浙江农业学报 ›› 2024, Vol. 36 ›› Issue (7): 1558-1568.DOI: 10.3969/j.issn.1004-1524.20230863
收稿日期:
2023-07-11
出版日期:
2024-07-25
发布日期:
2024-08-05
作者简介:
曾洪学(1974—),男,江西乐安人,硕士,副教授,主要从事植物生理和植物生态及设施农业方面的研究工作。E-mail: zenghongxue@zjtongji.edu.cn
通讯作者:
*屈兴红,E-mail: quxinghong@zjtongji.edu.cn
基金资助:
ZENG Hongxue(), QU Xinghong*(
)
Received:
2023-07-11
Online:
2024-07-25
Published:
2024-08-05
摘要:
为探究不同温度处理对葛种子萌发时脯氨酸代谢和抗坏血酸-谷胱甘肽(AsA-GSH)循环的影响,以来自澳大利亚(AUS),以及中国江苏(JS)和湖南(HN)的3份葛种质为研究对象,通过纸上发芽试验,研究不同处理(CK,25 ℃;LT,15 ℃;LTI1,10 ℃;LTI2,0.1% H2O2浸种+10 ℃)下3份葛种质脯氨酸含量、脯氨酸代谢关键酶活性、AsA-GSH循环代谢中非酶抗氧化剂含量和酶抗氧化剂活性的变化。结果表明,与CK相比,低温胁迫下葛的丙二醛(MDA)、过氧化氢(H2O2)含量升高,脯氨酸脱氢酶(ProDH)活性降低,添加H2O2促使脯氨酸、(还原型)抗坏血酸(AsA)、氧化型抗坏血酸(DHA)、(还原型)谷胱甘肽(GSH)、氧化型谷胱甘肽(GSSG)含量增加,Δ1-吡咯林-5-羧酸合成酶(P5CS)、鸟氨酸转氨酶(OAT)、抗坏血酸过氧化物酶(APX)和谷胱甘肽还原酶(GR)活性增强,提高葛藤的耐低温性能。结合隶属函数分析,判定3份葛种质的耐低温性从强到弱依次为HN>AUS>JS。
中图分类号:
曾洪学, 屈兴红. 低温胁迫对3份葛种质萌发过程中脯氨酸和抗坏血酸-谷胱甘肽循环代谢的影响[J]. 浙江农业学报, 2024, 36(7): 1558-1568.
ZENG Hongxue, QU Xinghong. Effect of low-temperature stress on proline metabolism and ascorbic acid-glutathione cycle during germination of three Pueraria lobata germplasm lines[J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1558-1568.
图1 低温胁迫对3份葛种质丙二醛(MDA)和过氧化氢(H2O2)含量的影响 柱上无相同大写字母的表示同一处理下不同种质间差异显著(P<0.05),无相同小写字母的表示同一种质不同处理间差异显著(P<0.05)。下同。
Fig.1 Effect of low temperature stress on malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents of three P. lobata germplasms Bars marked without the same uppercase letters indicate significant (P<0.05) difference within germplasms under the same treatment, while bars marked without the same lowercase letters indicate significant (P<0.05) difference within treatments for the same germplasm. The same as below.
图2 低温胁迫对3份葛种质脯氨酸含量和脯氨酸代谢关键酶活性的影响
Fig.2 Effects of low temperature stress on proline content and key enzymes activity for proline metabolism of three P. lobata germplasms P5CS, Pyrroline-5-carboxylate synthase; OAT, Ornithine aminotransferase; ProDH, Proline dehydrogenase.
图3 低温胁迫对3份葛种质(还原型)抗坏血酸(AsA)、氧化型抗坏血酸(DHA)含量的影响 AsA/DHA表征AsA与DHA含量之比。
Fig.3 Effects of low temperature stress on ascorbic acid (AsA), dehydroascorbic acid (DHA) contents of three P. lobata germplasms AsA/DHA represents the ratio of AsA content to DHA content.
