GlMyb in Ganoderma lucidum under heat stress[J]. Environmental Microbiology, 2022, 24(11): 5345-5361. |
[28] | REN A, SHI L, ZHU J, et al. Shedding light on the mechanisms underlying the environmental regulation of secondary metabolite ganoderic acid in Ganoderma lucidum using physiological and genetic methods[J]. Fungal Genetics and Biology, 2019, 128: 43-48. |
[29] | ZHANG Y, WANG R R, WANG X D, et al. Nitric oxide regulates seed germination by integrating multiple signalling pathways[J]. International Journal of Molecular Sciences, 2023, 24(10): 9052. |
[30] | LIU R, SHI L, ZHU T, et al. Cross talk between nitric oxide and calcium-calmodulin regulates ganoderic acid biosynthesis in Ganoderma lucidum under heat stress[J]. Applied and Environmental Microbiology, 2018, 84(10): e00043-18. |
[31] | FOUQUEREL E, SOBOL R W. ARTD1 (PARP1) activation and NAD+ in DNA repair and cell death[J]. DNA Repair, 2014, 23: 27-32. |
[32] | LIU R, ZHU T, YANG T, et al. Nitric oxide regulates ganoderic acid biosynthesis by the S-nitrosylation of aconitase under heat stress in Ganoderma lucidum[J]. Environmental Microbiology, 2021, 23(2): 682-695. |
[33] | JAHNOVÁ J, LUHOVÁ L, PETŘIVALSKÝ M. S-nitrosoglutathione reductase-the master regulator of protein S-nitrosation in plant NO signaling[J]. Plants, 2019, 8(2): 48. |
[34] | VENTIMIGLIA L, MUTUS B. The physiological implications of S-nitrosoglutathione reductase (GSNOR) activity mediating NO signalling in plant root structures[J]. Antioxidants, 2020, 9(12): 1206. |
[35] | LIU R, ZHU T, CHEN X, et al. GSNOR regulates ganoderic acid content in Ganoderma lucidum under heat stress through S-nitrosylation of catalase[J]. Communications Biology, 2022, 5(1): 32. |
[36] | TIAN J L, REN A, WANG T, et al. Hydrogen sulfide, a novel small molecule signalling agent, participates in the regulation of ganoderic acids biosynthesis induced by heat stress in Ganoderma lucidum[J]. Fungal Genetics and Biology, 2019, 130: 19-30. |
[37] | HU Y R, XU W Z, HU S S, et al. Glsnf1-mediated metabolic rearrangement participates in coping with heat stress and influencing secondary metabolism in Ganoderma lucidum[J]. Free Radical Biology and Medicine, 2020, 147: 220-230. |
[38] | WAHAB A, ABDI G, SALEEM M H, et al. Plants' physio-biochemical and phyto-hormonal responses to alleviate the adverse effects of drought stress: a comprehensive review[J]. Plants, 2022, 11(13): 1620. |
[39] | 陈柯岐, 邓星光, 林宏辉. 植物响应非生物胁迫的分子机制[J]. 生物学杂志, 2021, 38(6): 1-8. |
CHEN K Q, DENG X G, LIN H H. Molecular mechanisms of plant in response to abiotic stress[J]. Journal of Biology, 2021, 38(6): 1-8. (in Chinese with English abstract) | |
[40] | 贺世红. 水分对灵芝菌丝体和子实体的影响试验[J]. 食用菌, 2000, 22(5): 9. |
HE S H. Effect of moisture on mycelium and fruiting body of Ganoderma lucidum[J]. Edible Fungi, 2000, 22(5): 9. (in Chinese) | |
