浙江农业学报 ›› 2023, Vol. 35 ›› Issue (8): 2013-2022.DOI: 10.3969/j.issn.1004-1524.20220072
• 综述 • 上一篇
收稿日期:
2022-01-15
出版日期:
2023-08-25
发布日期:
2023-08-29
作者简介:
梁世伟(1969—),女,浙江温州人,硕士,讲师,主要从事中药文化资源研究。E-mail: 2145545172@qq.com
通讯作者:
*王洪凯,E-mail: hkwang@zju.edu.cn
LIANG Shiwei1(), WANG Hongkai2,*(
)
Received:
2022-01-15
Online:
2023-08-25
Published:
2023-08-29
摘要:
蝉花是我国著名的食药用真菌,随着人们对健康生活的重视,近年来研究进展迅速。本文综述了蝉花的分类学、应用现状、生物活性成分、药效机理、分子生物学研究等方面的进展,针对目前蝉花生产与研究中存在的问题,提出对策,并就今后研究方向和前景作了展望。
中图分类号:
梁世伟, 王洪凯. 蝉花研究进展[J]. 浙江农业学报, 2023, 35(8): 2013-2022.
LIANG Shiwei, WANG Hongkai. Research advances of Cordyceps cicadae[J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 2013-2022.
[1] | 王琪, 刘作易. 药用真菌蝉花的研究进展[J]. 中草药, 2004, 35(4): 469-471. |
WANG Q, LIU Z Y. Advances in studies on medicinal fungi Cordyceps cicadae[J]. Chinese Traditional and Herbal Drugs, 2004, 35(4): 469-471. (in Chinese with English abstract) | |
[2] | NXUMALO W, ELATEEQ A A, SUN Y F. Can Cordyceps cicadae be used as an alternative to Cordyceps militaris and Cordyceps sinensis?-A review[J]. Journal of Ethnopharmacology, 2020, 257: 112879. |
[3] | KEPLER R M, LUANGSA-ARD J J, HYWEL-JONES N L, et al. A phylogenetically-based nomenclature for Cordycipitaceae (hypocreales)[J]. IMA Fungus, 2017, 8(2): 335-353. |
[4] | 王春雷, 芦柏震, 侯桂兰. 中国蝉花的研究进展[J]. 中国药学杂志, 2006, 41(4): 244-247. |
WANG C L, LU B Z, HOU G L. Studies advances of Chinese Chanhua[J]. Chinese Pharmaceutical Journal, 2006, 41(4): 244-247. (in Chinese) | |
[5] | 卫亚丽, 杨茂发, 邹晓, 等. 蝉棒束孢菌的生物学活性研究进展[J]. 贵州农业科学, 2014, 42(12): 142-148. |
WEI Y L, YANG M F, ZOU X, et al. Review on bioactive components from Isaria cicadae[J]. Guizhou Agricultural Sciences, 2014, 42(12): 142-148. (in Chinese with English abstract) | |
[6] | LUANGSA-ARD J J, HYWEL-JONES N L, MANOCH L, et al. On the relationships of Paecilomyces sect. Isarioidea species[J]. Mycological Research, 2005, 109(5): 581-589. |
[7] | ZHA L S, XIAO Y P, JEEWON R, et al. Notes on the medicinal mushroom Chanhua (Cordyceps cicadae(Miq.) Massee)[J]. Chiang Mai Journal of Science, 2019, 46(6) : 1023-1035. |
[8] | 李增智, 栾丰刚, HYWEL-JONES NIGEL L, 等. 与蝉花有关的虫草菌生物多样性的研究Ⅱ:重要药用真菌蝉花有性型的发现及命名[J]. 菌物学报, 2021, 40(1): 95-107. |
LI Z Z, LUAN F G, HYWELJONES N L, et al. Biodiversity of cordycipitoid fungi associated with Isaria cicadae Miquel Ⅱ: Teleomorph discovery and nomenclature of Chanhua, an important medicinal fungus in China[J]. Mycosystema, 2021, 40(1): 95-107. (in Chinese with English abstract) | |
[9] | LI C R, WANG Y Q, CHENG W M, et al. Review on research progress and prospects of Cicada flower, Isaria cicadae(ascomycetes)[J]. International Journal of Medicinal Mushrooms, 2021, 23(4): 81-91. |
[10] | KUO Y C, WENG S C, CHOU C J, et al. Activation and proliferation signals in primary human T lymphocytes inhibited by ergosterol peroxide isolated from Cordyceps cicadae[J]. British Journal of Pharmacology, 2003, 140(5): 895-906. |
[11] | XU H H, HAO Z P, WANG L F, et al. Suppression of transferrin expression enhances the susceptibility of Plutella xylostella to Isaria cicadae[J]. Insects, 2020, 11(5): 281. |