图4 低温胁迫对3份葛种质(还原型)谷胱甘肽(GSH)、氧化型谷胱甘肽(GSSG)含量的影响 GSH/GSSG表征GSH与GSSG含量之比。
Fig.4 Effects of low temperature stress on glutathione (GSH), glutathione disulfide (GSSG) contents of three P. lobata germplasms GSH/GSSG represents the ratio of GSH content to GSSG content.
图5 低温胁迫对3份葛种质抗坏血酸过氧化物酶(APX)和谷胱甘肽还原酶(GR)的影响
Fig.5 Effects of low temperature stress on ascorbate peroxidase (APX) and glutathione reductase (GR) activities of three P. lobata germplasms
指标 Indices | 指标间的相关系数Correlation coefficient within indices | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H2O2 | MDA | Pro | P5CS | ProDH | OAT | GSSG | GSH | AsA | DHA | APX | GR | AsA/DHA | |
MDA | 0.836** | ||||||||||||
Pro | 0.428** | 0.669** | |||||||||||
P5CS | 0.693** | 0.724** | 0.365* | ||||||||||
ProDH | -0.460** | -0.541** | -0.787** | -0.273 | |||||||||
OAT | 0.735** | 0.897** | 0.634** | 0.755** | -0.491** | ||||||||
GSSG | 0.647** | 0.797** | 0.265 | 0.648** | -0.124 | 0.810** | |||||||
GSH | 0.672** | 0.802** | 0.470** | 0.696** | -0.256 | 0.895** | 0.865** | ||||||
AsA | 0.759** | 0.816** | 0.328 | 0.769** | -0.173 | 0.825** | 0.876** | 0.931** | |||||
DHA | 0.806** | 0.894** | 0.524** | 0.649** | -0.388* | 0.928** | 0.853** | 0.889** | 0.843** | ||||
APX | 0.604** | 0.765** | 0.628** | 0.693** | -0.411* | 0.912** | 0.716** | 0.898** | 0.777** | 0.833** | |||
GR | 0.604** | 0.765** | 0.628** | 0.693** | -0.411* | 0.913** | 0.715** | 0.899** | 0.777** | 0.828** | 0.998** | ||
AsA/DHA | -0.326 | -0.403* | -0.476** | -0.054 | 0.465** | -0.483** | -0.240 | -0.244 | -0.041 | -0.569** | -0.398* | -0.390* | |
GSH/GSSG | -0.211 | -0.291 | 0.238 | -0.159 | -0.143 | -0.160 | -0.590** | -0.106 | -0.248 | -0.259 | 0.034 | 0.040 | 0.066 |
表1 低温胁迫下3份葛种质生理生化特性的相关性分析
Table 1 Correlation analysis of physiological and biochemical characteristics of three P. lobata germplasms under low temperature stress
指标 Indices | 指标间的相关系数Correlation coefficient within indices | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H2O2 | MDA | Pro | P5CS | ProDH | OAT | GSSG | GSH | AsA | DHA | APX | GR | AsA/DHA | |
MDA | 0.836** | ||||||||||||
Pro | 0.428** | 0.669** | |||||||||||
P5CS | 0.693** | 0.724** | 0.365* | ||||||||||
ProDH | -0.460** | -0.541** | -0.787** | -0.273 | |||||||||
OAT | 0.735** | 0.897** | 0.634** | 0.755** | -0.491** | ||||||||
GSSG | 0.647** | 0.797** | 0.265 | 0.648** | -0.124 | 0.810** | |||||||
GSH | 0.672** | 0.802** | 0.470** | 0.696** | -0.256 | 0.895** | 0.865** | ||||||
AsA | 0.759** | 0.816** | 0.328 | 0.769** | -0.173 | 0.825** | 0.876** | 0.931** | |||||
