浙江农业学报 ›› 2024, Vol. 36 ›› Issue (1): 205-214.DOI: 10.3969/j.issn.1004-1524.20230414
陈恒辉1,2(), 王军峰3, 韩延超2, 陈慧芝2, 吴伟杰2, 丁玉庭1, 童川1, 郜海燕2,*(
)
收稿日期:
2023-03-30
出版日期:
2024-01-25
发布日期:
2024-02-18
作者简介:
陈恒辉(1994—),男,安徽宿州人,硕士研究生,研究方向为食品物流保鲜与品质调控。E-mail:chh2268173673@163.com
通讯作者:
* 郜海燕,E-mail:spsghy@163.com
基金资助:
CHEN Henghui1,2(), WANG Junfeng3, HAN Yanchao2, CHEN Huizhi2, WU Weijie2, DING Yuting1, TONG Chuan1, GAO Haiyan2,*(
)
Received:
2023-03-30
Online:
2024-01-25
Published:
2024-02-18
摘要:
为研究不同干燥方式对桑叶枸杞固体饮料品质的影响,以桑叶、枸杞为基本原料,通过微波干燥、鼓风干燥和真空冷冻干燥3种方式分别制备桑叶枸杞固体饮料,并检测干燥后粉体的质构、色泽及营养品质变化。从物理性质来看,真空冷冻干燥的粉体在稳定性、可压性与均一性上表现较好,鼓风干燥的粉体在堆积性和流动性上相对更好。真空冷冻干燥粉体的总糖含量最高,亮度值最大,湿润下沉时间短。结合吸湿特性与微观结构判断,真空冷冻干燥制备的粉体品质优于其他2种干燥方式。为了改善饮料风味,采用响应面试验进行口感优化,结果表明,当木糖醇添加量为27.30%(质量分数,下同)、甜菊糖苷添加量为3.67%、苹果酸添加量为0.11%时,口感最好。
中图分类号:
陈恒辉, 王军峰, 韩延超, 陈慧芝, 吴伟杰, 丁玉庭, 童川, 郜海燕. 干燥方式对桑叶枸杞固体饮料品质的影响及其口感优化[J]. 浙江农业学报, 2024, 36(1): 205-214.
CHEN Henghui, WANG Junfeng, HAN Yanchao, CHEN Huizhi, WU Weijie, DING Yuting, TONG Chuan, GAO Haiyan. Effects of drying methods on quality of solid drinks made from mulberry leaves and barbary wolfberry fruits and its taste optimization[J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 205-214.
图1 鼓风干燥(A)、微波干燥(B)、真空冷冻干燥(C)对粉体物理指纹图谱的影响 ρb,松密度;ρt,振实密度;W,含水量;α,休止角;H,吸湿率;HR,豪斯纳比率;P,孔隙率;DC,压缩度;D50,中值粒径;span,径距;width,粒径范围。
Fig.1 Effect of forced air drying (A), microwave drying (B), vacuum freeze drying (C) on physical fingerprints of powder ρb, Bulk density; ρt, Tap density; W, Water content; α, Angle of repose; H, Hygroscopicity; HR, Hausner ratio; P, Porosity; DC, Compressibility; D50, Median particle size; span, Particle size span; width, Particle size width.