[12] | ERGUVEN G O. Comparison of some soil fungi in bioremediation of herbicide acetochlor under agitated culture media[J]. Bulletin of Environmental Contamination and Toxicology, 2018, 100(4): 570-575. |
[13] | ZOU X, SUN J L, LI J, et al. High flocculation of coal washing wastewater using a novel bioflocculant from Isaria cicadae GZU6722[J]. Polish Journal of Microbiology, 2020, 69(1): 1-10. |
[14] | LIU S S, YAN W J, MA C, et al. Effects of supplemented culture media from solid-state fermented Isaria cicadae on performance, serum biochemical parameters, serum immune indexes, antioxidant capacity and meat quality of broiler chickens[J]. Asian-Australasian Journal of Animal Sciences, 2020, 33(4): 568-578. |
[15] | HE L F, SHI W J, LIU X C, et al. Anticancer action and mechanism of ergosterol peroxide from Paecilomyces cicadae fermentation broth[J]. International Journal of Molecular Sciences, 2018, 19(12): 3935. |
[16] | CHUNYU Y J, LU Z M, LUO Z S, et al. Promotion of metabolite synthesis in Isaria cicadae, a dominant species in the Cicada flower microbiota, by Cicada pupae[J]. Journal of Agricultural and Food Chemistry, 2019, 67(31): 8476-8484. |
[17] | WANG Y, GUO Y, ZHANG L, et al. Characterizations of a new Cordyceps cicadae isolate and production of adenosine and cordycepin[J]. Brazilian Journal of Microbiology, 2012, 43(2): 449-455. |
[18] | WANG J, ZHANG D M, JIA J F, et al. Cyclodepsipeptides from the ascocarps and insect-body portions of fungus Cordyceps cicadae[J]. Fitoterapia, 2014, 97: 23-27. |
[19] | 卢婉妃, 徐佳丹, 许闪闪, 等. 蝉花HPLC指纹图谱的研究[J]. 浙江中医药大学学报, 2013, 37(5): 601-605. |
LU W F, XU J D, XU S S, et al. Study on HPLC fingerprint of Cordyceps cicadae[J]. Journal of Zhejiang Chinese Medical University, 2013, 37(5): 601-605. (in Chinese with English abstract) | |
[20] | 欧晓阳, 许闪闪, 袁强. 湖州地区蝉花中小极性组分的气质联用分析[J]. 长春中医药大学学报, 2013, 29(6): 1123-1125. |
OU X Y, XU S S, YUAN Q. Chemical constitutes of small and medium polarity from Cordyceps sobolifera in Huzhou by GC-MS[J]. Journal of Changchun University of Traditional Chinese Medicine, 2013, 29(6): 1123-1125. (in Chinese with English abstract) | |
[21] | 彭秀秀, 柴一秋, 朱碧纯, 等. 蝉花虫草提取物N6-(2-羟乙基)腺苷对小鼠肾脏缺血再灌注损伤的保护作用[J]. 菌物学报, 2015, 34(2): 311-320. |
PENG X X, CHAI Y Q, ZHU B C, et al. The protective effects of N6-(2-hydroxyethyl)-adenosine extracted from Ophiocordyceps sobolifera on renal ischemia reperfusion injury(IRI) in mice[J]. Mycosystema, 2015, 34(2): 311-320. (in Chinese with English abstract) | |
[22] | SHARMA S K, GAUTAM N, ATRI N S. Optimized extraction, composition, antioxidant and antimicrobial activities of exo and intracellular polysaccharides from submerged culture of Cordyceps cicadae[J]. BMC Complementary and Alternative Medicine, 2015, 15: 446. |
[23] | WANG Y B, HE P F, HE L, et al. Structural elucidation, antioxidant and immunomodulatory activities of a novel heteropolysaccharide from cultured Paecilomyces cicadae(Miquel.) Samson[J]. Carbohydrate Polymers, 2019, 216: 270-281. |
