浙江农业学报 ›› 2024, Vol. 36 ›› Issue (4): 811-824.DOI: 10.3969/j.issn.1004-1524.20230535
陈晓涓1(), 罗军1, 王富敏1, 李拓键1, 屈燕1,2,3,*(
)
收稿日期:
2023-04-26
出版日期:
2024-04-25
发布日期:
2024-04-29
作者简介:
陈晓涓(1998—),女,云南大理人,硕士研究生,研究方向为园林植物资源开发与利用研究。E-mail: 359911018@qq.com
通讯作者:
*屈燕,E-mail: quyan@swfu.edu.cn
基金资助:
CHEN Xiaojuan1(), LUO Jun1, WANG Fumin1, LI Tuojian1, QU Yan1,2,3,*(
)
Received:
2023-04-26
Online:
2024-04-25
Published:
2024-04-29
Contact:
QU Yan
摘要:
为挖掘全缘叶绿绒蒿黄色花形成的关键基因,探讨其花色形成在转录水平上的调控机制,选取全缘叶绿绒蒿 3 个花发育时期的花瓣组织进行转录组测序,并对盛花期花瓣组织的黄酮类化合物进行了绝对定量。结果表明:(1)LC-MS/MS 共检测到 38 种黄酮类化合物,其中以槲皮素及其衍生物为主,其含量超过黄酮类化合物总含量的 80%;(2)转录组测序共获得 171 902 条单基因,筛选后得到 14 906 个差异表达基因,这些差异基因在 48 条 KEGG 通路中显著富集(P<0.05),其中苯丙烷生物合成通路与类黄酮生物合成通路在 3 个花发育时期都显著富集(P<0.05);(3)同时还发现与黄酮类化合物合成相关的基因在 3 个花发育时期中差异表达,同一时期 MiFLSs(Cluster-28469.86、Cluster-28469.89、Cluster-28469.91)的表达量是 MiDFR(Cluster-49617.1)的 1.2~4.7 倍;与槲皮素衍生物合成相关的 MiFG3(Cluster-15071.0)呈现逐渐上调的表达趋势;转录因子 MiMYB4 表达量也逐渐上升,且与 MiMYB38、MiMYB39、MiDFR(Cluster-49617.1)和 MiANS(Cluster-29740.1)呈强负相关关系;(4)所选基因 qRT-PCR 结果与 RNA-seq 相关性较好(R2=0.820 4,P<0.05),表明转录组数据可靠。综上所述,全缘叶绿绒蒿黄色花瓣的主要成分可能是槲皮素及其衍生物;MiFLSs 相较于 MiDFR 更强的竞争力促使更多底物流向黄酮醇合成,为大量合成黄酮醇类化合物提供了前体物,MiFG3 消耗前体物促进槲皮素衍生物的大量合成;同时,转录因子 MiMYB4 可能通过抑制与花青素合成相关的结构基因和转录因子,间接促进底物流向黄酮醇合成,这些结构基因与转录因子共同调控全缘叶绿绒蒿的花色形成过程。研究筛选出了6个调控全缘叶绿绒蒿花色形成的关键基因,初步探讨了其黄色花形成的分子机制,为进一步研究全缘叶绿绒蒿花色变异提供了理论参考。
中图分类号:
陈晓涓, 罗军, 王富敏, 李拓键, 屈燕. 全缘叶绿绒蒿黄色花形成关键基因的挖掘[J]. 浙江农业学报, 2024, 36(4): 811-824.
CHEN Xiaojuan, LUO Jun, WANG Fumin, LI Tuojian, QU Yan. Excavation of key genes for yellow flower formation in Meconopsis integrifolia[J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 811-824.
图1 全缘叶绿绒蒿3个发育时期的花朵 A,自然采摘状态下的花朵;B,去除萼片后的花朵。
Fig.1 Flowers in 3 developmental stages of M. integrifolia A, Flowers in a naturally picked state; B, Flowers after sepal removal.
