浙江农业学报 ›› 2024, Vol. 36 ›› Issue (5): 1185-1198.DOI: 10.3969/j.issn.1004-1524.20230699
收稿日期:
2023-05-31
出版日期:
2024-05-25
发布日期:
2024-05-29
作者简介:
冀玄玄(1992—),女,河北邯郸人,博士研究生,研究方向为农业资源与环境。E-mail: 15737972755@163.com
通讯作者:
* 姜军松,E-mail: jiangjunsong@xtu.edu.cn
基金资助:
JI Xuanxuan(), JIANG Junsong*(
)
Received:
2023-05-31
Online:
2024-05-25
Published:
2024-05-29
摘要:
化肥面源污染问题关系着农业绿色发展和乡村生态振兴。利用1997—2020年省级面板数据,在测算化肥面源污染排放强度的基础上,运用Kernel密度估计、马尔科夫链分析、泰尔指数以及双向固定效应模型等方法,探究中国化肥面源污染的时空特征与影响因素。结果表明,中国化肥面源污染的排放强度呈先升后降的变化态势,以2015年为分界点,污染排放强度向低水平转移的趋势逐渐显现,但仍具有维持原有类型的稳定性,难以实现跨越式降低。样本期内化肥面源污染排放强度表现出“东高西低、南高北低”的空间分布格局,且区域内差异是总体差异的主要来源。财政支农水平、农业经济增长水平及农村人力资本等9项因素影响化肥面源污染排放强度。因此,既应制定差异化的污染治理措施,又要加强省份间的污染治理合作,还需拓展化肥减量增效路径,大力推进农业发展全面绿色转型。
中图分类号:
冀玄玄, 姜军松. 中国化肥面源污染的时空特征及其影响因素——基于1997—2020年的省级面板数据[J]. 浙江农业学报, 2024, 36(5): 1185-1198.
JI Xuanxuan, JIANG Junsong. Spatial-temporal characteristics and influencing factors of non-point source pollution of chemical fertilizers in China: based on provincial panel data from 1997 to 2020[J]. Acta Agriculturae Zhejiangensis, 2024, 36(5): 1185-1198.
图2 1997—2020年化肥面源污染排放强度的变化趋势 全国,即除香港、澳门、台湾外31个省份的平均值;东部,即北京、天津、河北、辽宁、上海、江苏、浙江、福建、山东、广东、海南的平均值;中部,即黑龙江、吉林、山西、安徽、江西、河南、湖北、湖南的平均值;西部,即内蒙古、广西、重庆、四川、贵州、云南、西藏、陕西、甘肃、青海、宁夏、新疆的平均值。
Fig.2 Dynamic of the emission intensity of non-point source pollution of chemical fertilizers from 1997 to 2020 National, The mean value of 31 provincial administrative regions excluding Hongkong, Macao and Taiwan; Eastern region, The mean value of Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, Hainan; Central region, The mean value of Heilongjiang, Jilin, Shanxi, Anhui, Jiangxi, Henan, Hubei, Hunan; Western region, The mean value of Inner Mongolia, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Xizang, Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang.