DHA | 0.806** | 0.894** | 0.524** | 0.649** | -0.388* | 0.928** | 0.853** | 0.889** | 0.843** | ||||
APX | 0.604** | 0.765** | 0.628** | 0.693** | -0.411* | 0.912** | 0.716** | 0.898** | 0.777** | 0.833** | |||
GR | 0.604** | 0.765** | 0.628** | 0.693** | -0.411* | 0.913** | 0.715** | 0.899** | 0.777** | 0.828** | 0.998** | ||
AsA/DHA | -0.326 | -0.403* | -0.476** | -0.054 | 0.465** | -0.483** | -0.240 | -0.244 | -0.041 | -0.569** | -0.398* | -0.390* | |
GSH/GSSG | -0.211 | -0.291 | 0.238 | -0.159 | -0.143 | -0.160 | -0.590** | -0.106 | -0.248 | -0.259 | 0.034 | 0.040 | 0.066 |
指标 Indices | 不同种质的隶属度Member degree of germplasms | ||
---|---|---|---|
AUS | HN | JS | |
H2O2 | 0.534 | 0.502 | 0.525 |
MDA | 0.469 | 0.603 | 0.408 |
Pro | 0.494 | 0.487 | 0.421 |
P5CS | 0.527 | 0.510 | 0.474 |
ProDH | 0.517 | 0.532 | 0.461 |
OAT | 0.462 | 0.475 | 0.573 |
GSSG | 0.479 | 0.482 | 0.523 |
GSH | 0.566 | 0.527 | 0.507 |
AsA | 0.572 | 0.533 | 0.468 |
DHA | 0.474 | 0.462 | 0.485 |
APX | 0.506 | 0.483 | 0.502 |
GR | 0.506 | 0.483 | 0.502 |
AsA/DHA | 0.429 | 0.569 | 0.524 |
GSH/GSSG | 0.520 | 0.545 | 0.461 |
平均值Average | 0.504 | 0.514 | 0.488 |
表2 低温胁迫下3份葛种质生理生化指标的隶属度
Table 2 Membership degree among all physiological and biochemical indices of three P. lobata germplasms under low temperature stress
指标 Indices | 不同种质的隶属度Member degree of germplasms | ||
---|---|---|---|
AUS | HN | JS | |
H2O2 | 0.534 | 0.502 | 0.525 |
MDA | 0.469 | 0.603 | 0.408 |
Pro | 0.494 | 0.487 | 0.421 |
P5CS | 0.527 | 0.510 | 0.474 |
ProDH | 0.517 | 0.532 | 0.461 |
OAT | 0.462 | 0.475 | 0.573 |
GSSG | 0.479 | 0.482 | 0.523 |
GSH | 0.566 | 0.527 | 0.507 |
AsA | 0.572 | 0.533 | 0.468 |
DHA | 0.474 | 0.462 | 0.485 |
APX | 0.506 | 0.483 | 0.502 |
GR | 0.506 | 0.483 | 0.502 |
AsA/DHA | 0.429 | 0.569 | 0.524 |
GSH/GSSG | 0.520 | 0.545 | 0.461 |
平均值Average | 0.504 | 0.514 | 0.488 |
[1] | ZHANG B, JIA D, GAO Z Q, et al. Physiological responses to low temperature in spring and winter wheat varieties[J]. Journal of the Science of Food and Agriculture, 2016, 96(6): 1967-1973. |
[2] | AGURLA S, GAHIR S, MUNEMASA S, et al. Mechanism of stomatal closure in plants exposed to drought and cold stress[J]. Advances in Experimental Medicine and Biology, 2018, 1081: 215-232. |
[3] | HURRY V M, HUNER N P A. Low-temperature effects on photosynthesis and correlation with freezing tolerance in spring and winter cultivars of wheat and rye[J]. Plant Physiology, 1993, 101(1): 245-250. |
[4] | 许娟, 郑虚, 闫海锋, 等. 不同马铃薯品种苗期叶片对低温胁迫的生理响应[J]. 南方农业学报, 2016, 47(11): 1837-1843. |