干燥方式 Drying method | 堆积性 Accumulation | 稳定性 Stability | 流动性 Flowability | 可压性 Compressibility | 均一性 Homogeneity |
---|---|---|---|---|---|
FAD | 7.57±0.10 a | 2.61±0.11 a | 3.96±0.16 a | 3.48±0.19 c | 6.08±0.15 b |
MD | 6.67±0.15 b | 2.41±0.02 b | 3.30±0.05 b | 4.25±0.20 b | 5.73±0.02 c |
VFD | 5.83±0.10 c | 2.72±0.04 a | 3.48±0.22 b | 5.04±0.19 a | 8.23±0.08 a |
表1 干燥工艺对粉体物理性质的影响
Table 1 Influence of drying methods on physical properties of powder
干燥方式 Drying method | 堆积性 Accumulation | 稳定性 Stability | 流动性 Flowability | 可压性 Compressibility | 均一性 Homogeneity |
---|---|---|---|---|---|
FAD | 7.57±0.10 a | 2.61±0.11 a | 3.96±0.16 a | 3.48±0.19 c | 6.08±0.15 b |
MD | 6.67±0.15 b | 2.41±0.02 b | 3.30±0.05 b | 4.25±0.20 b | 5.73±0.02 c |
VFD | 5.83±0.10 c | 2.72±0.04 a | 3.48±0.22 b | 5.04±0.19 a | 8.23±0.08 a |
指标 Index | 溶解性 Dissoluvability/ % | 溶解时间 Dissolution time/s | 湿润下沉时间 Moisture sinking time/s |
---|---|---|---|
FAD | 86.33±1.72 b | 81.07±2.95 a | 137.67±6.03 a |
MD | 89.63±3.01 ab | 78.67±2.55 ab | 117.00±2.53 b |
VFD | 93.37±0.99 a | 73.33±1.56 b | 111.00±4.36 b |
表2 干燥工艺对粉体溶解能力的影响
Table 2 Influence of drying methods on sissolution abilities of powder
指标 Index | 溶解性 Dissoluvability/ % | 溶解时间 Dissolution time/s | 湿润下沉时间 Moisture sinking time/s |
---|---|---|---|
FAD | 86.33±1.72 b | 81.07±2.95 a | 137.67±6.03 a |
MD | 89.63±3.01 ab | 78.67±2.55 ab | 117.00±2.53 b |
VFD | 93.37±0.99 a | 73.33±1.56 b | 111.00±4.36 b |
图2 干燥方式对粉体吸湿率的影响 FAD,鼓风干燥;MD,微波干燥;VFD,真空冷冻干燥。下同。
Fig.2 Effect of drying methods on moisture absorption rate of powder FAD, Forced air drying; MD, Microwave drying; VFD, Vacuum freeze drying. The same as below.
干燥方式 Drying method | 吸湿方程 Hygroscopic equation | 吸湿速率方程 Hygroscopic rate equation | 吸湿平衡时间 Hygroscopic equilibrium time/h | 平衡吸湿率 Moisture absorption rate/% | 吸湿初速度 Initial hygroscopic velocity/ (g·h-1) | 吸湿加速度 Hygroscopic acceleration/ (g·h-2) |
---|---|---|---|---|---|---|
FAD | y=-0.001 4t2+0.387t+1.631 | y'=-0.003 0t+0.387 | 108 | 33.0 | 0.387 | -0.002 8 |
MD | y=-0.001 3t2+0.414t+3.641 | y'=-0.002 5t+0.414 | 168 | 36.5 | 0.462 | -0.002 5 |
VFD | y=-0.001 5t2+0.343t+2.727 | y'=-0.003 0t+0.343 | 156 | 30.9 | 0.343 | -0.003 0 |
表3 不同干燥方式的吸湿方程与相关指标
Table 3 Moisture absorption equation and related indexes for drying methods
干燥方式 Drying method | 吸湿方程 Hygroscopic equation | 吸湿速率方程 Hygroscopic rate equation | 吸湿平衡时间 Hygroscopic equilibrium time/h | 平衡吸湿率 Moisture absorption rate/% | 吸湿初速度 Initial hygroscopic velocity/ (g·h-1) | 吸湿加速度 Hygroscopic acceleration/ (g·h-2) |
---|---|---|---|---|---|---|
FAD | y=-0.001 4t2+0.387t+1.631 | y'=-0.003 0t+0.387 | 108 | 33.0 | 0.387 | -0.002 8 |
MD | y=-0.001 3t2+0.414t+3.641 | y'=-0.002 5t+0.414 | 168 | 36.5 | 0.462 | -0.002 5 |
VFD | y=-0.001 5t2+0.343t+2.727 | y'=-0.003 0t+0.343 | 156 | 30.9 | 0.343 | -0.003 0 |
干燥方式 Drying method | L* | a* | b* | ΔE |
---|---|---|---|---|
FAD | 21.74± 1.22 b | 8.54± 0.35 b | 16.75± 0.64 b | 76.78± 0.22 b |
MD | 18.52± 0.63 c | 2.83± 0.44 c | 6.03± 0.37 c | 78.96± 0.61 a |
VFD | 25.88± 0.52 a | 10.31± 0.27 a | 22.61± 0.78 a | 75.06± 0.25 c |
表4 干燥工艺对粉体色泽的影响
Table 4 Influence of drying methods on color of powder
干燥方式 Drying method | L* | a* | b* | ΔE |
---|---|---|---|---|
FAD | 21.74± 1.22 b | 8.54± 0.35 b | 16.75± 0.64 b | 76.78± 0.22 b |
MD | 18.52± 0.63 c | 2.83± 0.44 c | 6.03± 0.37 c | 78.96± 0.61 a |
VFD | 25.88± 0.52 a | 10.31± 0.27 a | 22.61± 0.78 a | 75.06± 0.25 c |
图4 干燥方式对粉体总糖含量的影响 柱上无相同字母的表示差异显著(P<0.05)。
Fig.4 Effect of drying methods on total sugar content of powder Bars marked without the same letters indicate significant difference at P<0.05.