[24] | WANG J H, ZHANG Z L, WANG Y Q, et al. Chemical constituents from mycelia and spores of fungus Cordyceps cicadae[J]. Chinese Herbal Medicines, 2017, 9(2): 188-192. |
[25] | WANG H L, ZHANG J, SIT W H, et al. Cordyceps cicadae induces G2/M cell cycle arrest in MHCC97H human hepatocellular carcinoma cells: a proteomic study[J]. Chinese Medicine, 2014, 9: 15. |
[26] | SUN Y F, WINK M, WANG P, et al. Biological characteristics, bioactive components and antineoplastic properties of sporoderm-broken spores from wild Cordyceps cicadae[J]. Phytomedicine, 2017, 36: 217-228. |
[27] | XU J, TAN Z C, SHEN Z Y, et al. Cordyceps cicadae polysaccharides inhibit human cervical cancer hela cells proliferation via apoptosis and cell cycle arrest[J]. Food and Chemical Toxicology, 2021, 148: 111971. |
[28] | ZHANG L G, WU T, OLATUNJI O J, et al. N6-(2-hydroxyethyl)-adenosine from Cordyceps cicadae attenuates hydrogen peroxide induced oxidative toxicity in PC12 cells[J]. Metabolic Brain Disease, 2019, 34(5): 1325-1334. |
[29] | XIE H Q, LI X T, CHEN Y J, et al. Ethanolic extract of Cordyceps cicadae exerts antitumor effect on human gastric cancer SGC-7901 cells by inducing apoptosis, cell cycle arrest and endoplasmic reticulum stress[J]. Journal of Ethnopharmacology, 2019, 231: 230-240. |
[30] | XIE H Q, LI X T, YANG W W, et al. N6-(2-hydroxyethyl)-adenosine induces apoptosis via ER stress and autophagy of gastric carcinoma cells in vitro and in vivo[J]. International Journal of Molecular Sciences, 2020, 21(16): 5815. |
[31] | OLATUNJI O J, FENG Y, OLATUNJI O O, et al. Polysaccharides purified from Cordyceps cicadae protects PC12 cells against glutamate-induced oxidative damage[J]. Carbohydrate Polymers, 2016, 153: 187-195. |
[32] | OLATUNJI O J, FENG Y, OLATUNJI O O, et al. Cordycepin protects PC12 cells against 6-hydroxydopamine induced neurotoxicity via its antioxidant properties[J]. Biomedicine & Pharmacotherapy, 2016, 81: 7-14. |
[33] | OLATUNJI O J, FENG Y, OLATUNJI O O, et al. Neuroprotective effects of adenosine isolated from Cordyceps cicadae against oxidative and ER stress damages induced by glutamate in PC12 cells[J]. Environmental Toxicology and Pharmacology, 2016, 44: 53-61. |
[34] | WU Y Z, LEE C L. Cordyceps cicadae NTTU 868 mycelium with the addition of bioavailable forms of magnesium from deep ocean water prevents the Aβ40 and streptozotocin-induced memory deficit via suppressing Alzheimer’s disease risk factors and increasing magnesium uptake of brain[J]. Fermentation, 2021, 7(1): 39. |
[35] | LIU N, ZHOU S, OLATUNJI O J, et al. Nucleosides rich extract from Condyceps cicadae alleviated cisplatin-induced neurotoxicity in rats: A behavioral, biochemical and histopathological study[J]. Arabian Journal of Chemistry, 2022, 15(1): 103476. |
[36] | ZHU Y L, YU X F, GE Q, et al. Antioxidant and anti-aging activities of polysaccharides from Cordyceps cicadae[J]. International Journal of Biological Macromolecules, 2020, 157: 394-400. |
[37] | 开国银, 周伟, 孙延芳, 等. 人工培养的蝉花子实体对小鼠免疫功能影响的研究[J]. 食品与营养科学, 2020(3): 244-249. |