XU J, ZHENG X, YAN H F, et al. Physiological responses of different potato varieties to cold stress at seedling stage[J]. Journal of Southern Agriculture, 2016, 47(11): 1837-1843.(in Chinese with English abstract) | |
[5] | 沈子奇, 向世鹏, 许金亮, 等. 喷施外源EBR和H2O2对烤烟幼苗抗低温胁迫的影响[J]. 云南农业大学学报(自然科学), 2022, 37(4): 623-629. |
SHEN Z Q, XIANG S P, XU J L, et al. Effect of spraying exogenous EBR and H2O2 on the resistance of tobacco seedlings to low temperature stress[J]. Journal of Yunnan Agricultural University(Natural Science), 2022, 37(4): 623-629.(in Chinese with English abstract) | |
[6] | 刘晓青, 赵晖, 耿兴敏, 等. 高温胁迫下杜鹃叶片AsA-GSH循环的亚细胞定位分析[J]. 江苏农业科学, 2021, 49(18): 128-133. |
LIU X Q, ZHAO H, GENG X M, et al. Study on sub-cellular distribution of AsA-GSH cycle in rhododendron leaves under high temperature stress[J]. Jiangsu Agricultural Sciences, 2021, 49(18): 128-133.(in Chinese) | |
[7] | 赵野, 刘威, 王贺, 等. 外源CaCl2对盐胁迫下西伯利亚白刺活性氧代谢的影响[J]. 植物生理学报, 2021, 57(5): 1105-1112. |
ZHAO Y, LIU W, WANG H, et al. Effects of exogenous CaCl2 on reactive oxygen species metabolism in Nitraria sibirica under NaCl stress[J]. Plant Physiology Journal, 2021, 57(5): 1105-1112.(in Chinese with English abstract) | |
[8] | 张韫璐, 王琦, 王金缘, 等. 干旱预处理对盐胁迫下水稻幼苗抗氧化酶活性及AsA-GSH循环的影响[J]. 江苏农业科学, 2018, 46(7): 58-60. |
ZHANG Y L, WANG Q, WANG J Y, et al. Effects of PEG pretreatment on antioxidant enzyme activity and AsA-GSH cycle under salt stress in rice seedlings[J]. Jiangsu Agricultural Sciences, 2018, 46(7): 58-60.(in Chinese) | |
[9] | 魏国芹, 杨洪强, 付全娟, 等. H2S对低温胁迫下甜樱桃柱头和子房AsA-GSH循环的响应[J]. 核农学报, 2017, 31(6): 1217-1225. |
WEI G Q, YANG H Q, FU Q J, et al. Effects of H2S on ascorbate-glutathione cycle in sweet cherry stigma and ovary under low temperature stress[J]. Journal of Nuclear Agricultural Sciences, 2017, 31(6): 1217-1225.(in Chinese with English abstract) | |
[10] | KISHOR P, SANGAM S, NAIDU K R, et al. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance[J]. Current Science, 2005, 88: 424-438. |
[11] | 李丹阳. 外源SPD和NO对盐胁迫下玉竹渗透调节及脯氨酸代谢的影响[D]. 哈尔滨: 东北农业大学, 2018. |
LI D Y. Effects of spermidine and nitric oxide on osmotic adjustment and proline metabolic pathways of Polygonatum odoratum(Mill.) druce under salt stress[D]. Harbin: Northeast Agricultural University, 2018.(in Chinese with English abstract) | |
[12] | 孙聪聪, 赵海燕, 郑彩霞. NaCl胁迫对银杏幼树渗透调节物质及脯氨酸代谢的影响[J]. 植物生理学报, 2017, 53(3): 470-476. |
SUN C C, ZHAO H Y, ZHENG C X. Effects of NaCl stress on osmolyte and proline metabolism in Ginkgo biloba seedling[J]. Plant Physiology Journal, 2017, 53(3): 470-476.(in Chinese with English abstract) | |