试验编号 Test number | A | B | C | 口感评分 Taste score |
---|---|---|---|---|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | -1 1 -1 1 -1 1 -1 1 0 0 0 0 0 0 0 0 0 | -1 -1 1 1 0 0 0 0 -1 1 -1 1 0 0 0 0 0 | 0 0 0 0 -1 -1 1 1 -1 -1 1 1 0 0 0 0 0 | 69.4 70.1 69.4 73.1 69.2 84.4 78.4 72.3 71.6 80.0 75.1 70.6 84.7 86.3 84.9 85.1 85.8 |
表5 试验设计与结果
Table 5 Trial design and result
试验编号 Test number | A | B | C | 口感评分 Taste score |
---|---|---|---|---|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | -1 1 -1 1 -1 1 -1 1 0 0 0 0 0 0 0 0 0 | -1 -1 1 1 0 0 0 0 -1 1 -1 1 0 0 0 0 0 | 0 0 0 0 -1 -1 1 1 -1 -1 1 1 0 0 0 0 0 | 69.4 70.1 69.4 73.1 69.2 84.4 78.4 72.3 71.6 80.0 75.1 70.6 84.7 86.3 84.9 85.1 85.8 |
图5 响应面与等高线图 A,木糖醇添加量;B,甜菊糖苷添加量;C,苹果酸添加量。
Fig.5 Response surface and contour plots A, Addition amount of xylitol; B, Addition amount of stevia glycoside; C, Addition amount of malic acid.
[15] | WANG Y J, AN W, SHI Z G, et al. Research progress in wolfberry medicinal properties[J]. Journal of Anhui Agricultural Sciences, 2008, 36(30): 13213-13214. (in Chinese with English abstract) |
[16] | 孙冰, 王晗, 王际辉. 枸杞中活性物质的提取及抗氧化活性的研究[C]// 中国食品科学技术学会第八届年会暨第六届东西方食品业高层论坛论文摘要集. 上海: 中国食品科学技术学会, 2011: 44. |
[17] | LIU J F, BAUM L, YU S S, et al. Preservation of retinal function through synaptic stabilization in Alzheimer’s disease model mouse retina by Lycium barbarum extracts[J]. Frontiers in Aging Neuroscience, 2022, 13: 788798. |
[18] | ZHOU H T, DING S S, SUN C X, et al. Lycium barbarum extracts extend lifespan and alleviate proteotoxicity in Caenorhabditis elegans[J]. Frontiers in Nutrition, 2022, 8: 815947. |
[19] | WANG Y, SUN M Y, JIN H Y, et al. Effects of Lycium barbarum polysaccharides on immunity and the gut microbiota in cyclophosphamide-induced immunosuppressed mice[J]. Frontiers in Microbiology, 2021, 12: 701566. |
[20] | 冷进松, 徐庆杰. 人参、枸杞复合固体饮料加工工艺的研究[J]. 食品研究与开发, 2014, 35(24): 103-108. |
LENG J S, XU Q J. Study on ginseng, wolfberry compound solid beverage processing technology[J]. Food Research and Development, 2014, 35(24): 103-108. (in Chinese with English abstract) | |
[21] | 姜城红, 施雯怡, 张喜玲, 等. 响应面法优化麦胚山楂复合固体饮料配方的研究[J]. 农产品加工, 2022(20): 5-10. |
JIANG C H, SHI W Y, ZHANG X L, et al. Study on optimization of wheat germ hawthorn composite solid drink formula by response surface method[J]. Farm Products Processing, 2022(20): 5-10. (in Chinese with English abstract) | |
[22] | 黄蓉, 周倩, 吴敏, 等. 桑叶青钱柳复合固体饮料的研究[J]. 农产品加工, 2022(14): 5-9. |