时间段 Period | t年的排放水平 Emission intensity at t year | (t+1)年转换为相应排放水平的概率 Probability of emission intensity transition at (t+1) year | |||
---|---|---|---|---|---|
高High | 中高Mid-high | 中低Mid-low | 低Low | ||
1997—2020 | 高High | 0.961 3 | 0.038 7 | 0 | 0 |
中高Mid-high | 0.045 7 | 0.954 3 | 0 | 0 | |
中低Mid-low | 0 | 0.005 6 | 0.988 8 | 0.005 6 | |
低Low | 0 | 0 | 0.022 3 | 0.977 7 | |
1997—2015 | 高High | 0.985 5 | 0.014 5 | 0 | 0 |
中高Mid-high | 0.050 7 | 0.949 3 | 0 | 0 | |
中低Mid-low | 0 | 0.007 2 | 0.985 5 | 0.007 2 | |
低Low | 0 | 0 | 0.027 8 | 0.972 2 | |
2016—2020 | 高High | 0.852 9 | 0.147 1 | 0 | 0 |
中高Mid-high | 0.033 3 | 0.966 7 | 0 | 0 | |
中低Mid-low | 0 | 0 | 1 | 0 | |
低Low | 0 | 0 | 0 | 1 |
表1 化肥面源污染排放强度的马尔科夫转移概率矩阵
Table 1 Markov transition probability matrix of emission intensity of non-point source pollution of chemical fertilizers
时间段 Period | t年的排放水平 Emission intensity at t year | (t+1)年转换为相应排放水平的概率 Probability of emission intensity transition at (t+1) year | |||
---|---|---|---|---|---|
高High | 中高Mid-high | 中低Mid-low | 低Low | ||
1997—2020 | 高High | 0.961 3 | 0.038 7 | 0 | 0 |
中高Mid-high | 0.045 7 | 0.954 3 | 0 | 0 | |
中低Mid-low | 0 | 0.005 6 | 0.988 8 | 0.005 6 | |
低Low | 0 | 0 | 0.022 3 | 0.977 7 | |
1997—2015 | 高High | 0.985 5 | 0.014 5 | 0 | 0 |
中高Mid-high | 0.050 7 | 0.949 3 | 0 | 0 | |
中低Mid-low | 0 | 0.007 2 | 0.985 5 | 0.007 2 | |
低Low | 0 | 0 | 0.027 8 | 0.972 2 | |
2016—2020 | 高High | 0.852 9 | 0.147 1 | 0 | 0 |
中高Mid-high | 0.033 3 | 0.966 7 | 0 | 0 | |
中低Mid-low | 0 | 0 | 1 | 0 | |
低Low | 0 | 0 | 0 | 1 |
图4 化肥面源污染排放强度的空间分布 a,全部研究省份;b,东部,包括北京、天津、河北、辽宁、上海、江苏、浙江、福建、山东、广东、海南;c,中部,包括黑龙江、吉林、山西、安徽、江西、河南、湖北、湖南;d,西部,包括内蒙古、广西、重庆、四川、贵州、云南、西藏、陕西、甘肃、青海、宁夏、新疆。
Fig.4 Spatial distribution of the emission intensity of non-point source pollution of chemical fertilizers a, All the 31 provincial administrative regions in the present study; b, Eastern region, including Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, Hainan; c, Central region, including Heilongjiang, Jilin, Shanxi, Anhui, Jiangxi, Henan, Hubei, Hunan; d, Western region, including Inner Mongolia, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Xizang, Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang.
图5 化肥面源污染排放强度的总体差异及其主要来源
Fig.5 The overall differences and main sources of the emission intensity of non-point source pollution of chemical fertilizers
图6 不同区域化肥面源污染排放强度的区域内差异及其贡献率
Fig.6 The intra-regional differences and contribution rates of the emission intensity of non-point source pollution of chemical fertilizers in different regions
类型 Type | 变量 Variable | 变量符号 Symbol of variable | 含义 Denotation | 预期影响方向 Anticipated influencing direction |
---|---|---|---|---|
政策支持 Policy support | 财政支农水平 Level of financial support for agriculture/ (104 yuan·hm-2) | X1 | 财政农林水事务支出/农作物总播种面积 Financial expenditure on agriculture, forestry and water affairs/total sown area of crops | 未定 Uncertain |
