浙江农业学报 ›› 2022, Vol. 34 ›› Issue (4): 756-765.DOI: 10.3969/j.issn.1004-1524.2022.04.12
樊有存1(), 张红岩1, 杨旭升2, 韩芊2, 刘玉皎1, 武学霞1,*(
)
收稿日期:
2020-11-24
出版日期:
2022-04-25
发布日期:
2022-04-28
通讯作者:
武学霞
作者简介:
*武学霞,E-mail: xuexun111@163.com基金资助:
FAN Youcun1(), ZHANG Hongyan1, YANG Xusheng2, HAN Qian2, LIU Yujiao1, WU Xuexia1,*(
)
Received:
2020-11-24
Online:
2022-04-25
Published:
2022-04-28
Contact:
WU Xuexia
摘要:
高亲和性钾离子转运蛋白(high affinity K+ transporter, HKT)能够调节细胞及整株的Na+/K+转运,在植物盐胁迫调控中发挥着重要作用。采用RT-PCR和PCR方法克隆获得蚕豆VfHKT1;1基因全长编码序列,该基因包含1 659 bp的开放阅读框,编码552个氨基酸。系统进化树分析发现,该蛋白属于HKT第Ⅰ亚家族,命名为VfHKT1;1,且VfHKT1;1蛋白氨基酸序列与苜蓿MtHKT1;1的序列相似度最高。生物信息学分析发现,VfHKT1;1蛋白结构稳定,不具有信号肽结构,含有8个跨膜区域,且蛋白含有HKT家族典型的保守结构域TrKH,属于典型的跨膜离子转运体。实时荧光定量PCR分析表明,VfHKT1;1基因的表达具有明显的组织特异性。在盐胁迫诱导下,VfHKT1;1基因在根中的表达水平受到抑制,而在叶片中的表达水平上升,且在盐处理1h后达到最高值,随后随着盐处理时间的延长又逐渐下降。
中图分类号:
樊有存, 张红岩, 杨旭升, 韩芊, 刘玉皎, 武学霞. 蚕豆耐盐相关基因VfHKT1;1的克隆、生物信息学分析及表达特性[J]. 浙江农业学报, 2022, 34(4): 756-765.
FAN Youcun, ZHANG Hongyan, YANG Xusheng, HAN Qian, LIU Yujiao, WU Xuexia. Cloning, bioinformatics analysis and gene expression pattern of VfHKT1; 1 in Vicia faba L.[J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 756-765.
引物名称 Primer name | 引物序列 Primer sequence(5'-3') | 产物大小 Product size/bp |
---|---|---|
ELF1A-F | GTGAAGCCCGGTATGCTTGT | 169 |
ELF1A-R | GATGCTGAGGATATTCAACCCC | |
HKT1-1050F | TGGGTTGCTTGTGGTTCAAG | 176 |
HKT1-1232R | ACAAACAACACCAACACGGC | |
HKT1-889F | GGGAACACGTTGTACCCTCC | 158 |
HKT1-1069R | CTTGAACCACAAGCAACCCA | |
HKT1-265 F | TCAGCCACAACAGTTTCAAGC | 159 |
HKT1-452 R | GCAAGACGAGCATGAGACGA | |
HKT1-877 F | CAAGTGCTTCTTGGGAACACG | 183 |
HKT1-1057 R | GCAACCCAAAAACAGTAGCCA |
表1 qRT-PCR引物序列
Table 1 The qRT-PCR primer sequences
引物名称 Primer name | 引物序列 Primer sequence(5'-3') | 产物大小 Product size/bp |
---|---|---|
ELF1A-F | GTGAAGCCCGGTATGCTTGT | 169 |
ELF1A-R | GATGCTGAGGATATTCAACCCC | |
HKT1-1050F | TGGGTTGCTTGTGGTTCAAG | 176 |
HKT1-1232R | ACAAACAACACCAACACGGC | |
HKT1-889F | GGGAACACGTTGTACCCTCC | 158 |
HKT1-1069R | CTTGAACCACAAGCAACCCA | |
HKT1-265 F | TCAGCCACAACAGTTTCAAGC | 159 |
HKT1-452 R | GCAAGACGAGCATGAGACGA | |
HKT1-877 F | CAAGTGCTTCTTGGGAACACG | 183 |
HKT1-1057 R | GCAACCCAAAAACAGTAGCCA |
图1 不同浓度NaCl处理7 d后的蚕豆幼苗 A,不同浓度盐处理下的株高(标尺=3 cm);B,不同浓度盐处理下的叶片表型(标尺=2 cm)。
Fig.1 Seedlings of faba bean irrigated with different concentration of NaCl for 7 days A,Plant height of faba bean under different NaCl concentrations(bar=3 cm);B,Leaf area of faba bean under different NaCl concentrations(bar=2 cm).