HUANG R, ZHOU Q, WU M, et al. Development of mulberry leaf and Cyclocarya paliurus solid beverage[J]. Farm Products Processing, 2022(14): 5-9. (in Chinese with English abstract) | |
[23] | 李延年. 丹参浸膏干燥工艺与品质相关性研究[D]. 成都: 成都中医药大学, 2018. |
LI Y N. Study on the correlation of drying methods and quality of Salvia extract[D]. Chengdu: Chengdu University of Traditional Chinese Medicine, 2018. (in Chinese with English abstract) | |
[24] | 王瑜婷, 徐东婷, 邓桂海, 等. 干燥方式对黄连浸膏粉物理指纹图谱和有效成分的影响[J]. 广东药科大学学报, 2022, 38(1): 63-69. |
[1] | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 固体饮料: GB/T 29602—2013[S]. 北京: 中国标准出版社, 2014. |
[2] | 张佳欣, 范松林, 谢顾, 等. 固体饮料的性质及加工技术应用进展[J]. 轻工科技, 2017, 33(9): 8-10. |
[24] | WANG Y T, XU D T, DENG G H, et al. The effect of different drying methods on physical fingerprint and effective components of Coptidis Rhizoma extract powder[J]. Journal of Guangdong Pharmaceutical University, 2022, 38(1): 63-69. (in Chinese with English abstract) |
[25] | 余欣彤, 黎桃敏, 施文婷, 等. 干燥方式对板蓝根浸膏粉HPLC及物理指纹图谱的影响[J]. 现代中药研究与实践, 2022, 36(1): 66-71. |
[2] | ZHANG J X, FAN S L, XIE G, et al. Properties of solid beverage and application progress of processing technology[J]. Light Industry Science and Technology, 2017, 33(9): 8-10. (in Chinese) |
[3] | 张玉蝶, 蒋佳洛, 卢冬晴, 等. 真空冷冻干燥技术在固体饮料中的应用[J]. 轻工科技, 2018, 34(11): 26-27. |
[25] | YU X T, LI T M, SHI W T, et al. Effects of drying methods on HPLC and physical fingerprint of isatidis Radix extract powders[J]. Research and Practice on Chinese Medicines, 2022, 36(1): 66-71. (in Chinese with English abstract) |
[26] | 罗铮, 邓雯, 张前亮, 等. 基于中药QbD理念的当归破壁粉质量评价研究[J]. 中国中药杂志, 2020, 45(5): 1105-1113. |
[3] | ZHANG Y D, JIANG J L, LU D Q, et al. Application of vacuum freeze-drying technology in solid beverage[J]. Light Industry Science and Technology, 2018, 34(11): 26-27. (in Chinese) |
[4] | 付博飞, 奚祝, 彭小伟, 等. 喷雾干燥对固体饮料制备的影响[J]. 农产品加工, 2018(11): 62-64. |
FU B F, XI Z, PENG X W, et al. Effect of spray drying on the preparation of solid drinks[J]. Farm Products Processing, 2018(11): 62-64. (in Chinese with English abstract) | |
[5] | 许健豪, 钟杨生, 陈芳艳, 等. 桑叶中的活性功能物质及桑叶茶的开发利用[J]. 广东蚕业, 2015, 49(1): 29-33. |
[26] | LUO Z, DENG W, ZHANG Q L, et al. Quality evaluation of angelica broken wall powder based on QbD concept of traditional Chinese medicine[J]. China Journal of Chinese Materia Medica, 2020, 45(5): 1105-1113. (in Chinese with English abstract) |
[27] | 任彩霞. 杜仲速溶固体饮料的研制[J]. 现代食品, 2022, 28(10): 90-94. |
REN C X. Study on preparation of Eucommia ulmoides oliver instant solid beverage[J]. Modern Food, 2022, 28(10): 90-94. (in Chinese with English abstract) | |