农业发展 Agricultural development | 农业经济增长水平 Level of agricultural economic growth/ (104 yuan) | X2 | 农业总产值/农业从业人数 Total agricultural output value/number of agricultural employees | 未定 Uncertain |
农作物种植结构 Crop planting structure | X3 | 粮食作物种植面积/农作物总播种面积 Planting area of grain crops/total sown area of crops | 负向 Negative | |
农业复种指数 Agricultural multiple cropping index | X4 | 农作物总播种面积/耕地面积 Total sown area of crops/cultivated land area | 未定 Uncertain | |
规模化经营水平 Scale management level/m2 | X5 | 耕地面积/农业从业人数 Cultivated land area/number of agricultural employees | 未定 Uncertain | |
农业机械投入强度 Intensity of agricultural machinery input/ (kW·hm-2) | X6 | 农业机械总动力/农作物总播种面积 Total power of agricultural machinery/total sown area of crops | 负向 Negative | |
外部环境 External environment | 农民收入水平 Income level of farmers/(104 yuan) | X7 | 农村居民人均可支配收入 Per capita disposable income of rural residents | 未定 Uncertain |
农村人力资本 Rural human capital/a | X8 | 各学历层次年限与其人员构成比例乘积的加总, 将小学、初中、高中或中专、大专及以上分别 设定为6、9、12、15.5 a The sum of the product of the years of each educational level and its personnel composition ratio. In particular, primary school, junior high school, senior high school or technical secondary school, junior college and above are recorded as 6, 9, 12, 15.5 a, respectively | 负向 Negative | |
城镇化水平 Urbanization level | X9 | 城镇人口/年末常住人口 Urban population/resident population at year end | 未定 Uncertain |
表2 化肥面源污染排放强度的影响因素
Table 2 Influencing factors of the emission intensity of non-point source pollution of chemical fertilizers
类型 Type | 变量 Variable | 变量符号 Symbol of variable | 含义 Denotation | 预期影响方向 Anticipated influencing direction |
---|---|---|---|---|
政策支持 Policy support | 财政支农水平 Level of financial support for agriculture/ (104 yuan·hm-2) | X1 | 财政农林水事务支出/农作物总播种面积 Financial expenditure on agriculture, forestry and water affairs/total sown area of crops | 未定 Uncertain |
农业发展 Agricultural development | 农业经济增长水平 Level of agricultural economic growth/ (104 yuan) | X2 | 农业总产值/农业从业人数 Total agricultural output value/number of agricultural employees | 未定 Uncertain |
农作物种植结构 Crop planting structure | X3 | 粮食作物种植面积/农作物总播种面积 Planting area of grain crops/total sown area of crops | 负向 Negative | |
农业复种指数 Agricultural multiple cropping index | X4 | 农作物总播种面积/耕地面积 Total sown area of crops/cultivated land area | 未定 Uncertain | |
规模化经营水平 Scale management level/m2 | X5 | 耕地面积/农业从业人数 Cultivated land area/number of agricultural employees | 未定 Uncertain | |
农业机械投入强度 Intensity of agricultural machinery input/ (kW·hm-2) | X6 | 农业机械总动力/农作物总播种面积 Total power of agricultural machinery/total sown area of crops | 负向 Negative | |
外部环境 External environment | 农民收入水平 Income level of farmers/(104 yuan) | X7 | 农村居民人均可支配收入 Per capita disposable income of rural residents | 未定 Uncertain |