[41] | 李晶晶. 灵芝室内人工栽培方法的研究[D]. 武汉: 湖北中医学院, 2004. |
LI J J. Study on indoor artificial cultivation methods of Ganoderma lucidum[D]. Wuhan: Hubei University of Chinese Medicine, 2004. (in Chinese with English abstract) | |
[42] | ZHU Q Y, REN A, DING J, et al. Cross talk between GlAQP and NOX modulates the effects of ROS balance on ganoderic acid biosynthesis of Ganoderma lucidum under water stress[J]. Microbiology Spectrum, 2022, 10(6): e0129722. |
[43] | LI J, BAN L P, WEN H Y, et al. An aquaporin protein is associated with drought stress tolerance[J]. Biochemical and Biophysical Research Communications, 2015, 459(2): 208-213. |
[44] | 洪沛, 舒黎黎, 李天来, 等. 光环境对食用菌生长发育的影响[J]. 食用菌学报, 2021, 28(4): 108-115. |
HONG P, SHU L L, LI T L, et al. Effect of light environment on growth and development of edible fungi[J]. Acta Edulis Fungi, 2021, 28(4): 108-115. (in Chinese with English abstract) | |
[45] | ZHANG W, TANG Y J. A novel three-stage light irradiation strategy in the submerged fermentation of medicinal mushroom Ganoderma lucidum for the efficient production of ganoderic acid and Ganoderma polysaccharides[J]. Biotechnology Progress, 2008, 24(6): 1249-1261. |
[46] | 梅锡玲. 光质对灵芝生长、内源植物激素及三萜酸影响研究[D]. 北京: 北京协和医学院, 2014. |
MEI X L. Effects of light quality on growth, endogenous phytohormones and triterpenoid acids of Ganoderma lucidum[D]. Beijing: Peking Union Medical College, 2014. (in Chinese with English abstract) | |
[47] | 余吴梦晓, 张薇薇, 陈向东, 等. 蓝光对灵芝子实体生长和糖代谢相关酶的影响[J]. 时珍国医国药, 2017, 28(11): 2741-2744. |
YU W M X, ZHANG W W, CHEN X D, et al. Effects of blue light on fruiting body growth and glycometabolism-related enzymes of Ganoderma lucidum[J]. Lishizhen Medicine and Materia Medica Research, 2017, 28(11): 2741-2744. (in Chinese with English abstract) | |
[48] | 张业尼, 钱磊, 刘逸寒, 等. 光照对灵芝液体发酵胞外多糖合成的影响[J]. 北方园艺, 2019(2): 154-159. |
ZHANG Y N, QIAN L, LIU Y H, et al. Effect of light on exopolysaccharide synthesis in liquid fermentation of Ganoderma lucidum[J]. Northern Horticulture, 2019(2): 154-159. (in Chinese with English abstract) | |
[49] | 郝俊江, 陈向东, 兰进. 光质对灵芝生长及抗氧化酶系统的影响[J]. 中草药, 2011, 42(12): 2529-2534. |
HAO J J, CHEN X D, LAN J. Effect of light on growth in Ganoderma lucidum and anti-oxidative enzyme activities[J]. Chinese Traditional and Herbal Drugs, 2011, 42(12): 2529-2534. (in Chinese with English abstract) | |
[50] | 孙立晨, 管仁国, 黄依妮. 不同光质对灵芝丙二醛含量的影响[J]. 智库时代, 2018(45): 186-187. |
SUN L C, GUAN R G, HUANG Y N. Effects of different light quality on malondialdehyde content of Ganoderma lucidum[J]. Think Tank Era, 2018(45): 186-187. (in Chinese) | |
[51] | 金鑫, 张璐, 吴鹏, 等. 遮光处理对盆景灵芝生长发育和酶活性的影响[J]. 中国农业科技导报, 2023, 25(4): 147-156. |
JIN X, ZHANG L, WU P, et al. Effects of shading treatment on growth and enzyme activity of bonsai Ganoderma lucidum[J]. Journal of Agricultural Science and Technology, 2023, 25(4): 147-156. (in Chinese with English abstract) | |