[28] | 陈安利, 马卓, 陈艳熙. 不同干燥方式对茯苓枸杞固体饮料品质影响的研究[J]. 中国食品添加剂, 2022, 33(4): 196-203. |
[5] | XU J H, ZHONG Y S, CHEN F Y, et al. Active functional substances in mulberry leaves and the development and utilization of mulberry leaf tea[J]. Guangdong Sericulture, 2015, 49(1): 29-33. (in Chinese) |
[6] | 杨玉珍. 桑叶有效成分的提取、生物学功能及动物生产中的应用[J]. 饲料研究, 2022, 45(15): 156-159. |
[28] | CHEN A L, MA Z, CHEN Y X. Comparison of effect of different drying methods on the quality of poria Cocos and wolfberry solid beverage[J]. China Food Additives, 2022, 33(4): 196-203. (in Chinese with English abstract) |
[29] | 张淑丹, 高建德, 宋萍, 等. 不同药用辅料对枸杞颗粒吸湿性及成型性的影响[J]. 中成药, 2020, 42(6): 1406-1410. |
[6] | YANG Y Z. Extraction, biological function and application of animal production from mulberry leaves[J]. Feed Research, 2022, 45(15): 156-159. (in Chinese with English abstract) |
[7] | 赵林.桑叶的功效成分、 药理作用及应用综述[C]// 2021中国药膳学术研讨会论文集. 北京: 中国药膳研究会, 2021: 382-387. |
[29] | ZHANG S D, GAO J D, SONG P, et al. Effects of different pharmaceutical excipients on the hygroscopicity and formability of Lycii Fructus granules[J]. Chinese Traditional Patent Medicine, 2020, 42(6): 1406-1410. (in Chinese with English abstract) |
[30] | 乔子桐, 付慧敏, 张纯刚, 等. 芪黄通秘软胶囊吸湿动力学研究[J]. 中南药学, 2022, 20(1): 70-74. |
[8] | 王霞, 肖定福. 桑叶提取物对动物免疫功能的调节作用及其机理研究进展[J]. 饲料博览, 2020(12): 9-13. |
WANG X, XIAO D F. Research progress on the effect of mulberry leaf extract on immune function and its mechanism[J]. Feed Review, 2020(12): 9-13. (in Chinese with English abstract) | |
[30] | QIAO Z T, FU H M, ZHANG C G, et al. Hygroscopicity dynamics of Qihuang Tongmi soft capsules[J]. Central South Pharmacy, 2022, 20(1): 70-74. (in Chinese with English abstract) |
[31] | NIELSEN S S. Total carbohydrate by phenol-sulfuric acid method[M]// Food Analysis Laboratory Manual. Cham: Springer, 2017: 137-141. |
[9] | WANG Y S, SONG K Y, KIM Y. Effects of thermally treated mulberry leaves on the quality, properties, and antioxidant activities of yogurt[J]. Journal of Food Processing and Preservation, 2022, 46(1): e16139. |
[10] | AFZAL F, KHALID W, NAVEED ASIF M, et al. Role of mulberry leaves in human nutrition: a review[J]. Acta Scientifci Nutritional Health, 2021, 4(3): 43-50. |
[32] | 严锐, 韩延超, 吴伟杰, 等. 水杨酸处理对鲜莲采后品质及抗氧化酶活性的影响[J]. 中国食品学报, 2022, 22(3): 235-245. |
YAN R, HAN Y C, WU W J, et al. Effect of salicylic acid treatment on the postharvest quality and antioxidant enzyme activity of fresh lotus[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(3): 235-245. (in Chinese with English abstract) | |