实验材料 Experimental materials | 开花时期 Flowering period | 编号 Number | 皇家比色卡色号 Royal color card number | 采集地 Collection location | 经纬度 Latitude and Longitude |
---|---|---|---|---|---|
全缘叶绿绒蒿 | 花蕾期Budding period | P1 | YELLOW-GREEN 145D | 云南省丽江市玉龙雪山 | 27°0'10″N, |
M. integrifolia | 初开期Initial opening period | P2 | YELLOW-GREEN 150D | Jade Dragon Snow Mountain, | 100°10'56″E |
盛花期Blooming period | P3 | YELLOW-GREEN 150B | Lijiang City, Yunnan Province |
表1 全缘叶绿绒蒿花瓣采集信息表
Table 1 M. integrifolia petal collection information table
实验材料 Experimental materials | 开花时期 Flowering period | 编号 Number | 皇家比色卡色号 Royal color card number | 采集地 Collection location | 经纬度 Latitude and Longitude |
---|---|---|---|---|---|
全缘叶绿绒蒿 | 花蕾期Budding period | P1 | YELLOW-GREEN 145D | 云南省丽江市玉龙雪山 | 27°0'10″N, |
M. integrifolia | 初开期Initial opening period | P2 | YELLOW-GREEN 150D | Jade Dragon Snow Mountain, | 100°10'56″E |
盛花期Blooming period | P3 | YELLOW-GREEN 150B | Lijiang City, Yunnan Province |
图2 全缘叶绿绒蒿P3期花瓣中6种黄酮类化合物的含量 不同字母表示在0.05水平上差异显著。
Fig.2 Content of 6 flavonoids in the petals of M. integrifolia P3 stage Different letters mean significant difference at 0.05 level.
样本 Sample | 原始序列 Raw reads | 过滤后序列 Clean reads | 过滤后的碱基 Clean bases/GB | 错误率 Error rate/% | Q20/% | Q30/% | GC/% |
---|---|---|---|---|---|---|---|
QYY-P1-1 | 46 105 634 | 45 312 642 | 6.80 | 0.03 | 97.27 | 92.42 | 41.41 |
QYY-P1-2 | 46 446 078 | 45 552 808 | 6.83 | 0.03 | 97.53 | 93.02 | 41.65 |
QYY-P1-3 | 46 078 118 | 45 182 696 | 6.78 | 0.03 | 97.26 | 92.44 | 41.62 |
QYY-P2-1 | 44 529 162 | 43 227 950 | 6.48 | 0.03 | 97.30 | 92.56 | 41.13 |
QYY-P2-2 | 47 350 222 | 46 244 742 | 6.94 | 0.03 | 97.30 | 92.42 | 41.16 |
QYY-P2-3 | 48 324 836 | 47 314 210 | 7.10 | 0.03 | 97.72 | 93.41 | 40.90 |
QYY-P3-1 | 48 823 172 | 47 635 926 | 7.15 | 0.03 | 97.34 | 92.59 | 41.23 |
QYY-P3-2 | 46 197 126 | 44 753 484 | 6.71 | 0.03 | 97.21 | 92.39 | 41.18 |
QYY-P3-3 | 48 061 136 | 46 960 540 | 7.04 | 0.03 | 97.51 | 92.97 | 41.03 |
表2 全缘叶绿绒蒿转录组数据质量信息
Table 2 Transcriptome data quality information for M. integrifolia
样本 Sample | 原始序列 Raw reads | 过滤后序列 Clean reads | 过滤后的碱基 Clean bases/GB | 错误率 Error rate/% | Q20/% | Q30/% | GC/% |
---|---|---|---|---|---|---|---|
QYY-P1-1 | 46 105 634 | 45 312 642 | 6.80 | 0.03 | 97.27 | 92.42 | 41.41 |
QYY-P1-2 | 46 446 078 | 45 552 808 | 6.83 | 0.03 | 97.53 | 93.02 | 41.65 |
QYY-P1-3 | 46 078 118 | 45 182 696 | 6.78 | 0.03 | 97.26 | 92.44 | 41.62 |
QYY-P2-1 | 44 529 162 | 43 227 950 | 6.48 | 0.03 | 97.30 | 92.56 | 41.13 |