KAI G Y, ZHOU W, SUN Y F, et al. Effects of artificial cultured Cicada flower fruiting body on immune function in mice[J]. Hans Journal of Food and Nutrition Science, 2020(3): 244-249. (in Chinese with English abstract) | |
[38] | XU Z C, LIN R Y, HOU X N, et al. Immunomodulatory mechanism of a purified polysaccharide isolated from Isaria cicadae Miquel on RAW264.7 cells via activating TLR4-MAPK-NF-κB signaling pathway[J]. International Journal of Biological Macromolecules, 2020, 164: 4329-4338. |
[39] | WANG L, HE Y G, LI Y D, et al. Protective effects of nucleosides-rich extract from Cordyceps cicadae against cisplatin induced testicular damage[J]. Chemistry & Biodiversity, 2020, 17(11): e2000671. |
[40] | KE B J, LEE C L. Cordyceps cicadae NTTU 868 mycelium prevents CCl4-induced hepatic fibrosis in BALB/c mice via inhibiting the expression of pro-inflammatory and pro-fibrotic cytokines[J]. Journal of Functional Foods, 2018, 43: 214-223. |
[41] | HORNG C T, YANG Y L, CHEN C C, et al. Intraocular pressure-lowering effect of Cordyceps cicadae mycelia extract in a glaucoma rat model[J]. International Journal of Medical Sciences, 2021, 18(4): 1007-1014. |
[42] | 孙长胜, 王玉芹, 兰小燕, 等. 复方蝉花片对2型糖尿病患者的临床疗效及安全性评价[J]. 药物评价研究, 2020(4): 655-659. |
SUN C S, WANG Y Q, LAN X Y, et al. Clinical efficacy and safety evaluation of compound Cicada flower tablets on patients with type 2 diabetes[J]. Drug Evaluation Research, 2020(4): 655-659. (in Chinese with English abstract) | |
[43] | SUN C S, WANG Y Q, ZHANG Z L, et al. Distinctive quality control method for solid-state fermented Isaria cicadae from strain Ic-17-7 and application in a rat model of type 2 diabetes[J]. Chinese Journal of Natural Medicines, 2021, 19(12): 921-929. |
[44] | ZHANG X, LI J P, YANG B, et al. Alleviation of liver dysfunction, oxidative stress, and inflammation underlines the protective effects of polysaccharides from Cordyceps cicadae on high sugar/high fat diet-induced metabolic syndrome in rats[J]. Chemistry & Biodiversity, 2021, 18(5): e2100065. |
[45] | ZHANG Y, WU Y T, ZHENG W, et al. The antibacterial activity and antibacterial mechanism of a polysaccharide from Cordyceps cicadae[J]. Journal of Functional Foods, 2017, 38: 273-279. |
[46] | CEN Q W, WANG Z Y, TANG Z X, et al. Initial purification of antimicrobial fermentation metabolites from Paecilomyces cicadae and its antimicrobial mechanism[J]. LWT-Food Science and Technology, 2021, 148: 111785. |
[47] | TIAN J J, WANG X M, ZHANG X L, et al. Simulated digestion and fecal fermentation behaviors of exopolysaccharides from Paecilomyces cicadae TJJ1213 and its effects on human gut microbiota[J]. International Journal of Biological Macromolecules, 2021, 188: 833-843. |
[48] | HUANG Y S, WANG X, FENG Z D, et al. Cordyceps cicadae prevents renal tubular epithelial cell apoptosis by regulating the SIRT1/p53 pathway in hypertensive renal injury[J]. Evidence-Based Complementary and Alternative Medicine, 2020, 2020: 7202519. |
[49] | CAI Y Z, FENG Z D, JIA Q, et al. Cordyceps cicadae ameliorates renal hypertensive injury and fibrosis through the regulation of SIRT1-mediated autophagy[J]. Frontiers in Pharmacology, 2022, 12: 801094. |