[11] | MA F, SHEN W W, ZHANG X Q, et al. Anti-HSV activity of kuwanon X from mulberry leaves with genes expression inhibitory and HSV-1 induced NF-κB deactivated properties[J]. Biological & Pharmaceutical Bulletin, 2016, 39(10): 1667-1674. |
[12] | MA G Q, CHAI X Y, HOU G G, et al. Phytochemistry, bioactivities and future prospects of mulberry leaves: a review[J]. Food Chemistry, 2022, 372: 131335. |
[33] | 刘涛, 付春梅, 唐玉, 等. 不同干燥方式对桑枝提取物物理指纹图谱及其总黄酮含量的影响[J]. 中国实验方剂学杂志, 2019, 25(3): 34-38. |
LIU T, FU C M, TANG Y, et al. Effect of different drying methods on physical fingerprint and total flavonoids content of Mori Ramulus extract[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2019, 25(3): 34-38. (in Chinese with English abstract) | |
[13] | 王晓雨, 利通, 常晨光, 等. 促干护色剂在枸杞干制过程中促干护色机理的研究[J]. 食品与发酵工业, 2023, 49(14): 41-49. |
WANG X Y, LI T, CHANG C G, et al. Study on mechanism of drying-promoting and color-protecting agent during drying process of Lycium barbarum[J]. Food and Fermentation Industries, 2023, 49(14): 41-49. (in Chinese with English abstract) | |
[34] | 刘静波, 马爽, 刘博群, 等. 不同干燥方式对全蛋粉冲调性能的影响[J]. 农业工程学报, 2011, 27(12): 383-388. |
LIU J B, MA S, LIU B Q, et al. Effects of different drying methods on solubility of whole egg powder[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(12): 383-388. (in Chinese with English abstract) | |
[14] | 邵翠翠, 邓源喜, 杨蓓蓓, 等. 枸杞的营养保健功能及其应用进展[J]. 安徽农学通报, 2020, 26(17): 39-41. |
SHAO C C, DENG Y X, YANG B B, et al. The nutritional value and health function of Lycium barbarum and its application progress[J]. Anhui Agricultural Science Bulletin, 2020, 26(17): 39-41. (in Chinese with English abstract) | |
[35] | KROKIDA M K, PHILIPPOPOULOS C. Rehydration of dehydrated foods[J]. Drying Technology, 2005, 23(4): 799-830. |
[36] | 李瑞杰, 张慜. 不同干燥方式对胡萝卜片吸湿性及品质的影响[J]. 食品与生物技术学报, 2010, 29(3): 342-349. |
LI R J, ZHANG M. Drying methods affect the quality and hygroscopic capacity of carrot chips[J]. Journal of Food Science and Biotechnology, 2010, 29(3): 342-349. (in Chinese with English abstract) | |
[37] | 朱诗竟. 中药浸膏粉体吸湿性及其表面改性技术的应用研究[D]. 南京: 南京中医药大学, 2014. |
ZHU S J. The research for the hygroscopic properties and modification technology of medicine extract powder[D]. Nanjing: Nanjing University of Chinese Medicine, 2014. (in Chinese with English abstract) | |
[38] | 范凌云, 余琰, 高建德, 等. 不同辅料对三黄粉吸湿性的影响[J]. 中成药, 2015, 37(12): 2764-2766. |
FAN L Y, YU Y, GAO J D, et al. Effect of different excipients on hygroscopicity of Sanhuang Powder[J]. Chinese Traditional Patent Medicine, 2015, 37(12): 2764-2766. (in Chinese) | |