[52] | 袁学军, 陈永敢, 陈光宙, 等. 不同光照和栽培基质对灵芝活性成分的影响[J]. 中国食用菌, 2012, 31(6): 38-39, 43. |
YUAN X J, CHEN Y G, CHEN G Z, et al. Effect of the different illumination and stroma on the active components of Ganoderma lucidum[J]. Edible Fungi of China, 2012, 31(6): 38-39, 43. (in Chinese with English abstract) | |
[53] | 赵洲. 光质对灵芝生理代谢的影响及其差异蛋白质组学研究[D]. 北京: 北京协和医学院, 2013. |
ZHAO Z. Effects of light quality on physiological metabolism of Ganoderma lucidum and its differences: A protein omics study[D]. Beijing: Peking Union Medical College, 2013. (in Chinese with English abstract) | |
[54] | SHIN R, JEZ J M, BASRA A, et al. 14-3-3 Proteins fine-tune plant nutrient metabolism[J]. FEBS Letters, 2011, 585(1): 143-147. |
[55] | XU X R, CHEN X D, YU W, et al. Cloning and analysis of the Glwc-1 and Glwc-2 genes encoding putative blue light photoreceptor from Ganoderma lucidum[J]. Journal of Basic Microbiology, 2017, 57(8): 705-711. |
[56] | 张宗源, 潘梦诗, 郭文阳, 等. 光对高等真菌次级代谢影响的研究进展[J]. 生物学杂志, 2021, 38(5): 91-95. |
ZHANG Z Y, PAN M S, GUO W Y, et al. Research progress of the effects of light on secondary metabolism of higher fungi[J]. Journal of Biology, 2021, 38(5): 91-95. (in Chinese with English abstract) | |
[57] | CHENG P, YANG Y H, GARDNER K H, et al. PAS domain-mediated WC-1/WC-2 interaction is essential for maintaining the steady-state level of WC-1 and the function of both proteins in circadian clock and light responses of Neurospora[J]. Molecular and Cellular Biology, 2002, 22(2): 517-524. |
[58] | 谢宝贵, 刘洁玉. 重金属在三种食用菌中的累积及对其生长的影响[J]. 中国食用菌, 2005, 24(2): 35-38. |
XIE B G, LIU J Y. Effects of heavy metals of Pb, Cd, Hg and As on the growth of three edible fungis[J]. Edible Fungi of China, 2005, 24(2): 35-38. (in Chinese with English abstract) | |
[59] | 王茗宇. 镉、 铜胁迫影响灵芝菌丝体生长机制的初步研究[D]. 长春: 吉林农业大学, 2019. |
WANG M Y. Preliminary study on the mechanism of cadmium and copper stress affecting the growth of Ganoderma lucidum mycelium[D]. Changchun: Jilin Agricultural University, 2019. (in Chinese with English abstract) | |
[60] | ABDALMEGEED D, ZHAO G, CHENG P F, et al. The importance of nitric oxide as the molecular basis of the hydrogen gas fumigation-induced alleviation of Cd stress on Ganoderma lucidum[J]. Journal of Fungi, 2021, 8(1): 10. |
[61] | TANG Y J, ZHU L W. Improvement of ganoderic acid and Ganoderma polysaccharide biosynthesis by Ganoderma lucidum fermentation under the inducement of Cu2+[J]. Biotechnology Progress, 2010, 26(2): 417-423. |
[62] | 张晓柠. 灵芝对四种重金属富集作用的研究[D]. 北京: 中国协和医科大学, 2007. |
ZHANG X N. Study on enrichment of four heavy metals by Ganoderma lucidum[D]. Beijing: Peking Union Medical College, 2007. (in Chinese with English abstract) | |
[63] | YU H L, LI Q Z, SHEN X F, et al. Transcriptomic analysis of two Lentinula edodes genotypes with different cadmium accumulation ability[J]. Frontiers in Microbiology, 2020, 11: 558104. |