图2 VfHKT1基因扩增及鉴定 A,VfHKT1基因扩增;B,VfHKT1基因阳性克隆菌落鉴定。1、2、3和4均为PCR产物。
Fig.2 Cloning of VfHKT1 gene and identification of the positive clone A,Cloning of VfHKT1 gene;B,Identification of positive colonies of VfHKT1 gene. 1, 2, 3 and 4 represented PCR products.
图4 VfHKT1;1与其他高等植物HKT蛋白的进化分析 星号标记的为蚕豆VfHKT1;1 蛋白。
Fig.4 Phylogenetic analysis of VfHKT1;1 with other HKT transporters from higher plants Asterisk indicated the VfHKT1;1 of faba bean.
氨基酸 Amino acid | 数量 Quantity | 百分比 Percentage/% | 氨基酸 Amino acid | 数量 Quantity | 百分比 Percentage/% |
---|---|---|---|---|---|
丙氨酸Ala(A) | 13 | 2.4 | 精氨酸Arg(R) | 13 | 2.4 |
天冬酰胺Asn(N) | 30 | 5.4 | 天冬氨酸Asp(D) | 11 | 2.0 |
半胱氨酸Cys(C) | 12 | 2.2 | 谷氨酰胺Gln(Q) | 15 | 2.7 |
谷氨酸Glu(E) | 26 | 4.7 | 甘氨酸Gly(G) | 30 | 5.4 |
组氨酸His(H) | 16 | 2.9 | 异亮氨酸Ile(I) | 46 | 8.3 |
亮氨酸Leu(L) | 80 | 14.5 | 赖氨酸Lys(K) | 42 | 7.6 |
蛋氨酸Met(M) | 17 | 3.1 | 苯丙氨酸Phe(F) | 38 | 6.9 |
脯氨酸Pro(P) | 15 | 2.7 | 丝氨酸Ser(S) | 54 | 9.8 |
苏氨酸Thr(T) | 32 | 5.8 | 色氨酸Trp(W) | 6 | 1.1 |
酪氨酸Tyr(Y) | 18 | 3.3 | 缬氨酸Val(V) | 38 | 6.9 |
吡咯赖氨酸Pyl(0) | 0 | 0 | 硒半胱氨酸Sec(U) | 0 | 0 |
表2 VfHKT1;1蛋白氨基酸组成
Table 2 The amino acid composition of VfHKT1;1
氨基酸 Amino acid | 数量 Quantity | 百分比 Percentage/% | 氨基酸 Amino acid | 数量 Quantity | 百分比 Percentage/% |
---|---|---|---|---|---|
丙氨酸Ala(A) | 13 | 2.4 | 精氨酸Arg(R) | 13 | 2.4 |
天冬酰胺Asn(N) | 30 | 5.4 | 天冬氨酸Asp(D) | 11 | 2.0 |
半胱氨酸Cys(C) | 12 | 2.2 | 谷氨酰胺Gln(Q) | 15 | 2.7 |
谷氨酸Glu(E) | 26 | 4.7 | 甘氨酸Gly(G) | 30 | 5.4 |
组氨酸His(H) | 16 | 2.9 | 异亮氨酸Ile(I) | 46 | 8.3 |
亮氨酸Leu(L) | 80 | 14.5 | 赖氨酸Lys(K) | 42 | 7.6 |
蛋氨酸Met(M) | 17 | 3.1 | 苯丙氨酸Phe(F) | 38 | 6.9 |
脯氨酸Pro(P) | 15 | 2.7 | 丝氨酸Ser(S) | 54 | 9.8 |
苏氨酸Thr(T) | 32 | 5.8 | 色氨酸Trp(W) | 6 | 1.1 |
酪氨酸Tyr(Y) | 18 | 3.3 | 缬氨酸Val(V) | 38 | 6.9 |
吡咯赖氨酸Pyl(0) | 0 | 0 | 硒半胱氨酸Sec(U) | 0 | 0 |
图10 蚕豆VfHKT1;1基因表达分析 A,正常生长条件下VfHKT1;1基因在蚕豆根与叶片中的表达水平;B,NaCl处理下VfHKT1;1基因在蚕豆叶片中的表达水平;C,NaCl处理下VfHKT1;1基因在蚕豆根中的表达水平。图中所显示数值为平均数±标准差(n=3),*,**分别表示在P<0.05和P<0.01水平上差异显著。
Fig.10 Relative expression level of VfHKT1;1 gene in faba bean A,The expression of VfHKT1;1 gene in faba bean root and leaf under normal conditions;B,The expression of VfHKT1;1 gene in faba bean leaf under NaCl stress;C,The expression of VfHKT1;1 gene in faba bean root under NaCl stress. Values were means±SD (n=3). *,** represented significant differences at P<0.05 and P<0.01,respectively.