QYY-P2-2 | 47 350 222 | 46 244 742 | 6.94 | 0.03 | 97.30 | 92.42 | 41.16 |
QYY-P2-3 | 48 324 836 | 47 314 210 | 7.10 | 0.03 | 97.72 | 93.41 | 40.90 |
QYY-P3-1 | 48 823 172 | 47 635 926 | 7.15 | 0.03 | 97.34 | 92.59 | 41.23 |
QYY-P3-2 | 46 197 126 | 44 753 484 | 6.71 | 0.03 | 97.21 | 92.39 | 41.18 |
QYY-P3-3 | 48 061 136 | 46 960 540 | 7.04 | 0.03 | 97.51 | 92.97 | 41.03 |
数据库 Database | 注释到的基因数量 Number of genes | 占比 Percentage/% |
---|---|---|
KEGG | 76 662 | 44.60 |
Nr | 97 732 | 56.85 |
SwissProt | 70 402 | 40.95 |
TrEMBL | 103 886 | 60.43 |
KOG | 61 267 | 35.64 |
GO | 87 982 | 51.18 |
Pfam | 51 596 | 30.01 |
Annotated in at least | 106 907 | 62.19 |
one Database | ||
Total Unigenes | 171 902 | 100 |
表3 七大数据库对转录本的注释情况
Table 3 Annotations to transcripts in the seven major databases
数据库 Database | 注释到的基因数量 Number of genes | 占比 Percentage/% |
---|---|---|
KEGG | 76 662 | 44.60 |
Nr | 97 732 | 56.85 |
SwissProt | 70 402 | 40.95 |
TrEMBL | 103 886 | 60.43 |
KOG | 61 267 | 35.64 |
GO | 87 982 | 51.18 |
Pfam | 51 596 | 30.01 |
Annotated in at least | 106 907 | 62.19 |
one Database | ||
Total Unigenes | 171 902 | 100 |
图6 类黄酮及黄酮醇生物合成通路中关键差异表达基因及相关代谢物 红色虚线框为黄酮醇合成部分通路图。CHS,查尔酮合成酶;CHI,查尔酮异构酶;F3H,柚皮素 3-双加氧酶;FLS,黄酮醇合酶;F3'H,类黄酮3'-羟化酶;DFR,二氢黄酮醇 4-还原酶;ANS,花青素合酶;FG3,半乳糖苷葡萄糖基转移酶。
Fig.6 Key DEGs and associated metabolites in flavonoid and flavonol biosynthetic pathway The red dotted box shows the partial pathway of flavonol biosynthesis. CHS, Chalcone synthase; CHI, Chalcone isomerase; F3H, Naringenin 3-dioxygenase; FLS, Flavonol synthase; F3'H, Flavonoid 3'-hydroxylase; DFR, Flavanone 4-reductase; ANS, Anthocyanidin synthase; FG3, Galactoside glucosyltransferase.
基因 Gene name | 基因ID Gene ID | 蛋白长度 Protein length/aa | 等电点 Isoelectric point | 分子量 Molecular weight/u | 所属拟南芥亚族 The subgroup of Arabidopsis to which the gene belongs |
---|---|---|---|---|---|
MiMYB1 | Cluster-13873.16 | 1 185 | 9.35 | 131 836.98 | — |
MiMYB2 | Cluster-73976.7 | 570 | 6.33 | 63 623.76 | — |
MiMYB3 | Cluster-74122.1 | 501 | 5.89 | 55 023.13 | — |
MiMYB4 | Cluster-46647.219 | 271 | 8.59 | 30 734.68 | S4 |
MiMYB5 | Cluster-176.1 | 257 | 9.20 | 29 366.95 | — |
MiMYB6 | Cluster-24930.0 | 352 | 7.76 | 39 557.77 | S9 |
MiMYB7 | Cluster-26024.6 | 371 | 9.37 | 42 556.11 | — |
MiMYB8 | Cluster-26024.7 | 354 | 9.32 | 40 353.59 | — |
MiMYB9 | Cluster-26960.10 | 357 | 6.01 | 39 008.3 | — |
MiMYB10 | Cluster-28521.4 | 297 | 5.58 | 33 656.54 | S11 |
MiMYB11 | Cluster-29061.0 | 355 | 5.70 | 40 225.53 | S11 |
MiMYB12 | Cluster-41024.1 | 255 | 9.00 | 28 447.39 | — |