农村人力资本 Rural human capital/a | X8 | 各学历层次年限与其人员构成比例乘积的加总, 将小学、初中、高中或中专、大专及以上分别 设定为6、9、12、15.5 a The sum of the product of the years of each educational level and its personnel composition ratio. In particular, primary school, junior high school, senior high school or technical secondary school, junior college and above are recorded as 6, 9, 12, 15.5 a, respectively | 负向 Negative | |
城镇化水平 Urbanization level | X9 | 城镇人口/年末常住人口 Urban population/resident population at year end | 未定 Uncertain |
变量Variable | 回归1 Regression 1 | 回归2 Regression 2 | 回归3 Regression 3 |
---|---|---|---|
X1 | -0.337***(0.079) | -0.154***(0.033) | -0.107***(0.034) |
X2 | 0.862(0.527) | 2.749***(0.390) | 2.422***(0.344) |
-0.109(0.109) | -0.383***(0.058) | -0.289***(0.048) | |
X3 | -9.477***(1.298) | -1.556***(0.576) | -2.754***(0.641) |
X4 | 3.623***(0.352) | -3.358***(0.243) | -3.540***(0.275) |
X5 | -0.089***(0.014) | -0.085***(0.010) | -0.077***(0.010) |
X6 | -0.183***(0.034) | 0.058***(0.017) | -0.035**(0.017) |
X7 | 8.422***(1.266) | -1.070**(0.539) | -3.229***(0.738) |
X8 | -0.708***(0.146) | 0.304***(0.095) | -0.302***(0.117) |
X9 | -1.794(1.182) | -2.048***(0.701) | -2.638***(0.647) |
时间固定效应 Time fixed effect | 未控制Not controlled | 未控制Not controlled | 控制Controlled |
个体固定效应Individual fixed effect | 未控制Not controlled | 控制Controlled | 控制Controlled |
常数项Constant | 11.023***(1.280) | 9.797***(0.809) | 15.400***(1.015) |
n | 744 | 744 | 744 |
R2 | 0.590 | 0.976 | 0.980 |
表3 模型回归结果
Table 3 Model regression results
变量Variable | 回归1 Regression 1 | 回归2 Regression 2 | 回归3 Regression 3 |
---|---|---|---|
X1 | -0.337***(0.079) | -0.154***(0.033) | -0.107***(0.034) |
X2 | 0.862(0.527) | 2.749***(0.390) | 2.422***(0.344) |
-0.109(0.109) | -0.383***(0.058) | -0.289***(0.048) | |
X3 | -9.477***(1.298) | -1.556***(0.576) | -2.754***(0.641) |
X4 | 3.623***(0.352) | -3.358***(0.243) | -3.540***(0.275) |
X5 | -0.089***(0.014) | -0.085***(0.010) | -0.077***(0.010) |
X6 | -0.183***(0.034) | 0.058***(0.017) | -0.035**(0.017) |
X7 | 8.422***(1.266) | -1.070**(0.539) | -3.229***(0.738) |
X8 | -0.708***(0.146) | 0.304***(0.095) | -0.302***(0.117) |
X9 | -1.794(1.182) | -2.048***(0.701) | -2.638***(0.647) |
时间固定效应 Time fixed effect | 未控制Not controlled | 未控制Not controlled | 控制Controlled |
个体固定效应Individual fixed effect | 未控制Not controlled | 控制Controlled | 控制Controlled |
常数项Constant | 11.023***(1.280) | 9.797***(0.809) | 15.400***(1.015) |
n | 744 | 744 | 744 |
R2 | 0.590 | 0.976 | 0.980 |
变量Variable | 东部Eastern region | 中部Central region | 西部Western region |
---|---|---|---|
X1 | -0.064(0.048) | -2.996***(0.988) | -0.092(0.111) |
X2 | 2.925***(0.577) | -0.905(0.855) | 2.230***(0.708) |
-0.320***(0.084) | 0.216(0.187) | -0.365*(0.198) | |
X3 | -5.243***(1.582) | -0.883(0.954) | -5.071***(0.975) |
X4 | -3.477***(0.457) | -2.419***(0.525) | -2.490***(0.508) |
X5 | -0.184***(0.040) | -0.025(0.017) | -0.017(0.013) |