[1] | 王彦龙, 施建军, 盛丽, 等. 柴达木盆地重度盐碱地燕麦引种适应性评价[J]. 青海畜牧兽医杂志, 2019, 49(1): 36-41. |
WANG Y L, SHI J J, SHENG L, et al. Adaptive evaluation on oat varieties on severe saline-alkali land in Qaidam basin[J]. Chinese Qinghai Journal of Animal and Veterinary Sciences, 2019, 49(1): 36-41. (in Chinese with English abstract) | |
[2] | 赵娜, 缪亚梅, 陈满峰, 等. 蚕豆耐盐性的研究进展[J]. 安徽农业科学, 2015, 43(18): 20-21. |
ZHAO N, MIAO Y M, CHEN M F, et al. Research progress on salt tolerance of faba bean[J]. Journal of Anhui Agricultural Sciences, 2015, 43(18): 20-21. (in Chinese with English abstract) | |
[3] | 李爱萍, 郑开斌, 林碧英, 等. 蚕豆提高土壤肥力及土壤效力研究[J]. 农业与技术, 2007, 27(2): 61-63. |
LI A P, ZHENG K B, LIN B Y, et al. Study about how the broad bean improves the soil fertility and soil efficacy[J]. Agriculture & Technology, 2007, 27(2): 61-63. (in Chinese with English abstract) | |
[4] |
ÁLVAREZ-IGLESIAS L, PUIG C G, REVILLA P, et al. Faba bean as green manure for field weed control in maize[J]. Weed Research, 2018, 58(6):437-449.
DOI URL |
[5] | 袁秀梅, 耿赛男, 郑梦圆, 等. 蚕豆根分泌物对紫色土有效养分及微生物数量的影响[J]. 中国生态农业学报, 2016, 24(7): 910-917. |
YUAN X M, GENG S N, ZHENG M Y, et al. Effects of faba bean(Vicia faba L.) root exudate on soil available nutrients and microbial population in different purple soils[J]. Chinese Journal of Eco-Agriculture, 2016, 24(7): 910-917. (in Chinese with English abstract) | |
[6] | 叶旭君, 汪成宏, 王仁第, 等. 浙东沿海台灾受咸地冬季作物的适应性[J]. 浙江农业学报, 1998, 10(6): 298-301. |
YE X J, WANG C H, WANG R D, et al. Winter crop suitability in saline-alkali fields caused by typhoon-driven sea floods in eastern coastal area of Zhejiang Province[J]. Acta Agriculturae Zhejiangensis, 1998, 10(6): 298-301. (in Chinese with English abstract) | |
[7] | 陈华涛, 陈新, 顾和平, 等. 大豆GmHKT6;2基因的克隆与表达特性分析[J]. 华北农学报, 2012, 27(3): 1-5. |
CHEN H T, CHEN X, GU H P, et al. Cloning and expression pattern analysis of GmHKT6;2in soybean[J]. Acta Agriculturae Boreali-Sinica, 2012, 27(3): 1-5. (in Chinese with English abstract) | |
[8] | 陆潭, 陈华涛, 沈振国, 等. 植物钾通道与钾转运体研究进展[J]. 华北农学报, 2019, 34(S1): 372-379. |
LU T, CHEN H T, SHEN Z G, et al. Advance of potassium channels and transporters in plant[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(S1): 372-379. (in Chinese with English abstract) | |
[9] |
PLATTEN J D, COTSAFTIS O, BERTHOMIEU P, et al. Nomenclature for HKT transporters,key determinants of plant salinity tolerance[J]. Trends in Plant Science, 2006, 11(8):372-374.
DOI URL |
[10] |
HORIE T, HAUSER F, SCHROEDER J I. HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants[J]. Trends in Plant Science, 2009, 14(12): 660-668.
DOI URL |
[11] | MÄSER P, HOSOO Y, GOSHIMA S, et al. Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(9): 6428-6433. |
[12] |
REHMAN H M, NAWAZ M A, SHAH Z H, et al. In-depth genomic and transcriptomic analysis of five K+ transporter gene families in soybean confirm their differential expression for nodulation[J]. Frontiers in Plant Science, 2017, 8: 804.