MiMYB13 | Cluster-42663.2 | 429 | 9.35 | 47 588.58 | — |
MiMYB14 | Cluster-43725.2 | 130 | 6.17 | 14 861.21 | S19 |
MiMYB15 | Cluster-43725.4 | 209 | 6.59 | 23 973.62 | S19 |
MiMYB16 | Cluster-74557.6 | 791 | 5.47 | 86 693.98 | — |
MiMYB17 | Cluster-48749.21 | 294 | 8.85 | 32 860.93 | — |
MiMYB18 | Cluster-54127.0 | 165 | 4.38 | 18 843.61 | — |
MiMYB19 | Cluster-54127.1 | 250 | 4.90 | 28 578.83 | — |
MiMYB20 | Cluster-54127.5 | 165 | 4.38 | 18 843.61 | — |
MiMYB21 | Cluster-56396.9 | 514 | 6.76 | 52 138.66 | S13 |
MiMYB22 | Cluster-56419.0 | 414 | 4.87 | 45 932.63 | — |
MiMYB23 | Cluster-58089.0 | 220 | 9.97 | 24 934.41 | — |
MiMYB24 | Cluster-59054.5 | 629 | 6.47 | 71 492.12 | — |
MiMYB25 | Cluster-59054.7 | 583 | 5.65 | 66 005.51 | — |
MiMYB26 | Cluster-60970.0 | 420 | 8.72 | 41 583.2 | S22 |
MiMYB27 | Cluster-61134.0 | 209 | 8.36 | 23 333.70 | — |
MiMYB28 | Cluster-73421.2 | 310 | 5.28 | 34 749.97 | — |
MiMYB29 | Cluster-61134.9 | 137 | 5.61 | 14 979.42 | — |
MiMYB30 | Cluster-61178.1 | 266 | 5.13 | 30 023.11 | S16 |
MiMYB31 | Cluster-64347.0 | 244 | 8.38 | 27 986.6 | S18 |
MiMYB32 | Cluster-6447.11 | 115 | 5.88 | 13 429.9 | S20 |
MiMYB33 | Cluster-6447.2 | 349 | 5.00 | 40 058.43 | S20 |
MiMYB34 | Cluster-6447.5 | 115 | 5.88 | 13 429.90 | S20 |
MiMYB35 | Cluster-66523.6 | 508 | 9.27 | 56 339.69 | — |
MiMYB36 | Cluster-67045.0 | 479 | 9.15 | 53 421.65 | — |
MiMYB37 | Cluster-67577.0 | 265 | 7.22 | 30 531.08 | — |
MiMYB38 | Cluster-67577.1 | 372 | 9.30 | 42 471.57 | S6 |
MiMYB39 | Cluster-67577.2 | 243 | 9.72 | 28 100.98 | S6 |
MiMYB40 | Cluster-69149.2 | 144 | 4.67 | 16 543.61 | — |
MiMYB41 | Cluster-69645.1 | 278 | 9.30 | 31 487.15 | — |
MiMYB42 | Cluster-69645.5 | 277 | 9.37 | 31 357.03 | — |
MiMYB43 | Cluster-70083.7 | 208 | 9.27 | 22 811.18 | — |
MiMYB44 | Cluster-69949.7 | 302 | 7.20 | 32 368.05 | — |
MiMYB45 | Cluster-70083.0 | 208 | 9.42 | 22 879.34 | — |
表4 全缘叶绿绒蒿R2R3 MYB基因信息
Table 4 Information of R2R3 MYB genes in M. integrifolia
基因 Gene name | 基因ID Gene ID | 蛋白长度 Protein length/aa | 等电点 Isoelectric point | 分子量 Molecular weight/u | 所属拟南芥亚族 The subgroup of Arabidopsis to which the gene belongs |
---|---|---|---|---|---|
MiMYB1 | Cluster-13873.16 | 1 185 | 9.35 | 131 836.98 | — |
MiMYB2 | Cluster-73976.7 | 570 | 6.33 | 63 623.76 | — |
MiMYB3 | Cluster-74122.1 | 501 | 5.89 | 55 023.13 | — |
MiMYB4 | Cluster-46647.219 | 271 | 8.59 | 30 734.68 | S4 |
MiMYB5 | Cluster-176.1 | 257 | 9.20 | 29 366.95 | — |
MiMYB6 | Cluster-24930.0 | 352 | 7.76 | 39 557.77 | S9 |