[39] | TAIEB B A, ADEL K, SLAWOMIR K. Effect of thermal process and drying principle on color loss of pineapple slices[J]. American Journal of Food Science and Technology, 2014, 2(1): 17-20. |
[40] | MA Q Q, SANTHANAM R K, XUE Z H, et al. Effect of different drying methods on the physicochemical properties and antioxidant activities of mulberry leaves polysaccharides[J]. International Journal of Biological Macromolecules, 2018, 119: 1137-1143. |
[41] | 苏敬红, 牛格格, 吴佳琦, 等. 不同干燥方式对火龙果茎多糖理化特性及功能活性的影响[J]. 食品研究与开发, 2021, 42(15): 34-39. |
SU J H, NIU G G, WU J Q, et al. Effects of different drying methods on physicochemical properties and functional activities of polysaccharides from Hylocereus undatus stem[J]. Food Research and Development, 2021, 42(15): 34-39. (in Chinese with English abstract) | |
[42] | VEGAS C, ZAVALETA A I, ZARZOSO B. Optimization of fermentation process conditions for chili pepper (Capsicum frutescens) fruit using response surface methodology[J]. Agronomía Colombiana, 2018, 36(1): 88-96. |
[15] | 王亚军, 安巍, 石志刚, 等. 枸杞药用价值的研究进展[J]. 安徽农业科学, 2008, 36(30): 13213-13214. |
[1] | 候彩霞, 丁德东, 何静, 赵吉桃, 李彦湘, 赵倩, 张崇庆, 李南. 枸杞内生真菌的筛选、鉴定及其生防作用[J]. 浙江农业学报, 2023, 35(7): 1662-1671. |
[2] | 王晓艳, 韩延超, 吴伟杰, 邓尚贵, 陈杭君, 房祥军, 郜海燕. 不同干燥方式对菠萝品质和挥发性风味的影响[J]. 浙江农业学报, 2023, 35(5): 1168-1177. |
[3] | 李永晖, 李捷, 冯丽丹, 何静, 张煦, 刘祥林. 不同植物免疫诱抗剂对枸杞鲜果产量、抗病性和贮藏能力的差异比较[J]. 浙江农业学报, 2023, 35(1): 164-174. |
[4] | 李永梅, 王浩, 赵勇, 张立根. 基于连续统去除法的枸杞叶片含水率高光谱估算[J]. 浙江农业学报, 2022, 34(4): 781-789. |
[5] | 张小彦, 何静, 侯彩霞, 张树衡. 枸杞根腐病菌拮抗菌株的筛选与鉴定[J]. 浙江农业学报, 2020, 32(5): 858-865. |
[6] | 刘予煊, 程焕, 叶兴乾, 刘慧燕, 方海田. 不同菌株发酵枸杞汁中生物活性物质与香气组成物质含量变化[J]. 浙江农业学报, 2020, 32(3): 499-509. |
[7] | 田晓静, 龙鸣, 王俊, 马忠仁, 韦真博, 陈士恩, 高丹丹, 丁波. 基于电子鼻气味信息和多元统计分析的枸杞子产地溯源研究[J]. 浙江农业学报, 2018, 30(9): 1604-1611. |
[8] | 马利奋, 尹跃, 赵建华, 王亚军, 戴国礼, 安巍. 17个枸杞品种的SCoT遗传多样性[J]. 浙江农业学报, 2018, 30(10): 1665-1670. |
[9] | 黄渝岚1,2,兰柳燕2,胡盛沪2,张超兰2,冯健玲2,唐健1,黎晓峰1,2,*. 有机肥和铁肥对水稻土上桑叶失绿病的效应研究[J]. 浙江农业学报, 2015, 27(11): 1984-. |
[10] | 刘英娟1,杜金梁2,3,贾睿1,2,曹丽萍2,3,王佳豪1,殷国俊1,2,3,*. 枸杞多糖对四氯化碳致建鲤急性肝损伤的保护作用[J]. 浙江农业学报, 2015, 27(1): 37-. |
[11] | 李有贵,林天宝,钟石,吕志强,计东风*. 桑叶1\|脱氧野尻霉素生长分布规律研究 [J]. 浙江农业学报, 2014, 26(5): 1240-. |
[12] | 安巍;王亚军;尹跃;罗青;石志刚;赵建华. 枸杞种质资源的SRAP分析[J]. , 2013, 25(6): 0-1237. |
[13] | 曾宴平;马家海*;陈斌斌;蔡永超;高嵩. 浙江省枸杞岛潮间带大型底栖海藻群落的研究[J]. , 2013, 25(5): 0-1102. |
[14] | 高嵩;马家海*;蔡永超;雎敏;陈斌斌;曾宴平;何培民. 浙江省象山、奉化和枸杞岛常见石莼属绿藻的形态学研究和分子鉴定[J]. , 2012, 24(6): 0-1014. |
[15] | 高嵩;马家海*;蔡永超;雎敏;陈斌斌;曾宴平;何培民. 浙江省象山、奉化和枸杞岛常见石莼属绿藻的形态学研究和分子鉴定[J]. , 2012, 24(6): 0-1014. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||