DOI URL |
[13] | CHEN H T, HE H, YU D Y. Overexpression of a novel soybean gene modulating Na+ and K+ transport enhances salt tolerance in transgenic tobacco plants[J]. PhysiologiaPlantarum, 2011, 141(1): 11-18. |
[14] |
CHEN H T, CHEN X, GU H P, et al. GmHKT1;4, a novel soybean gene regulating Na+/K+ ratio in roots enhances salt tolerance in transgenic plants[J]. Plant Growth Regulation, 2014, 73(3): 299-308.
DOI URL |
[15] | LI P, HOU W W, LIU Y J. Proteomic analysis of drought stress response on drought resistance for Vicia faba L. variety ‘Qinghai 13’ in Qinghai Plateau of China[J]. ActaAgronomicaSinica, 2019, 45(2): 267. |
[16] |
GUTIERREZ L, MAURIAT M, PELLOUX J, et al. Towards a systematic validation of references in real-time RT-PCR[J]. The Plant Cell, 2008, 20(7): 1734-1735.
DOI URL |
[17] |
LIU W, SCHACHTMAN D P, ZHANG W. Partial deletion of a loop region in the high affinity K+ transporter HKT1 changes ionic permeability leading to increased salt tolerance[J]. The Journal of Biological Chemistry, 2000, 275(36): 27924-27932.
DOI URL |
[18] | HAUSER F, HORIE T. A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress[J]. Plant, Cell & Environment, 2010, 33(4): 552-565. |
[19] | 李旭娟, 刘洪博, 林秀琴, 等. 甘蔗KNOX基因(Sckn 1)的电子克隆及生物信息学分析[J]. 基因组学与应用生物学, 2015, 34(1): 136-142. |
LI X J, LIU H B, LIN X Q, et al. In silico cloning and bioinformatics analysis of KNOX gene in sugarcane(Sckn1)[J]. Genomics and Applied Biology, 2015, 34(1): 136-142. (in Chinese with English abstract) | |
[20] |
ALI Z, PARK H C, ALI A, et al. TsHKT1;2, a HKT1 homolog from the extremophile Arabidopsis relative Thellungiella salsuginea, shows K+ specificity in the presence of NaCl[J]. Plant Physiology, 2012, 158(3): 1463-1474.
DOI URL |
[21] |
KHAN M A, ALGHAMDI S S, AMMAR M H, et al. Transcriptome profiling of faba bean (Vicia faba L.) drought-tolerant variety Hassawi-2 under drought stress using RNA sequencing[J]. Electronic Journal of Biotechnology, 2019, 39: 15-29.
DOI URL |
[22] |
WU X X, FAN Y C, LI L P, et al. The influence of soil drought stress on the leaf transcriptome of faba bean (Vicia faba L.) in the Qinghai-Tibet Plateau[J]. Biotech, 2020, 10(9): 1-16.
DOI URL |
[23] |
DURELL S R, HAO Y L, NAKAMURA T, et al. Evolutionary relationship between K+ channels and symporters[J]. Biophysical Journal, 1999, 77(2): 775-788.
DOI URL |
[24] |
VIEIRA-PIRES R S, SZOLLOSI A, MORAIS-CABRAL J H. The structure of the KtrAB potassium transporter[J]. Nature, 2013, 496(7445): 323-328.
DOI URL |
[25] |
王甜甜, 郝怀庆, 冯雪, 等. 植物HKT蛋白耐盐机制研究进展[J]. 植物学报, 2018, 53(5):710-725.
DOI |
WANG T T, HAO H Q, FENG X, et al. Research advances in the function of the high-affinity K+ transporter (HKT) proteins and plant salt tolerance[J]. Chinese Bulletin of Botany, 2018, 53(5):710-725. (in Chinese with English abstract) | |
[26] |
MØLLER I S, GILLIHAM M, JHA D, et al. Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis[J]. The Plant Cell, 2009, 21(7): 2163-2178.
DOI URL |
[27] |
SUZUKI K, YAMAJI N, COSTA A, et al. OsHKT1;4-mediated Na+ transport in stems contributes to Na+ exclusion from leaf blades of rice at the reproductive growth stage upon salt stress[J]. BMC Plant Biology, 2016, 16: 22.
DOI URL |
[28] |
KOBAYASHI N I, YAMAJI N, YAMAMOTO H, et al. OsHKT1;5 mediates Na+ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice[J]. The Plant Journal, 2017, 91(4): 657-670.