MiMYB7 | Cluster-26024.6 | 371 | 9.37 | 42 556.11 | — |
MiMYB8 | Cluster-26024.7 | 354 | 9.32 | 40 353.59 | — |
MiMYB9 | Cluster-26960.10 | 357 | 6.01 | 39 008.3 | — |
MiMYB10 | Cluster-28521.4 | 297 | 5.58 | 33 656.54 | S11 |
MiMYB11 | Cluster-29061.0 | 355 | 5.70 | 40 225.53 | S11 |
MiMYB12 | Cluster-41024.1 | 255 | 9.00 | 28 447.39 | — |
MiMYB13 | Cluster-42663.2 | 429 | 9.35 | 47 588.58 | — |
MiMYB14 | Cluster-43725.2 | 130 | 6.17 | 14 861.21 | S19 |
MiMYB15 | Cluster-43725.4 | 209 | 6.59 | 23 973.62 | S19 |
MiMYB16 | Cluster-74557.6 | 791 | 5.47 | 86 693.98 | — |
MiMYB17 | Cluster-48749.21 | 294 | 8.85 | 32 860.93 | — |
MiMYB18 | Cluster-54127.0 | 165 | 4.38 | 18 843.61 | — |
MiMYB19 | Cluster-54127.1 | 250 | 4.90 | 28 578.83 | — |
MiMYB20 | Cluster-54127.5 | 165 | 4.38 | 18 843.61 | — |
MiMYB21 | Cluster-56396.9 | 514 | 6.76 | 52 138.66 | S13 |
MiMYB22 | Cluster-56419.0 | 414 | 4.87 | 45 932.63 | — |
MiMYB23 | Cluster-58089.0 | 220 | 9.97 | 24 934.41 | — |
MiMYB24 | Cluster-59054.5 | 629 | 6.47 | 71 492.12 | — |
MiMYB25 | Cluster-59054.7 | 583 | 5.65 | 66 005.51 | — |
MiMYB26 | Cluster-60970.0 | 420 | 8.72 | 41 583.2 | S22 |
MiMYB27 | Cluster-61134.0 | 209 | 8.36 | 23 333.70 | — |
MiMYB28 | Cluster-73421.2 | 310 | 5.28 | 34 749.97 | — |
MiMYB29 | Cluster-61134.9 | 137 | 5.61 | 14 979.42 | — |
MiMYB30 | Cluster-61178.1 | 266 | 5.13 | 30 023.11 | S16 |
MiMYB31 | Cluster-64347.0 | 244 | 8.38 | 27 986.6 | S18 |
MiMYB32 | Cluster-6447.11 | 115 | 5.88 | 13 429.9 | S20 |
MiMYB33 | Cluster-6447.2 | 349 | 5.00 | 40 058.43 | S20 |
MiMYB34 | Cluster-6447.5 | 115 | 5.88 | 13 429.90 | S20 |
MiMYB35 | Cluster-66523.6 | 508 | 9.27 | 56 339.69 | — |
MiMYB36 | Cluster-67045.0 | 479 | 9.15 | 53 421.65 | — |
MiMYB37 | Cluster-67577.0 | 265 | 7.22 | 30 531.08 | — |
MiMYB38 | Cluster-67577.1 | 372 | 9.30 | 42 471.57 | S6 |
MiMYB39 | Cluster-67577.2 | 243 | 9.72 | 28 100.98 | S6 |
MiMYB40 | Cluster-69149.2 | 144 | 4.67 | 16 543.61 | — |
MiMYB41 | Cluster-69645.1 | 278 | 9.30 | 31 487.15 | — |
MiMYB42 | Cluster-69645.5 | 277 | 9.37 | 31 357.03 | — |
MiMYB43 | Cluster-70083.7 | 208 | 9.27 | 22 811.18 | — |
MiMYB44 | Cluster-69949.7 | 302 | 7.20 | 32 368.05 | — |
MiMYB45 | Cluster-70083.0 | 208 | 9.42 | 22 879.34 | — |
图7 全缘叶绿绒蒿R2R3-MYB功能预测及其表达量热图 A,全缘叶绿绒蒿和拟南芥 R2R3-MYB 基因家族系统进化分析;B,全缘叶绿绒蒿 R2R3-MYB 表达量热图。
Fig.7 Functional prediction of M. Integrifolia R2R3-MYB and its expression heat map A, Phylogenetic analysis of the R2R3-MYB gene families in M. integrifolia and A. thaliana; B, Heat map of R2R3-MYB expression of M. integrifolia.