[13] | 刘婷婷. 低温胁迫下AM真菌调控水稻脯氨酸代谢机制[D]. 哈尔滨: 东北农业大学, 2019. |
LIU T T. Mechanisms of AM fungi regulating proline metabolism in rice under low temperature stress[D]. Harbin: Northeast Agricultural University, 2019.(in Chinese with English abstract) | |
[14] | 梅瑜, 李向荣, 蔡时可, 等. 药食同源植物甘葛藤的全长转录组分析[J]. 华北农学报, 2021, 36(5): 10-17. |
MEI Y, LI X R, CAI S K, et al. Full-length transcriptome analysis of a homology of medicine and food of Pueraria thomsonii[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(5): 10-17.(in Chinese with English abstract) | |
[15] | 谢文辉, 赵文武, 赵丽丽, 等. 优良葛藤种质资源评价筛选技术[J]. 安徽农学通报, 2021, 27(6): 85-88. |
XIE W H, ZHAO W W, ZHAO L L, et al. Evaluation and selection techniques of excellent Pueraria lobata(Wild.) Ohwi germplasm resources[J]. Anhui Agricultural Science Bulletin, 2021, 27(6): 85-88.(in Chinese with English abstract) | |
[16] | 谢文辉, 黄莉娟, 赵丽丽, 等. 钙盐胁迫对3份葛藤种质种子萌发及幼苗生理特性的影响[J]. 草业学报, 2022, 31(7): 220-233. |
XIE W H, HUANG L J, ZHAO L L, et al. Effects of calcium salt stress on seed germination and seedling physiological characteristics of three Pueraria lobata germplasm lines[J]. Acta Prataculturae Sinica, 2022, 31(7): 220-233.(in Chinese with English abstract) | |
[17] | 李鑫. 干旱胁迫下粉葛根细胞淀粉粒积累及葛藤逆境生理响应[D]. 贵阳: 贵州大学, 2021. |
LI X. The accumulation of starch grains in root cells and the physiological response of Pueraria montana var.thomsonii under drought stress[D]. Guiyang: Guizhou University, 2021.(in Chinese with English abstract) | |
[18] | 张淑炜, 赵丽丽, 陈超, 等. 低磷胁迫下3种不同种源葛藤的生长生理响应[J]. 中国农业科技导报, 2022, 24(1): 71-82. |
ZHANG S W, ZHAO L L, CHEN C, et al. Growth and physiological response of 3 different provenances of Pueraria lobata under low phosphorus stress[J]. Journal of Agricultural Science and Technology, 2022, 24(1): 71-82.(in Chinese with English abstract) | |
[19] | 张柔, 许建新, 薛立, 等. 低温胁迫和解除对4种阔叶幼苗生理特征的影响[J]. 生态科学, 2014, 33(3): 419-425. |
ZHANG R, XU J X, XUE L, et al. Effects of low temperature stress and release by chilling on physiological characteristics of four broadleaf seedling types[J]. Ecological Science, 2014, 33(3): 419-425.(in Chinese with English abstract) | |
[20] | 孟诗原, 吕桂云, 张明忠, 等. 5种卫矛属植物对低温胁迫的生理响应及抗寒性评价[J]. 西北植物学报, 2020, 40(4): 624-634. |
MENG S Y, LÜ G Y, ZHANG M Z, et al. Physiological response to cold stress and evaluation of cold resistance for five species of Euonymus Linn[J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(4): 624-634.(in Chinese with English abstract) | |
[21] | 王艳, 李建龙, 余醉, 等. 信号分子H2O2调节抗氧化系统提高高羊茅耐热性研究[J]. 草业学报, 2010, 19(1): 89-94. |
WANG Y, LI J L, YU Z, et al. The signaling molecule H2O2 improved the heat-tolerance system of Festuca arundinacea by up-regulating antioxidative activity[J]. Acta Prataculturae Sinica, 2010, 19(1): 89-94.(in Chinese with English abstract) | |
[22] | 张顺凯, 王端, 陶雨佳, 等. H2O2浸种和播期对油菜越冬期前后光合作用、糖代谢及生长的影响[J]. 南京农业大学学报, 2020, 43(1): 26-32. |
ZHANG S K, WANG D, TAO Y J, et al. Effects of H2O2 immersion and sowing date on photosynthesis, sugar metabolism and growth of rape before and after the winter[J]. Journal of Nanjing Agricultural University, 2020, 43(1): 26-32.(in Chinese with English abstract) | |
[23] | 张曼. H2O2浸种对低温胁迫下油菜种子萌发和幼苗生长的影响[D]. 南京: 南京农业大学, 2017. |
ZHANG M. Effects of seed soaking with hydrogen peroxide on seed germination and seedling growth in rape under chilling stress[D]. Nanjing: Nanjing Agricultural University, 2017.(in Chinese with English abstract) | |
[24] | 王端. 温度对H2O2浸种油菜低温萌发的影响[D]. 南京: 南京农业大学, 2020. |
WANG D. Effects of soaking temperture on germination of seeds soaked with H2O2 under low temperature in rapeseed[D]. Nanjing: Nanjing Agricultural University, 2020.(in Chinese with English abstract) | |
[25] | SUN H J, LUO M L, ZHOU X, et al. Exogenous glycine betaine treatment alleviates low temperature-induced pericarp browning of ‘Nanguo’ pears by regulating antioxidant enzymes and proline metabolism[J]. Food Chemistry, 2020, 306: 125626. |
[26] | 娄慧, 赵曾强, 朱金成, 等. 褪黑素对低温胁迫下棉花种子萌发特性的影响[J]. 中国农学通报, 2021, 37(35): 13-19. |
LOU H, ZHAO Z Q, ZHU J C, et al. Melatonin under low temperature stress: effects on germination characteristics of cotton seeds[J]. Chinese Agricultural Science Bulletin, 2021, 37(35): 13-19.(in Chinese with English abstract) | |
[27] | 茹刚, 陈学林, 于文惠, 等. 外源NO对低温胁迫下伏毛铁棒锤种子萌发及幼苗生理特性的影响[J]. 西北农林科技大学学报(自然科学版), 2021, 49(2): 137-144. |
RU G, CHEN X L, YU W H, et al. Effects of exogenous NO on seed germination and seedling physiological characteristics of Aconitum flavum Hand.-Mazz under low temperature stress[J]. Journal of Northwest A & F University(Natural Science Edition), 2021, 49(2): 137-144.(in Chinese with English abstract) | |
[28] | 刁倩楠, 范红伟, 张文献, 等. 外源物质对低温下甜瓜种子萌发和幼苗生理特性的影响[J]. 分子植物育种, 2020, 18(21): 7209-7216. |
DIAO Q N, FAN H W, ZHANG W X, et al. Exogenous substances on seed germination, physiological characteristics of melon under chilling stress[J]. Molecular Plant Breeding, 2020, 18(21): 7209-7216.(in Chinese with English abstract) | |
[29] | VERBRUGGEN N, HERMANS C. Proline accumulation in plants: a review[J]. Amino Acids, 2008, 35(4): 753-759. |
[30] | MATTIOLI R, COSTANTINO P, TROVATO M. Proline accumulation in plants: not only stress[J]. Plant Signaling & Behavior, 2009, 4(11): 1016-1018. |
[31] | HE H Y, HE L F. Regulation of gaseous signaling molecules on proline metabolism in plants[J]. Plant Cell Reports, 2018, 37(3): 387-392. |
[32] | 余燕, 张雅婷, 赵雪, 等. H2O2浸种对低温胁迫下花生种子萌发的调控作用[J]. 中国油料作物学报, 2020, 42(5): 860-868. |
YU Y, ZHANG Y T, ZHAO X, et al. Effects of seed soaking with H2O2 on seed germination of peanut under low temperature conditions[J]. Chinese Journal of Oil Crop Sciences, 2020, 42(5): 860-868.(in Chinese with English abstract) | |
[33] | 张美华. 低温对玉米生理生化的影响及耐低温浸种剂的研究[D]. 沈阳: 沈阳农业大学, 2017. |
ZHANG M H. Effects of low temperature on physiological and biochemical characteristics of maize and study on maize seed soaking agent resist to low temperature[D]. Shenyang: Shenyang Agricultural University, 2017.(in Chinese with English abstract) | |
[34] | 李忠光. 冷激诱导的小桐子幼苗的耐冷性及其生理机制[D]. 昆明: 云南师范大学, 2015. |
LI Z G. Chilling shock-induced chilling tolerance and its physiological mechanism in Jatropha curcas seedlings[D]. Kunming: Yunnan Normal University, 2015.(in Chinese with English abstract) | |
[35] | NAHAR K, HASANUZZAMAN M, ALAM M M, et al. Exogenous spermidine alleviates low temperature injury in mung bean (Vigna radiata L.) seedlings by modulating ascorbate-glutathione and glyoxalase pathway[J]. International Journal of Molecular Sciences, 2015, 16(12): 30117-30132. |
[36] | GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 2010, 48(12): 909-930. |
[37] | SAHOO M R, DEVI T R, DASGUPTA M, et al. Reactive oxygen species scavenging mechanisms associated with polyethylene glycol mediated osmotic stress tolerance in Chinese potato[J]. Scientific Reports, 2020, 10: 5404. |
[38] | NOCTOR G, FOYER C H. Ascorbate and glutathione: keeping active oxygen under control[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49: 249-279. |
[39] | 杨颖丽, 吕丽荣, 李晶, 等. 盐胁迫下2种小麦幼苗抗坏血酸-谷胱甘肽循环的比较[J]. 西北师范大学学报(自然科学版), 2018, 54(3): 65-70. |
YANG Y L, LÜ L R, LI J, et al. Comparison of ascorbic acid-glutathione cycle in two wheat seedlings under salt stress[J]. Journal of Northwest Normal University(Natural Science), 2018, 54(3): 65-70.(in Chinese with English abstract) | |
[40] | 李进, 雷斌, 翟梦华, 等. 棉花幼苗AsA-GSH循环对低温胁迫的响应机制研究[J]. 核农学报, 2021, 35(1): 221-228. |
LI J, LEI B, ZHAI M H, et al. Study on the response mechanism of the AsA-GSH cycle in cotton seedling under low temperature stress[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(1): 221-228.(in Chinese with English abstract) | |
[41] | 杨宁, 丁芳霞, 李宜珅, 等. 低温胁迫对高山离子芥试管苗膜脂过氧化及AsA-GSH循环系统的影响[J]. 西北师范大学学报(自然科学版), 2014, 50(5): 79-84. |
YANG N, DING F X, LI Y S, et al. Effects of low temperature stress on membrane peroxidatio and ascorbate-glutathione cycle in Chorispora bungeana plantlets in vitro[J]. Journal of Northwest Normal University(Natural Science), 2014, 50(5): 79-84.(in Chinese with English abstract) | |
[42] | 山溪, 秦文斌, 张振超, 等. 低温胁迫对不同品系甘蓝幼叶AsA-GSH循环代谢的影响[J]. 南方农业学报, 2018, 49(11): 2230-2235. |
SHAN X, QIN W B, ZHANG Z C, et al. Effects of low temperature stress on leaf AsA-GSH cycle metabolism in different varieties Brassica oleracea L[J]. Journal of Southern Agriculture, 2018, 49(11): 2230-2235.(in Chinese with English abstract) | |
[43] | 王利华, 章艺, 吴玉环, 等. 水杨酸对栝楼AsA-GSH循环系统及耐寒性的影响[J]. 水土保持学报, 2013, 27(4): 234-240. |
WANG L H, ZHANG Y, WU Y H, et al. Effect of exogenous salicylic acid on enzymes of ascorbate-glutathione cycle and cold tolerance of Trichosanthes kirilowii maxim[J]. Journal of Soil and Water Conservation, 2013, 27(4): 234-240.(in Chinese with English abstract) |
[1] | 赵云燕, 孙建, 梁俊超, 王郅琪, 颜廷献, 颜小文, 危文亮, 乐美旺. 低温胁迫对芝麻芽期幼苗生长的影响与耐低温材料筛选[J]. 浙江农业学报, 2023, 35(4): 752-768. |
[2] | 李文翔, 王芳, 王舰. 马铃薯miR397的克隆及靶基因筛选[J]. 浙江农业学报, 2022, 34(6): 1141-1151. |
[3] | 李小兰, 张瑞, 郝兰兰, 王鸿. 桃NAC家族基因生物信息学分析及其响应低温胁迫的表达特征[J]. 浙江农业学报, 2022, 34(4): 766-780. |
[4] | 黄长兵, 程培蕾, 杨绍宗, 张焕朝, 姜正之, 金立敏. 萱草根茎低温胁迫转录组分析[J]. 浙江农业学报, 2021, 33(8): 1445-1460. |
[5] | 张淑文, 梁森苗, 朱婷婷, 任海英, 郑锡良, 戚行江. 不同杨梅品种的耐低温能力比较[J]. 浙江农业学报, 2020, 32(10): 1772-1779. |
[6] | 滕尧, 李安定, 郝自远, 张洪亮, 张丽敏, 蔡国俊. 西番莲解剖结构特征及低温胁迫下叶片结构与抗寒性的关系[J]. 浙江农业学报, 2018, 30(11): 1849-1858. |
[7] | 肖文斐, 倪深, 裘劼人, 王淑珍, 忻雅, 阮松林. 水稻冷激蛋白基因OsCSP2启动子的克隆与分析[J]. 浙江农业学报, 2017, 29(6): 857-863. |
[8] | 华晓琴1,刘高亮2,张庆辉2,张鲁1,章婷1,钟宇1, *. 大巴山粉葛组织培养技术[J]. 浙江农业学报, 2016, 28(7): 1108-. |
[9] | 蒋景龙,沈季雪,徐卫平,田雲,李丽. 外源H2O2对低温胁迫下大红柑生长及叶片生理指标的影响[J]. 浙江农业学报, 2016, 28(7): 1164-. |
[10] | 杜卓涛1,杨衍2,朱国鹏1,田丽波1,*,商桑1,*. 外源一氧化氮对低温胁迫下苦瓜幼苗生长及部分抗逆指标的影响[J]. 浙江农业学报, 2016, 28(5): 776-. |
[11] | 李玲1,2,谭力1,全沁果3,全浩1,何福林1,黄光文1,邵金华1,闫旭宇1,*. 野葛块根异黄酮的提取及抗氧化研究[J]. 浙江农业学报, 2016, 28(3): 496-. |
[12] | 刘日林,章玉婷,潘凌洁,于超,艾建国,朱祝军,王华森*. 低温对不同抗冷性菜豆品种生理机制的影响[J]. 浙江农业学报, 2015, 27(2): 189-. |
[13] | 张真真1,邱立军1,李玲2,陈文荣2,应海良1,郭卫东2,*. 低温胁迫差异表达基因在佛手和枳中的半定量RT\|PCR分析[J]. 浙江农业学报, 2015, 27(12): 2105-. |
[14] | 王兆,刘晓曦,郑国华*. 低温胁迫对彩叶草光合作用及叶绿素荧光的影响[J]. 浙江农业学报, 2015, 27(1): 49-. |
[15] | 徐伟慧;周兰娟;王志刚. 外源水杨酸缓解西葫芦幼苗低温胁迫的效应[J]. , 2013, 25(4): 0-67. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||