DOI URL |
[29] |
WANG H, ZHANG M S, GUO R, et al. Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.)[J]. BMC Plant Biology, 2012, 12: 194.
DOI URL |
[30] |
LAURIE S, FEENEY K A, MAATHUIS F J M, et al. A role for HKT1 in sodium uptake by wheat roots[J]. The Plant Journal, 2002, 32(2): 139-149.
DOI URL |
[31] |
CAMPBELL M T, BANDILLO N, AL SHIBLAWI F R A, et al. Allelic variants of OsHKT1;1 underlie the divergence between indica and japonica subspecies of rice (Oryza sativa) for root sodium content[J]. PLoS Genetics, 2017, 13(6): e1006823.
DOI URL |
[1] | 杨卫军, 董艳蕾, 吴秋芳, 张美玲, 韩丽滨, 张元臣. 棉蚜ATP合成酶基因AgoATPb的克隆与表达[J]. 浙江农业学报, 2022, 34(2): 329-336. |
[2] | 许金根, 靳二辉, 王重龙, 顾有方, 李庆岗. 猪CAST基因多态性与生物信息学分析[J]. 浙江农业学报, 2022, 34(1): 17-23. |
[3] | 赵秀平, 王双, 闫星伊, 段强, 张帅, 陈永胜, 李国瑞. 稻瘟病菌MGG-01005的表达纯化与生物信息学分析[J]. 浙江农业学报, 2021, 33(3): 470-478. |
[4] | 欧阳霞辉, 郑天宇, 徐文凯, 郑相相. 意大利蜜蜂amLDH基因的克隆与表达分析[J]. 浙江农业学报, 2021, 33(11): 2051-2058. |
[5] | 何佳琦, 翟莹, 张军, 邱爽, 李铭杨, 赵艳, 张梅娟, 马天意. 大豆转录因子GmDof1.5的克隆与非生物胁迫诱导表达[J]. 浙江农业学报, 2021, 33(1): 1-7. |
[6] | 梁丽琴, 杨瑞, 郜刚. 马铃薯StUOXs基因家族的生物信息学分析[J]. 浙江农业学报, 2020, 32(9): 1523-1532. |
[7] | 吴佳, 陈朗, 姜涛, 黄国明, 李倬, 李耀东, 张丽, 刘丽霞. 奶牛CSF3基因遗传多态性筛查及其生物信息学分析[J]. 浙江农业学报, 2020, 32(6): 986-993. |
[8] | 王伟科, 宋吉玲, 陆娜, 袁卫东, 闫静, 陈观平. 秀珍菇原基形成相关基因PpFBD1的克隆与表达研究[J]. 浙江农业学报, 2020, 32(1): 93-97. |
[9] | 刘正奎, 吴瑗, 陈琳, 王磊, 牟泓烨, 祝徐航, 王晓杜. 猪流行性腹泻病毒Nsp5基因的原核表达及生物信息学分析[J]. 浙江农业学报, 2019, 31(4): 532-538. |
[10] | 董新星, 李明丽, 崔艺佳, 兰国湘, 王孝义, 严达伟. 撒坝猪MCUR1基因克隆、生物信息学分析及其组织表达量检测[J]. 浙江农业学报, 2019, 31(11): 1825-1833. |
[11] | 许青松, 赵佳, 魏运民, 韩蓉蓉, 刘卢生, 蒋曹德, 玉永雄. 紫花苜蓿MsOXO基因的克隆及表达分析[J]. 浙江农业学报, 2019, 31(1): 11-19. |
[12] | 杨舟, 吕可, 吕珊, 王俊杰, 张荻. 百子莲2个ARF基因与2个Aux/IAA基因的全长克隆与序列分析[J]. 浙江农业学报, 2019, 31(1): 86-97. |
[13] | 唐晓, 邓孟胜, 邹雪, 李立芹, 祝渊智, 王西瑶. 马铃薯StDWF1基因克隆及表达分析[J]. 浙江农业学报, 2018, 30(6): 909-917. |
[14] | 薛生玲, 江敏, 常嘉琪, 刘洋, 魏淋, 周建坤, 张芬, 孙勃. 芥蓝1-脱氧-D-木酮糖-5-磷酸合成酶基因BaDXS1的克隆及原核表达[J]. 浙江农业学报, 2018, 30(5): 771-777. |
[15] | 梁敏华, 杨震峰, 苏新国, 宋春波. 桃果实八氢番茄红素合成酶基因的克隆与表达分析[J]. 浙江农业学报, 2018, 30(3): 399-405. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||