[64] | GAO T, SHI L, ZHANG T J, et al. Cross talk between calcium and reactive oxygen species regulates hyphal branching and ganoderic acid biosynthesis in Ganoderma lucidum under copper stress[J]. Applied and Environmental Microbiology, 2018, 84(13): e00438-18. |
[65] | XIANG Q J, SHEN K Y, YU X M, et al. Analysis of the oligopeptide transporter gene family in Ganoderma lucidum: structure, phylogeny, and expression patterns[J]. Genome, 2017, 60(4): 293-302. |
[66] | 何茂兰, 沈柯宇, 秦澎, 等. 金属胁迫下灵芝寡肽转运蛋白基因家族的转录表达[J]. 微生物学通报, 2017, 44(9): 2120-2127. |
HE M L, SHEN K Y, QIN P, et al. Transcriptional analysis of oligopeptide transporter gene family under metal stress of Ganoderma lucidum[J]. Microbiology China, 2017, 44(9): 2120-2127. (in Chinese with English abstract) | |
[67] | 胡楚霄, 唐恬恬, 师展, 等. 不同浓度Fe2+和Cu2+胁迫对灵芝寡肽转运蛋白基因家族的转录表达水平的影响[J]. 微生物学杂志, 2019, 39(5): 16-21. |
HU C X, TANG T T, SHI Z, et al. Transcriptional expression level of Ganoderma lucidum oligopeptide transporter (OPT) protein gene family under the coercion of different concentrations of Fe2+ and Cu2+[J]. Journal of Microbiology, 2019, 39(5): 16-21. (in Chinese with English abstract) |
[1] | 闵江艳, 唐卓磊, 杨雪, 黄小燕, 黄凯丰, 何佩云. 不同干旱-复水模式对苦荞生长与产量的影响[J]. 浙江农业学报, 2024, 36(9): 2000-2009. |
[2] | 欧晋稳, 张古文, 冯志娟, 王斌, 卜远鹏, 徐钰, 茹磊, 刘娜, 龚亚明. 大豆海藻糖-6-磷酸磷酸酶基因GmTPP的鉴定及其在生长发育和非生物胁迫响应中的表达分析[J]. 浙江农业学报, 2024, 36(9): 2031-2041. |
[3] | 高国际, 龙玲, 宋晓云, 李彦彤, 刘高强, 丁功涛. 亮斑扁角水虻幼虫代替豆粕对北京鸭生长发育和血清生化指标的影响[J]. 浙江农业学报, 2024, 36(8): 1764-1772. |
[4] | 俞瑞鲜, 胡秀卿, 柳新菊, 汤涛, 吴珉, 吴声敢, 赵学平. 亚致死剂量氰戊菊酯对家蚕生长发育的影响[J]. 浙江农业学报, 2024, 36(2): 264-271. |
[5] | 叶涛, 孙钦玉, 陈伟立, 单文书, 连文旭, 牛婷婷, 张家侠. 植物病原真菌bZIP基因家族研究进展[J]. 浙江农业学报, 2024, 36(12): 2885-2894. |
[6] | 廖雪环, 张坷塬, 阿尔力色, 周林, 杨尔倮, 邓俊, 张荣萍. 柯杈肥与功能肥复配对杂交稻生长与产量的影响[J]. 浙江农业学报, 2024, 36(11): 2447-2455. |
[7] | 张余, 金明伟, 任丽, 章毅颖, 赵洪, 刘昆, 邓姗, 褚云霞, 李寿国, 张靖立, 黄静艳, 陈海荣. 辣椒CaERF70的表达特征和转录自激活活性分析[J]. 浙江农业学报, 2024, 36(10): 2247-2256. |
[8] | 张思懿, 崔博文, 王佳玲, 蔺吉祥, 杨青杰. 非生物胁迫下植物根系的生理与分子响应研究进展[J]. 浙江农业学报, 2024, 36(10): 2391-2401. |
[9] | 寿伟松, 王铎, 沈佳, 许昕阳, 张跃建, 何艳军. 西瓜蔗糖转运蛋白SUT家族的鉴定及其在果实发育和逆境响应中的表达分析[J]. 浙江农业学报, 2024, 36(1): 94-102. |
[10] | 李学龙, 李超, 李跃, 刘国丽, 张鹏, 张敏. 不同栽培模式对灵芝菌株农艺性状及活性成分积累的影响[J]. 浙江农业学报, 2023, 35(9): 2045-2055. |
[11] | 尤翠翠, 贺一哲, 徐鹏, 黄亚茹, 王辉, 何海兵, 柯健, 武立权. 高温胁迫对水稻生长发育的伤害效应及其防御对策[J]. 浙江农业学报, 2023, 35(1): 10-22. |
[12] | 李春梅, 万小荣, 关子盈, 赖晓凤, 罗凯晴, 刘凯. 长链非编码RNA调控植物生长发育与逆境胁迫响应研究进展[J]. 浙江农业学报, 2022, 34(9): 2066-2076. |
[13] | 杨超, 刘敏竹, 李强, 韩涛, 彭良志, 凌丽俐, 付行政, 淳长品, 曹立, 何义仲. 发光二极管(LED)光质对金秋砂糖橘幼苗生长发育和光合特性的影响[J]. 浙江农业学报, 2022, 34(1): 89-97. |
[14] | 熊雪, 赵丽娜, 杨森林, SAMIAH Arif, 张屹东. 甜瓜CmCIPK家族全基因组鉴定和逆境条件下的表达分析[J]. 浙江农业学报, 2021, 33(9): 1625-1639. |
[15] | 何佳琦, 翟莹, 张军, 邱爽, 李铭杨, 赵艳, 张梅娟, 马天意. 大豆转录因子GmDof1.5的克隆与非生物胁迫诱导表达[J]. 浙江农业学报, 2021, 33(1): 1-7. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||