浙江农业学报 ›› 2022, Vol. 34 ›› Issue (2): 329-336.DOI: 10.3969/j.issn.1004-1524.2022.02.14
杨卫军1,2(), 董艳蕾1, 吴秋芳1,2, 张美玲1,2, 韩丽滨1,2, 张元臣1,2,*(
)
收稿日期:
2021-08-03
出版日期:
2022-02-25
发布日期:
2022-03-02
通讯作者:
张元臣
作者简介:
张元臣,E-mail: zhangyc2011@163.com基金资助:
YANG Weijun1,2(), DONG Yanlei1, WU Qiufang1,2, ZHANG Meiling1,2, HAN Libin1,2, ZHANG Yuanchen1,2,*(
)
Received:
2021-08-03
Online:
2022-02-25
Published:
2022-03-02
Contact:
ZHANG Yuanchen
摘要:
为确定棉蚜(Aphis gossypii)ATP合成酶B亚基基因在棉蚜不同组织和日龄,以及取食不同植物的表达情况,以棉蚜为研究对象,采用RT-PCR和RACE技术获得AgoATPb的全长cDNA序列,通过Expasy、SignalP-4.0 Server等在线工具对其进行了生物信息学分析,同时利用实时荧光定量PCR技术研究了该基因在棉蚜不同组织和不同日龄,以及在不同植物上取食的表达水平。结果表明,棉蚜AgoATPb基因全长cDNA序列为1 247 bp,开放阅读框(ORF)长度为822 bp,编码274个氨基酸,5'端非编码区长128 bp,3'端非编码区长297 bp,理论分子量为31.40 ku,等电点为8.95,无信号肽和跨膜区域。氨基酸序列比对结果表明,棉蚜AgoATPb与其他昆虫同源基因编码蛋白的氨基酸序列一致性为47%~99%。除了不在胚胎表达外,AgoATPb基因在棉蚜其他日龄和不同组织均有表达,且在不同日龄间与不同组织表达水平存在显著差异。取食不同植物后棉蚜AgoATPb基因表达水平存在显著差异,取食棉花表达水平最高,其次是黄瓜和西葫芦,取食甜瓜表达水平最低,推测该基因可能与棉蚜适应寄主植物有关。
中图分类号:
杨卫军, 董艳蕾, 吴秋芳, 张美玲, 韩丽滨, 张元臣. 棉蚜ATP合成酶基因AgoATPb的克隆与表达[J]. 浙江农业学报, 2022, 34(2): 329-336.
YANG Weijun, DONG Yanlei, WU Qiufang, ZHANG Meiling, HAN Libin, ZHANG Yuanchen. Cloning and expression analysis of AgoATPb gene in cotton-melon aphid, Aphis gossypi[J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 329-336.
用途Purpose | 引物 Primers | 引物序列Primer sequences(5'-3') |
---|---|---|
部分AgoATPb序列的克隆 | ATPb-1F | ATGTTATCCAGATTGGCTC |
Cloning of partial AgoATPb gene | ATPb-1R | CAGTACGTGTCAAGTTAGCC |
AgoATPb基因5'扩增 | ATPb-5'GST | CAAGATCACGTTCGGGTCCGTCATAAG |
5' RACE of AgoATPb gene | ATPb-5'NGST | CAGTGGTGCTACTCTGAACAGTTCTG |
AgoATPb基因3'扩增 | ATPb-3'GST | CATGAGTTCCCTTATGTGTTGGCTAC |
3' RACE of AgoATPb gene | ATPb-3'NGST | CGCGAACGTGCTCTTCAAGCCTACAAC |
AgoATPb基因的qRT-PCR | ATPb-2F | TGACTTGACCGACTACTTGATG |
qRT-PCR for AgoATPb | ATPb-2R | TCCAAAGCGACATAGCACAA |
内参基因 | β-actin-F | TGACTTGACCGACTACTTGATG |
Reference gene(β-actin) | β-actin-R | TCCAAAGCGACATAGCACAA |
表1 棉蚜AgoATPb基因克隆与qRT-PCR引物
Table 1 Primers used in cloning and qRT-PCR of AgoATPb gene
用途Purpose | 引物 Primers | 引物序列Primer sequences(5'-3') |
---|---|---|
部分AgoATPb序列的克隆 | ATPb-1F | ATGTTATCCAGATTGGCTC |
Cloning of partial AgoATPb gene | ATPb-1R | CAGTACGTGTCAAGTTAGCC |
AgoATPb基因5'扩增 | ATPb-5'GST | CAAGATCACGTTCGGGTCCGTCATAAG |
5' RACE of AgoATPb gene | ATPb-5'NGST | CAGTGGTGCTACTCTGAACAGTTCTG |
AgoATPb基因3'扩增 | ATPb-3'GST | CATGAGTTCCCTTATGTGTTGGCTAC |
3' RACE of AgoATPb gene | ATPb-3'NGST | CGCGAACGTGCTCTTCAAGCCTACAAC |
AgoATPb基因的qRT-PCR | ATPb-2F | TGACTTGACCGACTACTTGATG |
qRT-PCR for AgoATPb | ATPb-2R | TCCAAAGCGACATAGCACAA |
内参基因 | β-actin-F | TGACTTGACCGACTACTTGATG |
Reference gene(β-actin) | β-actin-R | TCCAAAGCGACATAGCACAA |
图1 AgoATPb基因全长cDNA序列与氨基酸序列 红色代表为起始密码子;*代表终止密码子;黑色横线部分为加尾信号(AATAAA)。
Fig.1 Nucleotide and deduced amino acid sequences of AgoATPb from Aphis gossypii Red letter, * and the horizontal line were start codon, stop codon and tail signal (AATAAA), respectively.