[50] | YANG F, QU Q S, ZHAO C Y, et al. Paecilomyces cicadae-fermented Radix astragali activates podocyte autophagy by attenuating PI3K/AKT/mTOR pathways to protect against diabetic nephropathy in mice[J]. Biomedicine & Pharmacotherapy, 2020, 129: 110479. |
[51] | ZHU R, CHEN Y P, DENG Y Y, et al. Cordyceps cicadae extracts ameliorate renal malfunction in a remnant kidney model[J]. Journal of Zhejiang University SCIENCE B, 2011, 12(12): 1024-1033. |
[52] | ZHENG Y, LI S Y, LI C, et al. Aqueous two-phase extraction, antioxidant and renal protective effects of polysaccharides from spores of Cordyceps cicadae[J]. Processes, 2022, 10(2): 348. |
[53] | DENG J S, JIANG W P, CHEN C C, et al. Cordyceps cicadae mycelia ameliorate cisplatin-induced acute kidney injury by suppressing the TLR4/NF-κ B/MAPK and activating the HO-1/Nrf2 and sirt-1/AMPK pathways in mice[J]. Oxidative Medicine and Cellular Longevity, 2020, 2020: 7912763. |
[54] | WANG X, QIN A, XIAO F, et al. N6-(2-hydroxyethyl)-adenosine from Cordyceps cicadae protects against diabetic kidney disease via alleviation of oxidative stress and inflammation[J]. Journal of Food Biochemistry, 2019, 43(2): e12727. |
[55] | YIN M, LI N, MAKINDE E A, et al. N6-2-hydroxyethyl-adenosine ameliorate cisplatin induced acute kidney injury in mice[J]. All Life, 2020, 13(1): 244-251. |
[56] | CHYAU C C, WU H L, PENG C C, et al. Potential protection effect of ER homeostasis of N6-(2-hydroxyethyl)adenosine isolated from Cordyceps cicadae in nonsteroidal anti-inflammatory drug-stimulated human proximal tubular cells[J]. International Journal of Molecular Sciences, 2021, 22(4): 1577. |
[57] | WEI C Y, LI W Q, SHAO S S, et al. Structure and chain conformation of a neutral intracellular heteropolysaccharide from mycelium of Paecilomyces cicadae[J]. Carbohydrate Polymers, 2016, 136: 728-737. |
[58] | 陈祝安, 刘广玉, 胡菽英. 蝉花的人工培养及其药理作用研究[J]. 真菌学报, 1993, 12(2): 138-144. |
CHEN Z, LIU G Y, HU S Y. Studies on cultivation of Paecilomyces cicadae and its pharmacological function[J]. Mycosystema, 1993, 12(2): 138-144. (in Chinese with English abstract) | |
[59] | CHEN Y L, YEH S H, LIN T W, et al. A 90-day subchronic toxicity study of submerged mycelial culture of Cordyceps cicadae(ascomycetes) in rats[J]. International Journal of Medicinal Mushrooms, 2015, 17(8): 771-781. |
[60] | XIA Y L, LUO F F, SHANG Y F, et al. Fungal cordycepin biosynthesis is coupled with the production of the safeguard molecule pentostatin[J]. Cell Chemical Biology, 2017, 24(12): 1479-1489.e4. |
[61] | LU Y Z, LUO F F, CEN K, et al. Omics data reveal the unusual asexual-fruiting nature and secondary metabolic potentials of the medicinal fungus Cordyceps cicadae[J]. BMC Genomics, 2017, 18(1): 668. |
[62] | HE Y Q, ZHANG W C, PENG F, et al. Metabolomic variation in wild and cultured Cordyceps and mycelia of Isaria cicadae[J]. Biomedical Chromatography: BMC, 2019, 33(4): e4478. |