X6 | -0.059(0.055) | 0.012(0.046) | -0.061**(0.029) |
X7 | -3.808**(1.617) | -1.842(3.632) | 1.842(1.442) |
X8 | -0.208(0.264) | 0.432**(0.204) | -0.197(0.152) |
X9 | -0.296(2.523) | 4.995***(1.494) | -4.809***(0.419) |
常数项Constant | 10.157***(2.984) | 5.932***(1.655) | 13.089***(1.469) |
n | 264 | 192 | 288 |
R2 | 0.981 | 0.989 | 0.981 |
表4 区域异质性分析
Table 4 Regional heterogeneity analysis
变量Variable | 东部Eastern region | 中部Central region | 西部Western region |
---|---|---|---|
X1 | -0.064(0.048) | -2.996***(0.988) | -0.092(0.111) |
X2 | 2.925***(0.577) | -0.905(0.855) | 2.230***(0.708) |
-0.320***(0.084) | 0.216(0.187) | -0.365*(0.198) | |
X3 | -5.243***(1.582) | -0.883(0.954) | -5.071***(0.975) |
X4 | -3.477***(0.457) | -2.419***(0.525) | -2.490***(0.508) |
X5 | -0.184***(0.040) | -0.025(0.017) | -0.017(0.013) |
X6 | -0.059(0.055) | 0.012(0.046) | -0.061**(0.029) |
X7 | -3.808**(1.617) | -1.842(3.632) | 1.842(1.442) |
X8 | -0.208(0.264) | 0.432**(0.204) | -0.197(0.152) |
X9 | -0.296(2.523) | 4.995***(1.494) | -4.809***(0.419) |
常数项Constant | 10.157***(2.984) | 5.932***(1.655) | 13.089***(1.469) |
n | 264 | 192 | 288 |
R2 | 0.981 | 0.989 | 0.981 |
[1] | 魏后凯. 中国农业发展的结构性矛盾及其政策转型[J]. 中国农村经济, 2017(5): 2-17. |
WEI H K. Structural contradiction and policy transformation of agricultural development in China[J]. Chinese Rural Economy, 2017(5): 2-17. (in Chinese with English abstract) | |
[2] | GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010. |
[3] | 史常亮, 李赟, 朱俊峰. 劳动力转移、化肥过度使用与面源污染[J]. 中国农业大学学报, 2016, 21(5): 169-180. |
SHI C L, LI E, ZHU J F. Rural labortransfer, excessive fertilizer use and agricultural non-point source pollution[J]. Journal of China Agricultural University, 2016, 21(5): 169-180. (in Chinese with English abstract) | |
[4] | 李秀芬, 朱金兆, 顾晓君, 等. 农业面源污染现状与防治进展[J]. 中国人口·资源与环境, 2010, 20(4): 81-84. |
LI X F, ZHU J Z, GU X J, et al. Current situation and control of agricultural non-point source pollution[J]. China Population, Resources and Environment, 2010, 20(4): 81-84. (in Chinese with English abstract) | |
[5] | 饶静, 许翔宇, 纪晓婷. 我国农业面源污染现状、发生机制和对策研究[J]. 农业经济问题, 2011, 32(8): 81-87. |
RAO J, XU X Y, JI X T. Study on the present situation, occurrence mechanism and countermeasures of agricultural non-point source pollution in China[J]. Issues in Agricultural Economy, 2011, 32(8): 81-87. (in Chinese) | |
[6] | 李太平, 张锋, 胡浩. 中国化肥面源污染EKC验证及其驱动因素[J]. 中国人口·资源与环境, 2011, 21(11): 118-123. |
LI T P, ZHANG F, HU H. Authentication of the Kuznets curve in agriculture non-point source pollution and its drivers analysis[J]. China Population, Resources and Environment, 2011, 21(11): 118-123. (in Chinese with English abstract) | |
[7] | 侯孟阳, 姚顺波. 异质性条件下化肥面源污染排放的EKC再检验: 基于面板门槛模型的分组[J]. 农业技术经济, 2019(4): 104-118. |
HOU M Y, YAO S B. EKC retest of fertilizer non-point source pollution emission under heterogeneous conditions: grouping based on panel threshold model[J]. Journal of Agrotechnical Economics, 2019(4): 104-118. (in Chinese with English abstract) | |