图2 棉蚜AgoATPb和其他物种ATP合成酶B亚基氨基酸序列的系统发育树 采用邻接法,自举检验1 000次;图中标尺为遗传距离。
Fig.2 Phylogenetic tree based on amino acid of ATP synthase subunit B from A. gossypii and other insects Neighbor Joining method with 1 000 bootstrap replicates. The scale bar represented the genetic distance.
图3 AgoATPb与其他昆虫ATP合成酶B亚基氨基酸序列的多重联配图 黑色横线部分代表ATP合成酶B亚基的典型结构域。黑色阴影为氨基酸具有100%一致性,灰色表示一致性在50%以上,白色表示一致性在50%以下。AaeATPb,埃及伊蚊;CquATPb,致倦库蚊;GmeATPb,大蜡螟;SfrATPb,草地贪夜蛾;AgoATPb,棉蚜;MpeATPb,桃蚜;ApiATPb,豌豆蚜。
Fig.3 Amino acid sequence alignment of AgoATPb with ATP synthase subunit B from other insects The black lines represented typical domain of ATP synthase. Amino acids with 100% identity were in black box, those with over 50% identity in grey box and with below 50% identity in white box. AaeATPb, Aedes aegypti; CquATPb, Culex quinquefasciatus; GmeATPb, Galleria mellonella; SfrATPb, Spodoptera frugiperda; AgoATPb, Aphis gossypii; MpeATPb, Myzus persicae; ApiATPb, Acyrthosiphon pisum.
图4 AgoATPb基因在4日龄棉蚜不同部位的表达 图中的数值用平均值±标准误表示,柱上无相同小写字母表示差异显著(P<0.05)。下同。
Fig.4 AgoATPb expression patterns in different parts of 4th day-old A. gossypii Values in the figure were represented by x -±s. Data on the bars marked without the same lowercase letter indicated significant differences at P<0.05. The same as below.
[1] |
ZHANG Y C, LEI H X, MIAO N H, et al. Comparative transcriptional analysis of the host-specialized aphids Aphis gossypii(Hemiptera: Aphididae)[J]. Journal of Economic Entomology, 2017, 110(2):702-710.
DOI URL |
[2] | 雒珺瑜, 张帅, 任相亮, 等. 近十年我国棉花虫害研究进展[J]. 棉花学报, 2017, 29(S1):100-112. |
LUO J Y, ZHANG S, REN X L, et al. Research progress of cotton insect pests in China in recent ten years[J]. Cotton Science, 2017, 29(S1):100-112.(in Chinese with English abstract) | |
[3] |
PRICE T, VALVERDE R, SINGH R, et al. First report of cotton leafroll dwarf virus in Louisiana[J]. Plant Health Progress, 2020, 21(2):142-143.
DOI URL |
[4] |
WANG Z J, LIANG C R, SHANG Z Y, et al. Insecticide resistance and resistance mechanisms in the melon aphid, Aphis gossypii, in Shandong, China[J]. Pesticide Biochemistry and Physiology, 2021, 172:104768.
DOI URL |
[5] | 芦屹, 王佩玲, 刘冰, 等. 新疆棉花主栽品种的抗蚜性及其机制研究[J]. 棉花学报, 2009, 21(1):57-63. |
LU Y, WANG P L, LIU B, et al. Resistance and relevant mechanism to Aphis gossypii glover of main cotton varieties in Xinjiang[J]. Cotton Science, 2009, 21(1):57-63.(in Chinese with English abstract) | |
[6] | 杨田甜, 杜海荣, 陈刚, 等. 植物化感作用的研究现状及其在农业生产中的应用[J]. 浙江农业学报, 2012, 24(2):343-348. |
YANG T T, DU H R, CHEN G, et al. Current research on plant allelopathy and its application in agricultural production[J]. Acta Agriculturae Zhejiangensis, 2012, 24(2):343-348.(in Chinese with English abstract) | |
[7] |
JUNGE W, NELSON N. ATP synthase[J]. Annual Review of Biochemistry, 2015, 84(1):631-657.
DOI URL |
[8] | HE J Y, FORD H C, CARROLL J, et al. Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(13):3409-3414. |
[9] |
KAWASAKI I, HANAZAWA M, GENGYO-ANDO K, et al. ASB-1, a germline-specific isoform of mitochondrial ATP synthase b subunit, is required to maintain the rate of germline development in Caenorhabditis elegans[J]. Mechanisms of Development, 2007, 124(3):237-251.
DOI URL |
[10] |
SAWYER E M, BRUNNER E C, HWANG Y, et al. Testis-specific ATP synthase peripheral stalk subunits required for tissue-specific mitochondrial morphogenesis in Drosophila[J]. BMC Cell Biology, 2017, 18(1):16.
DOI URL |
[11] | HAHN A, VONCK J, MILLS D J, et al. Structure, mechanism, and regulation of the chloroplast ATP synthase[J]. Science, 2018, 360(6389):1-10. |
[12] |
PARIS M, MELODELIMA C, COISSAC E, et al. Transcription profiling of resistance to Bti toxins in the mosquito Aedes aegypti using next-generation sequencing[J]. Journal of Invertebrate Pathology, 2012, 109(2):201-208.
DOI URL |
[13] | 王卫杰, 刘新颖, 方福瑾, 等. 淡色库蚊ATP合酶B亚基基因克隆和序列分析及其与溴氰菊酯抗性的关系[J]. 昆虫学报, 2017, 60(8):900-905. |
WANG W J, LIU X Y, FANG F J, et al. Cloning and sequence analysis of ATP synthase B subunit gene and its association with deltamethrin resistance in Culex pipiens Pallens (DIPTERA: CULICIDAE)[J]. Acta Entomologica Sinica, 2017, 60(8):900-905.(in Chinese with English abstract) | |
[14] |
CHEN Y N, WU C H, ZHENG Y, et al. Knockdown of ATPsyn-b caused larval growth defect and male infertility in Drosophila[J]. Archives of Insect Biochemistry and Physiology, 2015, 88(2):144-154.
DOI URL |
[15] | 冯娅琳, 郝培应, 俞飞飞, 等. 褐飞虱ATP合酶b亚基基因ATPSb的克隆与功能分析[J]. 昆虫学报, 2018, 61(5):519-526. |
FENG Y L, HAO P Y, YU F F, et al. Molecular cloning and function analysis of ATP synthase b subunit gene ATPSb in the brown planthopper, Nilaparvata lugens(Hemiptera: Delphacidae)[J]. Acta Entomologica Sinica, 2018, 61(5):519-526.(in Chinese with English abstract) | |
[16] |
MUMMERY-WIDMER J L, YAMAZAKI M, STOEGER T, et al. Genome-wide analysis of Notch signalling in Drosophila by transgenic RNAi[J]. Nature, 2009, 458(7241):987-992.
DOI URL |
[17] |
CAROLAN J C, CARAGEA D, REARDON K T, et al. Predicted effector molecules in the salivary secretome of the pea aphid (Acyrthosiphon pisum): a dual transcriptomic/proteomic approach[J]. Journal of Proteome Research, 2011, 10(4):1505-1518.
DOI URL |
[18] |
BOULAIN H, LEGEAI F, GUY E, et al. Fast evolution and lineage-specific gene family expansions of aphid salivary effectors driven by interactions with host-plants[J]. Genome Biology and Evolution, 2018, 10(6):1554-1572.
DOI URL |
[19] |
WU Z Z, QU M Q, CHEN M S, et al. Proteomic and transcriptomic analyses of saliva and salivary glands from the Asian Citrus psyllid, Diaphorina citri[J]. Journal of Proteomics, 2021, 238:104136.
DOI URL |
[20] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4):402-408.
DOI URL |
[21] |
YANAI I, KORBEL J O, BOUE S, et al. Similar gene expression profiles do not imply similar tissue functions[J]. Trends in Genetics, 2006, 22(3):132-138.
DOI URL |
[22] |
ARRESE E L, SOULAGES J L. Insect fat body: energy, metabolism, and regulation[J]. Annual Review of Entomology, 2010, 55:207-225.
DOI URL |
[23] |
LI S, YU X Q, FENG Q L. Fat body biology in the last decade[J]. Annual Review of Entomology, 2019, 64(1):315-333.
DOI URL |
[24] | 严盈, 刘万学, 万方浩. 唾液成分在刺吸式昆虫与植物关系中的作用[J]. 昆虫学报, 2008, 51(5):537-544. |
YAN Y, LIU W X, WAN F H. Roles of salivary components in piercing-sucking insect-plant interactions[J]. Acta Entomologica Sinica, 2008, 51(5):537-544.(in Chinese with English abstract) | |
[25] |
LIN P A, CHEN Y T, CHAVERRA-RODRIGUEZ D, et al. Silencing the alarm: an insect salivary enzyme closes plant stomata and inhibits volatile release[J]. The New Phytologist, 2021, 230(2):793-803.