[63] | PENG Y, WANG L F, GAO Y, et al. Identification and characterization of the glycoside hydrolase family 18 genes from the entomopathogenic fungus Isaria cicadae genome[J]. Canadian Journal of Microbiology, 2020, 66(4): 274-287. |
[64] | LIU T F, LIU Z Y, YAO X Y, et al. Identification of cordycepin biosynthesis-related genes through de novo transcriptome assembly and analysis in Cordyceps cicadae[J]. Royal Society Open Science, 2018, 5(12): 181247. |
[65] | QU Q S, YANG F, ZHAO C Y, et al. Analysis of the bacteria community in wild Cordyceps cicadae and its influence on the production of HEA and nucleosides in Cordyceps cicadae[J]. Journal of Applied Microbiology, 2019, 127(6): 1759-1767. |
[66] | KE B J, LEE C L. Using submerged fermentation to fast increase N6-(2-hydroxyethyl)-adenosine, adenosine and polysaccharide productions of Cordyceps cicadae NTTU 868[J]. AMB Express, 2019, 9(1): 198. |
[67] | 董彩虹, 李文佳, 李增智, 等. 我国虫草产业发展现状、问题及展望: 虫草产业发展金湖宣言[J]. 菌物学报, 2016, 35(1): 1-15. |
DONG C H, LI W J, LI Z Z, et al. Cordyceps industry in China: current status, challenges and perspectives-Jinhu declaration for Cordyceps industry development[J]. Mycosystema, 2016, 35(1): 1-15. (in Chinese with English abstract) | |
[68] | 李栋, 刘常利, 刘靖宇, 等. 利用绿色荧光蛋白GFP研究不同启动子在蝉棒束孢菌中的表达活性[J]. 食用菌学报, 2020, 27(1): 20-28. |
LI D, LIU C L, LIU J Y, et al. Green fluorescent protein reported expression activities of different promoters in Isaria cicadae[J]. Acta Edulis Fungi, 2020, 27(1): 20-28. (in Chinese with English abstract) | |
[69] | YANG N N, JIANG N, MA Q Y, et al. Chemical study of the strain Cordyceps spp. from cell fusion between Cordyceps militaris and Cordyceps cicadae[J]. Journal of Asian Natural Products Research, 2019, 21(5): 449-455. |
[1] | 赵丽仙, 张王菲, 李云, 张庭苇, 黄国然. 基于高分三号卫星数据与Η/Α/α-分解特征参数的农作物分类研究[J]. 浙江农业学报, 2022, 34(11): 2491-2503. |
[2] | 邬宁珊, 王佳希, 张岩, 元慕田, 张琪, 高驰宇. 基于无人机可见光影像的树种和树冠信息提取——以晋西黄土区蔡家川流域为例[J]. 浙江农业学报, 2021, 33(8): 1505-1518. |
[3] | 于士军, 何玲艳, 程铭, 徐鑫, 徐馨怡, 柴新义, 王维坤. 硒对蝉花孢梗束营养和功能成分的影响[J]. 浙江农业学报, 2021, 33(12): 2245-2253. |
[4] | 金秀, 卢杰, 傅运之, 王帅, 许高健, 李绍稳. 基于深度卷积神经网络的小麦赤霉病高光谱病症点分类方法[J]. 浙江农业学报, 2019, 31(2): 315-325. |
[5] | 石江, 赵琳, 朱月清, 楼旭平, 余建忠, 阮松林, 陈文岳. 玉米幼苗叶片响应热胁迫的蛋白质组学分析[J]. 浙江农业学报, 2018, 30(6): 893-908. |
[6] | 张青, 肖文斐, 裘劼人, 陈初尉, 忻雅, 柴伟国, 阮松林. 免疫诱导剂处理的黑李叶片蛋白质组学分析[J]. 浙江农业学报, 2018, 30(5): 787-796. |
[7] | 连茂山, 慈恩, 唐江, 胡瑾, 魏朝富. 渝东北中山区典型土壤的系统分类[J]. 浙江农业学报, 2018, 30(10): 1729-1738. |
[8] | 于晓萌, 郝宏娟, 王丹, 王玲. CaCl2处理对玉蝉花切花保鲜效果和生理特性的影响[J]. 浙江农业学报, 2017, 29(5): 773-781. |
[9] | 吴昊. 陆生生境入侵植物空心莲子草群落数量分类与排序[J]. 浙江农业学报, 2017, 29(3): 433-444. |
[10] | 张善文, 孔韦韦, 王震. 基于稀疏表示字典学习的植物分类方法[J]. 浙江农业学报, 2017, 29(2): 338-344. |
[11] | 席刚俊, 李警保, 史俊, 韩正敏. 白芨内生真菌的多样性[J]. 浙江农业学报, 2017, 29(12): 2077-2083. |
[12] | 彭涛, 欧阳宁相, 张亮, 盛浩, 周清, 黄运湘, 张杨珠. 湘东花岗岩发育水稻土在中国土壤系统分类中的归属[J]. 浙江农业学报, 2017, 29(10): 1726-1732. |
[13] | 李星月1,2, 白春启3, 刘奇志2,*, 李贺勤4, 张鸿1. 北京地区连作草莓根际土壤中真滑刃线虫的鉴定[J]. 浙江农业学报, 2016, 28(6): 1018-. |
[14] | 彭祺1,屠礼芬1,*,张凯兵2. 基于双椭圆变化参数的香蕉形状描述方法[J]. 浙江农业学报, 2016, 28(3): 515-. |
[15] | 赵小燕1,2,叶胜海2,李小华2,翟荣荣2,余鹏1,2,金庆生2,张小明2,*. InDel标记鉴定水稻籼粳属性及预测杂种优势[J]. 浙江农业学报, 2015, 27(8): 1309-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||