图8 候选R2R3-MYB转录因子多序列比较 A,MiMYB4 与其他 MYB 蛋白氨基酸序列同源比较;B,MiMBY38、MiMYB39与其他 MYB 蛋白氨基酸序列同源比较。
Fig.8 Comparison of candidate R2R3-MYB transcription factors in multiple sequences A. Comparison of amino acid sequence homology of MiMYB4 with other MYB proteins; B. Comparison of amino acid sequence homology of MiMBY38, MiMYB39 with other MYB proteins.
图9 全缘叶绿绒蒿中花色相关结构基因与转录因子表达分析 A,全缘叶绿绒蒿中花色相关结构基因与转录因子相关性分析;B,全缘叶绿绒蒿中花色相关结构基因与转录因子之间的相互作用网络。红色是转录因子,蓝色是结构基因,实线代表正相关,虚线代表负相关,圈越大、节点越多则相关性越强。
Fig.9 Correlation analysis of flower color-related structural genes and transcription factors in M. integrifolia. A, Correlation analysis of flower color-related structural genes and transcription factors in M. integrifolia; B, Interaction network between flower color-related structural genes and transcription factors in M. integrifolia. Red is transcription factors, blue is structural genes, solid lines represent positive correlations, dashed lines represent negative correlations, and the larger the circle and the more nodes, the stronger the correlation.
[1] | SULAIMAN I M, BABU C R. Ecological studies on five species of endangered Himalayan poppy, Meconopsis(Papaveraceae)[J]. Botanical Journal of the Linnean Society, 1996, 121(2): 169-176. |
[2] | 龚宇, 周蕙祯, 陈胡兰. 近十年绿绒蒿属药用植物的研究进展[J]. 中药材, 2020, 43(3): 758-763. |
GONG Y, ZHOU H Z, CHEN H L. Research progress of medicinal plants of Meconopsis in recent ten years[J]. Journal of Chinese Medicinal Materials, 2020, 43(3): 758-763. (in Chinese with English abstract) | |
[3] | FAN J P, WANG P, WANG X B, et al. Induction of mitochondrial dependent apoptosis in human leukemia K562 cells by Meconopsis integrifolia: a species from traditional Tibetan medicine[J]. Molecules, 2015, 20(7): 11981-11993. |
[4] | 黄艳菲, 蔡旭, 冉波, 等. 基于谱效关系的藏药材全缘叶绿绒蒿全草(非花入药部位)抗氧化质量标志物初步研究[J]. 中草药, 2020, 51(17): 4521-4530. |
HUANG Y F, CAI X, RAN B, et al. Preliminary discovery of quality marker of herb Meconopsis integrifolia(non flower parts) based on spectrum-effect relationship[J]. Chinese Traditional and Herbal Drugs, 2020, 51(17): 4521-4530. (in Chinese with English abstract) | |
[5] | 何静娟, 范燕萍. 观赏植物花色相关的类胡萝卜素组成及代谢调控研究进展[J]. 园艺学报, 2022, 49(5): 1162-1172. |
HE J J, FAN Y P. Progress in composition and metabolic regulation of carotenoids related to floral color[J]. Acta Horticulturae Sinica, 2022, 49(5): 1162-1172. (in Chinese with English abstract) | |
[6] | 黄金霞, 王亮生, 李晓梅, 等. 花色变异的分子基础与进化模式研究进展[J]. 植物学通报, 2006, 41(4): 321-333. |
HUANG J X, WANG L S, LI X M, et al. Advances in molecular basis and evolution of floral color variation[J]. Chinese Bulletin of Botany, 2006, 41(4): 321-333. (in Chinese with English abstract) | |
[7] | 周琳, 王雁, 彭镇华. 黄色花形成机制及基因工程研究进展[J]. 林业科学, 2009, 45(2): 111-119. |
ZHOU L, WANG Y, PENG Z H. Advances in study on formation mechanism and genetic engineering of yellow flowers[J]. Scientia Silvae Sinicae, 2009, 45(2): 111-119. (in Chinese with English abstract) | |
[8] | TANAKA Y, SASAKI N, OHMIYA A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids[J]. The Plant Journal, 2008, 54(4): 733-749. |
[9] | TIAN J, HAN Z Y, ZHANG J, et al. The balance of expression of dihydroflavonol 4-reductase and flavonol synthase regulates flavonoid biosynthesis and red foliage coloration in crabapples[J]. Scientific Reports, 2015, 5: 12228. |
[10] | HICHRI I, BARRIEU F, BOGS J, et al. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway[J]. Journal of Experimental Botany, 2011, 62(8): 2465-2483. |
[11] | SPELT C, QUATTROCCHIO F, MOL J, et al. ANTHOCYANIN1 of petunia controls pigment synthesis, vacuolar pH, and seed coat development by genetically distinct mechanisms[J]. The Plant Cell, 2002, 14(9): 2121-2135. |
[12] | 陈丽琦, 严朋飞, 贾维嘉, 等. 威氏绿绒蒿(Meconopsis wilsonii)花色相关基因MwF3H的克隆及表达分析[J]. 基因组学与应用生物学, 2022, 41(4): 854-861. |
CHEN L Q, YAN P F, JIA W J, et al. Cloning and expression analysis of flower color related gene MwF3H from Meconopsis wilsonii[J]. Genomics and Applied Biology, 2022, 41(4): 854-861. (in Chinese with English abstract) | |
[13] | 严朋飞, 张莹欣, 贾维嘉, 等. 威氏绿绒蒿MwF3'H基因克隆与表达分析[J]. 分子植物育种, 2022, 20(19): 6382-6387. |
YAN P F, ZHANG Y X, JIA W J, et al. Cloning and expression analysis of flavonoid 3'-hydroxylase gene from Meconopsis wilsonii[J]. Molecular Plant Breeding, 2022, 20(19): 6382-6387. (in Chinese with English abstract) | |
[14] | 严朋飞, 张莹欣, 贾维嘉, 等. 威氏绿绒蒿二氢黄酮醇4-还原酶DFR基因克隆与表达分析[J]. 分子植物育种, 2021, 19(24): 8064-8070. |
YAN P F, ZHANG Y X, JIA W J, et al. Cloning and expression analysis of dihydroflavonol 4-reductase gene from Meconopsis wilsonii[J]. Molecular Plant Breeding, 2021, 19(24): 8064-8070. (in Chinese with English abstract) | |
[15] | 赵朝. 绿绒蒿属植物的花色变异和物种分化机制[D]. 北京: 中国科学院大学, 2013. |
ZHAO C. Color variation and species differentiation mechanism of Meconopsis[D]. Beijing: University of Chinese Academy of Sciences, 2013. (in Chinese with English abstract) | |
[16] | YOKOYAMA K, YANGZOM R, MIZUNO T, et al. Flavonol glycosides in the flowers of the Himalayan Meconopsis paniculata and Meconopsis integrifolia as yellow pigments[J]. Biochemical Systematics and Ecology, 2018, 81: 102-104. |
[17] | QU Y, OU Z, WANG S. Coloration differences in three Meconopsis species: M. punicea, M. integrifolia and M. wilsonii[J]. South African Journal of Botany, 2022, 150: 171-177. |
[18] | LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12): 550. |
[19] | 李辛雷, 王佳童, 孙振元, 等. 金花茶和白色山茶及其3个杂交品种类黄酮成分与花色的关系[J]. 园艺学报, 2019, 46(6): 1145-1154. |
LI X L, WANG J T, SUN Z Y, et al. Flavonoid components and their effects on flower colors in Camellia nitidissima, white C. japonica and their three hybrid cultivars[J]. Acta Horticulturae Sinica, 2019, 46(6): 1145-1154. (in Chinese with English abstract) | |
[20] | 朱佳意, 唐东芹, 李欣. 小苍兰花瓣花黄色素组成和含量分析[J]. 热带作物学报, 2021, 42(4): 1136-1144. |
ZHU J Y, TANG D Q, LI X. Analysis of composition and content of anthoxanthins in petals of Freesia hybrida[J]. Chinese Journal of Tropical Crops, 2021, 42(4): 1136-1144. (in Chinese with English abstract) | |
[21] | DAVIES K M, ALBERT N W, SCHWINN K E. From landing lights to mimicry: the molecular regulation of flower colouration and mechanisms for pigmentation patterning[J]. Functional Plant Biology, 2012, 39(8): 619-638. |
[22] | LUO P, NING G G, WANG Z, et al. Disequilibrium of flavonol synthase and dihydroflavonol-4-reductase expression associated tightly to white vs. red color flower formation in plants[J]. Frontiers in Plant Science, 2016, 6: 1257. |
[23] | ZHANG Y Y, ZHOU T H, DAI Z W, et al. Comparative transcriptomics provides insight into floral color polymorphism in a Pleione limprichtii orchid population[J]. International Journal of Molecular Sciences, 2019, 21(1): 247. |
[24] | PÉREZ-DÍAZ J R, PÉREZ-DÍAZ J, MADRID-ESPINOZA J, et al. New member of the R2R3-MYB transcription factors family in grapevine suppresses the anthocyanin accumulation in the flowers of transgenic tobacco[J]. Plant Molecular Biology, 2016, 90(1): 63-76. |
[25] | WANG X C, WU J, GUAN M L, et al. Arabidopsis MYB4 plays dual roles in flavonoid biosynthesis[J]. The Plant Journal, 2020, 101(3): 637-652. |
[26] | GONZALEZ A, ZHAO M Z, LEAVITT J M, et al. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings[J]. The Plant Journal, 2008, 53(5): 814-827. |
[27] | DAVIES K M, SCHWINN K E, DEROLES S C, et al. Enhancing anthocyanin production by altering competition for substrate between flavonol synthase and dihydroflavonol 4-reductase[J]. Euphytica, 2003, 131(3): 259-268. |
[28] | LIU J Y, OSBOURN A, MA P D. MYB transcription factors as regulators of phenylpropanoid metabolism in plants[J]. Molecular Plant, 2015, 8(5): 689-708. |
[29] | LUO X N, SUN D Y, WANG S, et al. Integrating full-length transcriptomics and metabolomics reveals the regulatory mechanisms underlying yellow pigmentation in tree peony (Paeonia suffruticosa Andr.) flowers[J]. Horticulture Research, 2021, 8: 235. |
[1] | 韩延超, 陈慧芝, 牛犇, 张小栓, 韩树人, 王晓艳, 王冠楠, 刘瑞玲, 郜海燕. 振动胁迫对蓝莓花色苷代谢及相关基因表达的影响[J]. 浙江农业学报, 2024, 36(3): 622-633. |
[2] | 刘筱琳, 孙婷婷, 杨捷, 何恒斌. 天香百合、药百合黄酮醇合成酶FLS基因克隆和表达分析[J]. 浙江农业学报, 2024, 36(2): 344-357. |
[3] | 杨海健, 张云贵, 周心智, 洪林, 杨蕾, 彭芳芳, 王武. 不同PE材料遮光下血橙转色期果皮花色苷合成及其相关基因的表达分析[J]. 浙江农业学报, 2021, 33(10): 1861-1869. |
[4] | 夏其乐, 曹艳, 陈剑兵, 韩延超, 刘瑞玲. 改善杨梅露酒色泽稳定性的研究[J]. 浙江农业学报, 2018, 30(10): 1775-1781. |
[5] | 刘忠丽;丛悦玺;苟维超;王响;陈坤. MYB类转录因子在植物细胞生长发育中的作用及其应用[J]. , 2012, 24(1): 0-179. |
[6] | 王涛;谢小波;蔡美艳;黄雪燕;陈丹霞;戚行江. 杨梅新品种黑晶的果实发育与主要品质指标变化规律[J]. , 2007, 19(6): 0-430. |
[7] | 钱皆兵;陈子敏;陈俊伟;谢鸣;秦巧平;杨荣曦;吴江. 乌紫杨梅果实发育和主要品质成分积累特性研究[J]. , 2006, 18(3): 0-154. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||