DOI URL |
[26] |
HEIDEL-FISCHER H M, FREITAK D, JANZ N, et al. Phylogenetic relatedness and host plant growth form influence gene expression of the polyphagous comma butterfly (Polygonia calbum)[J]. BMC Genomics, 2009, 10:506.
DOI URL |
[27] |
MACK K L, NACHMAN M W. Gene regulation and speciation[J]. Trends in Genetics, 2017, 33(1):68-80.
DOI URL |
[28] |
ROMERO I G, RUVINSKY I, GILAD Y. Comparative studies of gene expression and the evolution of gene regulation[J]. Nature Reviews Genetics, 2012, 13(7):505-516.
DOI URL |
[1] | 许金根, 靳二辉, 王重龙, 顾有方, 李庆岗. 猪CAST基因多态性与生物信息学分析[J]. 浙江农业学报, 2022, 34(1): 17-23. |
[2] | 赵秀平, 王双, 闫星伊, 段强, 张帅, 陈永胜, 李国瑞. 稻瘟病菌MGG-01005的表达纯化与生物信息学分析[J]. 浙江农业学报, 2021, 33(3): 470-478. |
[3] | 欧阳霞辉, 郑天宇, 徐文凯, 郑相相. 意大利蜜蜂amLDH基因的克隆与表达分析[J]. 浙江农业学报, 2021, 33(11): 2051-2058. |
[4] | 孟亚轩, 孙颖琦, 赵心月, 王凤霞, 瓮巧云, 刘颖慧. 谷子GH5基因家族全基因组鉴定和表达分析[J]. 浙江农业学报, 2021, 33(10): 1797-1807. |
[5] | 何佳琦, 翟莹, 张军, 邱爽, 李铭杨, 赵艳, 张梅娟, 马天意. 大豆转录因子GmDof1.5的克隆与非生物胁迫诱导表达[J]. 浙江农业学报, 2021, 33(1): 1-7. |
[6] | 梁丽琴, 杨瑞, 郜刚. 马铃薯StUOXs基因家族的生物信息学分析[J]. 浙江农业学报, 2020, 32(9): 1523-1532. |
[7] | 杜炎斌, 张港琛, 王瑜欣, 刘宝宝, 宫胜龙, 东笑, 汪洋. 猪链球菌rpoE基因克隆及生物信息学分析[J]. 浙江农业学报, 2020, 32(7): 1149-1154. |
[8] | 吴佳, 陈朗, 姜涛, 黄国明, 李倬, 李耀东, 张丽, 刘丽霞. 奶牛CSF3基因遗传多态性筛查及其生物信息学分析[J]. 浙江农业学报, 2020, 32(6): 986-993. |
[9] | 王元红, 邢雪, 李传峰, 朱杰, 王勇, 刘光清. 猫传染性腹膜炎病毒AH1905株N基因的生物信息学分析及原核表达[J]. 浙江农业学报, 2020, 32(3): 406-414. |
[10] | 王小朋, 赵靓, 刘自敏, 白彩霞, 杨侃侃, 张达, 孙裴, 蒋书东, 李永东, 王勇. 猪细小病毒7型Cap基因原核表达与生物信息学分析[J]. 浙江农业学报, 2020, 32(2): 200-209. |
[11] | 谭光辉, 覃媛钰, 李杰章, 吴磊, 岳雍, 张依裕. 樱桃谷鸭ATF4基因SNPs筛查及生物信息学分析[J]. 浙江农业学报, 2020, 32(2): 218-225. |
[12] | 秦玲, 张鑫, 荣春笑, 莫传园, 范露, 闫婕, 孟莹, 张满让. 苹果多胺氧化酶(PAO)基因家族鉴定与表达分析[J]. 浙江农业学报, 2020, 32(2): 262-273. |
[13] | 王伟科, 宋吉玲, 陆娜, 袁卫东, 闫静, 陈观平. 秀珍菇原基形成相关基因PpFBD1的克隆与表达研究[J]. 浙江农业学报, 2020, 32(1): 93-97. |
[14] | 刘加林, 刘士力, 蒋文枰, 程顺, 迟美丽, 郑建波, 贾永义, 赵金良, 尹绍武, 顾志敏. 河川沙塘鳢GH基因及侧翼的克隆与生物信息学分析[J]. 浙江农业学报, 2019, 31(9): 1461-1470. |
[15] | 原晓龙, 李云琴, 王毅. 滇牡丹中3个类查尔酮合成酶基因的克隆与表达[J]. 浙江农业学报, 2019, 31(9): 1478-1484. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||