浙江农业学报 ›› 2025, Vol. 37 ›› Issue (3): 726-735.DOI: 10.3969/j.issn.1004-1524.20240213

• 综述 • 上一篇    下一篇

基因组选择技术在猪肉质育种中的应用与展望

王彬彬(), 齐珂珂, 门小明, 徐子伟()   

  1. 浙江省农业科学学院 畜牧兽医研究所,浙江 杭州 310021
  • 收稿日期:2024-03-06 出版日期:2025-03-25 发布日期:2025-04-02
  • 作者简介:王彬彬(1990—),男,河南商丘人,博士,助理研究员,主要从事优质猪育种研究。E-mail:bbwzaas@126.com
  • 通讯作者: * 徐子伟,E-mail:zxwfyz@126.com
  • 基金资助:
    浙江省基础公益研究计划(ZCLQ24C1702);国家自然科学基金青年科学基金(32302695);浙江省农业新品种选育重大科技专项(2021C02068);浙江省重点研发计划(2021C02007);国家现代农业产业技术体系(CARS-36)

Application and perspect of genomic selection in pork quality breeding

WANG Binbin(), QI Keke, MEN Xiaoming, XU Ziwei()   

  1. Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
  • Received:2024-03-06 Online:2025-03-25 Published:2025-04-02

摘要:

猪肉品质对消费者健康及生猪产业可持续发展至关重要。传统选育方法因肉质性状遗传解析不足存在改良瓶颈。随着高通量技术的发展,基因组选择(genomic selection, GS)凭借其高精度、低成本优势,成为突破肉质遗传改良的关键技术。本文系统梳理了GS模型的发展脉络,对各类GS模型的分类和预测准确性进行了综述。当前仍面临诸多挑战:活体精准表型采集技术尚未突破;现有模型对跨群体、跨环境数据适应性不足;多组学整合机制与表观遗传网络融入育种体系仍有欠缺等。未来需重点研发动态表型传感技术,构建可解释性深度学习框架,创建多组学联合预测模型。通过建立覆盖育种-生产-加工全产业链的遗传评估体系,实现从基因组到表型组的跨尺度解析,为我国优质猪种质创新提供理论支撑与技术路径。

关键词: 猪, 肉质性状, 基因组选择, 模型比较, 遗传改良

Abstract:

Pork quality is crucial for consumer health and the sustainable development of the swine industry. Traditional breeding methods face limitations in improving meat quality due to insufficient genetic understanding of these traits. With the development of high-throughput technologies, genomic selection(GS) technology has emerged as a key tool for breaking through the genetic improvement bottleneck in meat quality, owing to its high precision and low cost. This paper systematically reviews the development of GS models, categorizing various types of models and discussing their predictive accuracy. Several challenges remain: the technology for precise in vivo phenotypic data collection has yet to be fully realized; existing models show insufficient adaptability to cross-population and cross-environment data; and the integration of multi-omics mechanisms and epigenetic networks into breeding systems is still lacking. Future research should focus on developing dynamic phenotypic sensing technologies, constructing interpretable deep learning frameworks, and creating multi-omics-based predictive models. By establishing a genetic evaluation system covering the entire breeding-production-processing industry chain, this study aims to provide a theoretical foundation and technical pathway for the innovation of high-quality pig germplasm in China, enabling cross-scale analysis from genomics to phenomics.

Key words: pig, meat quality, genomic selection, models comparison, genetic improvement

中图分类号: