浙江农业学报 ›› 2024, Vol. 36 ›› Issue (11): 2605-2616.DOI: 10.3969/j.issn.1004-1524.20231301
周凯琪(), 余铖, 袁彪, 吕艳(
), 倪益华, 倪忠进, 严雪纯, 赵鹏飞
收稿日期:
2023-11-16
出版日期:
2024-11-25
发布日期:
2024-11-27
作者简介:
周凯琪(1996—),男,浙江长兴人,硕士研究生,研究方向为智能检测与控制技术。E-mail:1120159444@qq.com
通讯作者:
*吕艳,E-mail:yan.lv@outlook.com
基金资助:
ZHOU Kaiqi(), YU Cheng, YUAN Biao, LÜ Yan(
), NI Yihua, NI Zhongjin, YAN Xuechun, ZHAO Pengfei
Received:
2023-11-16
Online:
2024-11-25
Published:
2024-11-27
摘要:
为满足微波法冬笋探测的高灵敏度与低成本需求,设计一种加载扼流槽的背腔收发天线,该天线采用蝶形偶极子天线作为辐射单元,通过使用四面折叠的金属屏蔽盒围绕辐射单元与馈电结构耦合实现天线的定向辐射并提高增益,同时在双天线单元之间加载扼流槽,改善收发天线之间的隔离度。借助电磁仿真软件对天线进行了设计,并进行实物加工与测试。仿真结果表明,当输入回波损耗S11<-10 dB时,天线的工作频率为0.94~1.49 GHz,绝对带宽达到0.55 GHz,相对带宽为45%,工作频段内增益为6.40~10.80 dBi,收发隔离度最高达到-51.6 dB。实测结果与仿真结果较贴合,天线在各方面性能良好。在土壤中测试该天线对冬笋的探测效果,测试结果表明,本研究设计的天线可以较好地分辨出有无冬笋的信号特征。
中图分类号:
周凯琪, 余铖, 袁彪, 吕艳, 倪益华, 倪忠进, 严雪纯, 赵鹏飞. 一种应用于冬笋探测的高隔离度和高灵敏度天线设计[J]. 浙江农业学报, 2024, 36(11): 2605-2616.
ZHOU Kaiqi, YU Cheng, YUAN Biao, LÜ Yan, NI Yihua, NI Zhongjin, YAN Xuechun, ZHAO Pengfei. Design of a high isolation and high sensitivity antenna for winter bamboo shoot detection[J]. Acta Agriculturae Zhejiangensis, 2024, 36(11): 2605-2616.
图2 本文天线结构示意图 A,立体结构示意图;B,单天线底视图;C,单天线侧视图;D,扼流槽侧视图;E,天线整体结构视图。Ws,背腔下宽度;Wp,背腔上宽度;L1、L2、L3,蝶形振子尺寸;Hg,同轴馈电与背腔上顶端距离;Hs,背腔斜坡高度;Hp,上背腔距离振子高度;Hq,扼流槽高度;La,扼流槽宽度;Lb、Lc、Ld探地雷达天线整体尺寸。
Fig.2 Schematic diagram of antenna structure in this paper A, Schematic diagram of the three-dimensional structure; B, Single antenna bottom view; C, Side view of single antenna; D, Side view of chokes; E, Overall structural view of antenna. Ws, Lower width of the dorsal cavity; Wp, Upper width of the dorsal cavity; L1, L2and L3, Butterfly oscillator size; Hg, Coaxial feeding and distance from the top of the back cavity; Hs, Back cavity slope height; Hp, The distance between the upper back cavity and the oscillator height; Hq, Height of choke groove; La, Width of choke groove; Lb, Lcand Ld, The overall size of the ground penetrating radar antenna.
参数 Parameter | 数值 Value/mm | 参数 Parameter | 数值 Value/mm |
---|---|---|---|
L1 | 9 | Hs | 50 |
L2 | 25 | Hp | 90 |
L3 | 3 | Hq | 40 |
W1 | 29 | La | 100 |
W2 | 15 | Lb | 426 |
Ws | 163 | Lc | 163 |
Wp | 95 | Ld | 124 |
Hg | 10 |
表1 本文天线结构参数
Table 1 Antenna structure parameters in this paper
参数 Parameter | 数值 Value/mm | 参数 Parameter | 数值 Value/mm |
---|---|---|---|
L1 | 9 | Hs | 50 |
L2 | 25 | Hp | 90 |
L3 | 3 | Hq | 40 |
W1 | 29 | La | 100 |
W2 | 15 | Lb | 426 |
Ws | 163 | Lc | 163 |
Wp | 95 | Ld | 124 |
Hg | 10 |
图3 背腔演变及三维辐射方向图 A,无背腔模型;B,两面折叠背腔模型;C,四面折叠背腔模型。
Fig.3 Back cavity evolution and 3D radiation pattern A, No dorsal cavity model; B, Two sided folding back cavity model; C, Four sided folding back cavity model.
图4 三种模型的性能比较 L3,无背腔模型;L4,两面折叠背腔模型;L5,四面折叠背腔模型。
Fig.4 Performance comparison of three models L3, Model without a dorsal cavity; L4, Double-sided folded dorsal cavity model; L5, Four fold back cavity model.
图8 扼流槽结构及其原理 A,扼流槽结构图;B,扼流槽对表面波的扼制原理图;C,扼流槽对反射波和衍射波的扼制原理。
Fig.8 The structure and principle of the choke groove A, Choke groove structure diagram; B, Schematic diagram of the suppression of surface waves by a choke groove; C, The principle of choke groove for suppressing refractive and diffractive waves.
天线 Antenna | 工作频段 Frequency band/GHz | 增益 Gain/ dBi | 隔离度S12 Isolation S12/dB |
---|---|---|---|
文献[ | 5.00~6.00 | 8.0 | -46.0 |
Reference [ | |||
文献[ | 3.30~3.80 | 5.0 | -38.0 |
Reference [ | |||
文献[ | 3.50 | 5.0 | -40.0 |
Reference [ | |||
本文This paper | 0.94~1.49 | 10.8 | -51.6 |
表2 天线性能对比
Table 2 Comparison of antenna performances
天线 Antenna | 工作频段 Frequency band/GHz | 增益 Gain/ dBi | 隔离度S12 Isolation S12/dB |
---|---|---|---|
文献[ | 5.00~6.00 | 8.0 | -46.0 |
Reference [ | |||
文献[ | 3.30~3.80 | 5.0 | -38.0 |
Reference [ | |||
文献[ | 3.50 | 5.0 | -40.0 |
Reference [ | |||
本文This paper | 0.94~1.49 | 10.8 | -51.6 |
图15 不同土壤含水率下的功率谱密度对比 A、B、C、D分别为土壤含水率10%、15%、20%、25%时的功率谱密度对比。
Fig.15 Comparison of power spectral density under different soil moisture contents A, B, C and D are comparisons of power spectral density at soil moisture contents of 10%, 15%, 20% and 25%, respectively.
[1] | 李岚, 朱霖, 朱平. 中国竹资源及竹产业发展现状分析[J]. 南方农业, 2017, 11(1): 6-9. |
LI L, ZHU L, ZHU P. Analysis of bamboo resources and development status of bamboo industry in China[J]. South China Agriculture, 2017, 11(1): 6-9. (in Chinese) | |
[2] | 陈灿. 浙江竹林资源经营现状与对策的分析研究[D]. 杭州: 浙江农林大学, 2012. |
CHEN C. Analysis and research on the present situation and countermeasures of bamboo forest resources management in Zhejiang Province[D]. Hangzhou: Zhejiang A & F University, 2012. (in Chinese with English abstract) | |
[3] | 苏文会, 许庆标, 范少辉, 等. 毛竹冬笋生长与生物量积累规律研究[J]. 西北林学院学报, 2013, 28(2): 32-36. |
SU W H, XU Q B, FAN S H, et al. Winter shoot growth and biomass accumulation of Phyllostachys edulis[J]. Journal of Northwest Forestry University, 2013, 28(2): 32-36. (in Chinese with English abstract) | |
[4] | 陈雨, 欧元超, 胡雄武. 毛竹冬笋并行电法探测可行性研究与观测系统优选[J]. 河南理工大学学报(自然科学版), 2019, 38(3): 54-60. |
CHEN Y, OU Y C, HU X W. Feasibility study and observation system optimization of parallel electric method detection of bamboo shoots[J]. Journal of Henan Polytechnic University(Natural Science), 2019, 38(3): 54-60. (in Chinese with English abstract) | |
[5] | 缪振兴. 电阻抗法探测毛竹冬笋仿真研究[D]. 合肥: 安徽农业大学, 2020. |
MIAO Z X. Simulation study on detecting winter bamboo shoots using impedance method[D]. Hefei: Anhui Agricultural University, 2020. | |
[6] | 潘雁红, 何秋中, 叶晓丹, 等. 电子鼻在竹笋种类识别中的应用[J]. 浙江农林大学学报, 2016, 33(3): 495-499. |
PAN Y H, HE Q Z, YE X D, et al. An electronic nose for bamboo shoot identification[J]. Journal of Zhejiang A & F University, 2016, 33(3): 495-499. (in Chinese with English abstract) | |
[7] | 王刚, 宋舟麒, 李鑫, 等. 分离式超声波和地阻互补冬笋探测仪及其探测原理: CN104635279A[P]. 2015-05-20. |
[8] | 林为政, 王俊楠, 倪忠进, 等. 基于时域反射法的冬笋地下位置探测器设计[J]. 农业工程学报, 2019, 35(7): 31-38. |
LIN W Z, WANG J N, NI Z J, et al. Design of underground position detector for winter bamboo shoot based on time domain reflectometry[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(7): 31-38. (in Chinese with English abstract) | |
[9] | 王俊楠, 吕艳, 倪忠进, 等. 基于微波反射法的冬笋探测器设计[J]. 中国农业大学学报, 2021, 26(9): 177-188. |
WANG J N, LV Y, NI Z J, et al. Design of winter bamboo shoot detector based on microwave reflection method[J]. Journal of China Agricultural University, 2021, 26(9): 177-188. (in Chinese with English abstract) | |
[10] | 范妍洁, 卢玉斌, 陈少波, 等. 基于微波法与电阻率法的智能冬笋探测器[J]. 林产工业, 2022, 59(7): 38-42. |
FAN Y J, LU Y B, CHEN S B, et al. Intelligent winter bamboo shoot detector based on microwave and resistivity method[J]. China Forest Products Industry, 2022, 59(7): 38-42. (in Chinese with English abstract) | |
[11] | 赵泽方. 高精度测量型天线关键技术的研究[D]. 合肥: 合肥工业大学, 2016. |
ZHAO Z F. Research on key technologies of high precision measuring antenna[D]. Hefei: Hefei University of Technology, 2016. (in Chinese with English abstract) | |
[12] | 权双龙, 王昊, 徐达龙, 等. 基于连续波干涉仪系统的高隔离度天线[J]. 系统工程与电子技术, 2022, 44(11): 3313-3319. |
QUAN S L, WANG H, XU D L, et al. High isolation antenna based on continuous wave interferometer system[J]. Systems Engineering and Electronics, 2022, 44(11): 3313-3319. (in Chinese with English abstract) | |
[13] | MONDAL R, REDDY P S, SARKAR D C, et al. Investigation on MIMO antenna for very low ECC and isolation characteristics using FSS and metal-wall[J]. AEU-International Journal of Electronics and Communications, 2021, 135: 153708. |
[14] | 焦光龙, 冯存前, 王笑. 加隔离板的两天线间隔离度计算[J]. 陕西师范大学学报(自然科学版), 2004, 32(S1): 92-94. |
JIAO G L, FENG C Q, WANG X. Calculation of isolation between two antennas with isolation plate[J]. Journal of Shaanxi Normal University(Natural Science Edition), 2004, 32(S1): 92-94. (in Chinese) | |
[15] | CZERESKO P J, ARMAN A S, VOGLER T R, et al. EBG design and analysis for wideband isolation improvement between aircraft blade monopoles[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2019, 30(6): 1-15. |
[16] | 马汉清, 李存龙, 张盛华. 一种提高连续波雷达天线隔离度的设计[C]//. 2013年全国天线年会论文集(上册). 2013: 762-764 |
[17] | HAFEZIFARD R, NASER-MOGHADASI M, RASHED-MOHASSEL J, et al. Mutual coupling reduction for two closely-space meander line antennas using metamaterial substrate[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 15: 1. |
[18] | 周旭, 于嘉嵬. 高隔离度的连续波雷达收发天线系统[J]. 现代雷达, 2019, 41(7): 68-70. |
ZHOU X, YU J W. High isolation transceiver antenna system for continuous wave radar[J]. Modern Radar, 2019, 41(7): 68-70. (in Chinese with English abstract) | |
[19] | DA Y R, ZHANG Z Y, CHEN X M, et al. Mutual coupling reduction with dielectric superstrate for base station arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(5): 843-847. |
[20] | VISHVAKSENAN K S, MITHRA K, KALAIARASAN R, et al. Mutual coupling reduction in microstrip patch antenna arrays using parallel coupled-line resonators[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2146-2149. |
[21] | NAYAK R, MAITI S. A review of bow-Tie antennas for GPR applications[J]. IETE Technical Review, 2019, 36(4): 382-397. |
[22] | GONÇALVES LICURSI DE MELLO R, LEPAGE A C, BEGAUD X. The bow-Tie antenna: performance limitations and improvements[J]. IET Microwaves, Antennas & Propagation, 2022, 16(5): 283-294. |
[23] | VIJAYALAKSHMI J, MURUGESAN G. Design of UWB high gain modified bowtie antenna for radar applications[C]//2018 International Conference on Intelligent Computing and Communication for Smart World (I2C2SW). December 14-15, 2018. Erode, India. IEEE, 2018: 201. |
[24] | JIMÉNEZ-MARTÍN J L, PARRA-CERRADA A, FERNÁNDEZ-RECIO R, et al. Dual band and dual polarization short-circuited ring patch antenna[J]. Journal of Electromagnetic Waves and Applications, 2016, 30(9): 1198-1206. |
[25] | ZHAO C W, LI X P, SUN C, et al. Wideband planar sleeve dipole antenna with back cavity[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(6): 959-963. |
[26] | WU B H, JI Y C, FANG G Y. Analysis of GPR UWB half-ellipse antennas with different heights of backed cavity above ground[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 130-133. |
[27] | YANG D, PAN J, ZHAO Z, et al. Design of trapezoidal cavity-backed resistance loaded bow Tie antenna with ultra-wideband and high directivity[J]. Journal of Electromagnetic Waves and Applications, 2010, 24(11/12): 1685-1695. |
[28] | 林月茹, 林文斌. 一种加载耦合金属板的宽带蝶形天线的设计[J]. 电子测量技术, 2020, 43(6): 15-20. |
LIN Y R, LIN W B. Design of a broadband bow-Tie antenna with coupled metal plates[J]. Electronic Measurement Technology, 2020, 43(6): 15-20. (in Chinese with English abstract) | |
[29] | 韩壮志, 吴玉柱, 梁梦涛, 等. 连续波雷达微带天线收发隔离技术综述[J]. 电子元件与材料, 2020, 39(10): 17-24. |
HAN Z Z, WU Y Z, LIANG M T, et al. Transceiver isolation technology for continuous radar microstrip antenna: a review[J]. Electronic Components and Materials, 2020, 39(10): 17-24. (in Chinese with English abstract) | |
[30] | 杨桦. 表面波对收发天线隔离度的影响及其解决方法[J]. 航空兵器, 2011, 18(1): 43-45. |
YANG H. The influence of surface wave on transceiver antenna isolation degree and the solving method[J]. Aero Weaponry, 2011, 18(1): 43-45. (in Chinese with English abstract) | |
[31] | SAWYER D J, DAS S, DIAMANTI N, et al. Choke rings for pattern shaping of a GPR dipole antenna[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(12): 6781-6790. |
[32] | DAGGULA R, CHAKRAVARTI M, ACHARYYA A, et al. Flange effect minimization and antenna isolation improvement using RF choke in slotted waveguide array antenna[C]// 2019 IEEE MTT-S International Microwave and RF Conference (IMARC). December 13-15, 2019. Mumbai, India. IEEE, 2019. |
[33] | SONG D A, ZHANG Q, XIONG H L, et al. Investigation for shielding effectiveness of metal plate[C]//2013 5th IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications. October 29-31, 2013. Chengdu, China. IEEE, 2013. |
[1] | 李颀, 赵洁, 杨柳, 王俊, 高一星. 基于GA-BP神经网络和特征向量优化组合的黄瓜叶片病斑识别[J]. 浙江农业学报, 2019, 31(3): 487-495. |
[2] | 常丽娟, 宋君, 张富丽, 刘文娟, 唐春燕, 王东, 尹全. 实时荧光定量PCR方法检测转基因玉米MIR604[J]. 浙江农业学报, 2017, 29(11): 1769-1774. |
[3] | 张明洲;刘军;胡华军;苏志春;俞晓平. 乙肝和肝癌诊断蛋白芯片的制备及评价[J]. , 2006, 18(5): 0-361. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||