[8] | 赖斯芸, 杜鹏飞, 陈吉宁. 基于单元分析的非点源污染调查评估方法[J]. 清华大学学报(自然科学版), 2004, 44(9): 1184-1187. |
LAI S Y, DU P F, CHEN J N. Evaluation of non-point source pollution based on unit analysis[J]. Journal of Tsinghua University (Science and Technology), 2004, 44(9): 1184-1187. (in Chinese with English abstract) | |
[9] | 陈敏鹏, 陈吉宁, 赖斯芸. 中国农业和农村污染的清单分析与空间特征识别[J]. 中国环境科学, 2006, 26(6): 751-755. |
CHEN M P, CHEN J N, LAI S Y. Inventory analysis and spatial distribution of Chinese agricultural and rural pollution[J]. China Environmental Science, 2006, 26(6): 751-755. (in Chinese with English abstract) | |
[10] | 丘雯文, 钟涨宝, 原春辉, 等. 中国农业面源污染排放的空间差异及其动态演变[J]. 中国农业大学学报, 2018, 23(1): 152-163. |
QIU W W, ZHONG Z B, YUAN C H, et al. Spatial differences and dynamic evolution of agricultural non-point source pollution in China[J]. Journal of China Agricultural University, 2018, 23(1): 152-163. (in Chinese with English abstract) | |
[11] | 贾陈忠, 乔扬源. 基于等标污染负荷法的山西省农业面源污染特征研究[J]. 中国农业资源与区划, 2021, 42(3): 141-149. |
JIA C Z, QIAO Y Y. The characteristics of agricultural non-point source pollution in Shanxi Province based on equivalent pollution load method[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2021, 42(3): 141-149. (in Chinese with English abstract) | |
[12] | 李建勋, 李明万, 刘晓雨, 等. 基于输出系数法的陕西农业面源污染负荷研究[J]. 生态与农村环境学报, 2023, 39(4): 523-529. |
LI J X, LI M W, LIU X Y, et al. Research on agricultural non-point source pollution load in Shaanxi based on output coefficient method[J]. Journal of Ecology and Rural Environment, 2023, 39(4): 523-529. (in Chinese with English abstract) | |
[13] | 姜松, 周洁, 邱爽. 适度规模经营是否能抑制农业面源污染: 基于动态门槛面板模型的实证[J]. 农业技术经济, 2021(7): 33-48. |
JIANG S, ZHOU J, QIU S. Can appropriate scale operation restrain agricultural non-point source pollution? : empirical study based on dynamic threshold panel model[J]. Journal of Agrotechnical Economics, 2021(7): 33-48. (in Chinese with English abstract) | |
[14] | 邓晴晴, 李二玲, 任世鑫. 农业集聚对农业面源污染的影响: 基于中国地级市面板数据门槛效应分析[J]. 地理研究, 2020, 39(4): 970-989. |
DENG Q Q, LI E L, REN S X. Impact of agricultural agglomeration on agricultural non-point source pollution: evidences from the threshold effect based on the panel data of prefecture-level cities in China[J]. Geographical Research, 2020, 39(4): 970-989. (in Chinese with English abstract) | |
[15] | 薛蕾, 廖祖君, 王理. 城镇化与农业面源污染改善: 基于农民收入结构调节作用的空间异质性分析[J]. 农村经济, 2019(7): 55-63. |
XUE L, LIAO Z J, WANG L. Urbanization and improvement of agricultural non-point source pollution: spatial heterogeneity analysis based on adjustment of farmers’ income structure[J]. Rural Economy, 2019(7): 55-63. (in Chinese) | |
[16] | 葛继红, 周曙东. 农业面源污染的经济影响因素分析: 基于1978—2009年的江苏省数据[J]. 中国农村经济, 2011(5): 72-81. |
GE J H, ZHOU S D. Analysis on the economic influencing factors of agricultural non-point source pollution: based on the data of Jiangsu Province from 1978 to 2009[J]. Chinese Rural Economy, 2011(5): 72-81. (in Chinese) | |
[17] | 石凯含, 尚杰. 农业面源污染防治政策的演进轨迹、效应评价与优化建议[J]. 改革, 2021(5): 146-155. |
SHI K H, SHANG J. Evolution track, effect evaluation and optimization suggestions of agricultural non-point source pollution control policies[J]. Reform, 2021(5): 146-155. (in Chinese with English abstract) | |
[18] | 沈贵银, 孟祥海. 农业面源污染治理:政策实践、面临挑战与多元主体合作共治[J]. 云南民族大学学报(哲学社会科学版), 2022, 39(1): 58-64. |
SHEN G Y, MENG X H. Policy practice, challenges and multi-agent cooperation and co-governance in the agricultural non-point source pollution control[J]. Journal of Yunnan Minzu University (Social Sciences), 2022, 39(1): 58-64. (in Chinese with English abstract) | |
[19] | 郭长青, 王鑫, 曹丹丹. “双碳”背景下水稻生态系统碳中和演化特征与对策研究[J]. 长江流域资源与环境, 2023, 32(4): 809-820. |
GUO C Q, WANG X, CAO D D. Research on the evolution characteristics and countermeasures of carbon neutralization in rice ecosystem under the background of carbon peaking and carbon neutrality goals[J]. Resources and Environment in the Yangtze Basin, 2023, 32(4): 809-820. (in Chinese with English abstract) | |
[20] | 侯孟阳, 姚顺波. 中国农村劳动力转移对农业生态效率影响的空间溢出效应与门槛特征[J]. 资源科学, 2018, 40(12): 2475-2486. |
HOU M Y, YAO S B. Spatial spillover effects and threshold characteristics of rural labor transfer on agricultural eco-efficiency in China[J]. Resources Science, 2018, 40(12): 2475-2486. (in Chinese with English abstract) |
[1] | 李俊蓉, 林荣日. 乡村振兴与新型城镇化耦合协调度的测度与影响因素研究[J]. 浙江农业学报, 2023, 35(10): 2477-2489. |
[2] | 王丽娟, 陈秧分, 徐梦洁. 乡村振兴视域下农业跨区域投资区位及其决策机制——以浙江省为例[J]. 浙江农业学报, 2022, 34(4): 841-850. |
[3] | 叶晗, 吴博文, 许红卫, 干牧野, 张晶, 王珂. 基于地理大数据的省域休闲农业空间格局及其影响因素研究——以浙江省为例[J]. 浙江农业学报, 2021, 33(7): 1264-1274. |
[4] | 张惠云, 秦丽杰, 贾利. 吉林省水稻生产的碳足迹与水足迹时空变化特征[J]. 浙江农业学报, 2021, 33(6): 974-983. |
[5] | 苗苗, 迮寒露, 吴永华. 浙江省耕地利用转型时空演变特征分析[J]. 浙江农业学报, 2021, 33(4): 753-760. |
[6] | 陈耀, 赵芝俊, 高芸. 中国省域农业科研机构科技创新效率及影响因素分析[J]. 浙江农业学报, 2020, 32(4): 731-741. |
[7] | 傅琳琳, 毛晓红, 毛小报. 浙江省蜂业发展状况与振兴对策研究[J]. 浙江农业学报, 2019, 31(5): 837-845. |
[8] | 王新, 汤江武, 吴逸飞, 姚晓红, 孙宏, 沈琦, 李园成. 基于混合培养和PCR-变性梯度凝胶电泳的复合净水功能菌群构建[J]. 浙江农业学报, 2019, 31(11): 1896-1902. |
[9] | 顾静秋, 彭程, 吴华瑞, 吴建寨. 猪肉价格的时空分布格局和影响因素分析[J]. 浙江农业学报, 2018, 30(5): 872-879. |
[10] | 叶春辉, 卞伟, 卓妮, 张林秀. 中国农村居民代际社会流动研究——基于全国5省101村大样本问卷调查[J]. 浙江农业学报, 2017, 29(10): 1759-1768. |
[11] | 董杰, 张宽. 四川省基层农技推广机构技术供给效率影响因素研究——针对合作社的技术需求[J]. 浙江农业学报, 2017, 29(1): 160-167. |
[12] | 戴丽荷,褚晓红,路伏增,黄孙平,黄少珍,徐如海*. 母猪妊娠期长短性状的影响因素分析[J]. 浙江农业学报, 2015, 27(9): 1524-. |
[13] | 罗湖平1,2,唐禹1,2,康红军1,3,曾争1,2. 湖南省农户耕地抛荒意愿影响因素实证研究[J]. 浙江农业学报, 2015, 27(8): 1494-. |
[14] | 伍艺,刘后平. 农民进城意愿影响要素实证分析——基于四川省1 523份调查问卷[J]. 浙江农业学报, 2015, 27(7): 1266-. |
[15] | 邱元1,叶春辉1,*,朱奇彪2,米松华2,黄莉莉2. 我国农村劳动力非农就业影响因素研究 ——以全国5省大样本调研数据为例[J]. 浙江农业学报, 2015, 27(2): 295-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||