浙江农业学报 ›› 2025, Vol. 37 ›› Issue (3): 726-735.DOI: 10.3969/j.issn.1004-1524.20240213
收稿日期:
2024-03-06
出版日期:
2025-03-25
发布日期:
2025-04-02
作者简介:
王彬彬(1990—),男,河南商丘人,博士,助理研究员,主要从事优质猪育种研究。E-mail:bbwzaas@126.com
通讯作者:
* 徐子伟,E-mail:zxwfyz@126.com
基金资助:
WANG Binbin(), QI Keke, MEN Xiaoming, XU Ziwei(
)
Received:
2024-03-06
Online:
2025-03-25
Published:
2025-04-02
摘要:
猪肉品质对消费者健康及生猪产业可持续发展至关重要。传统选育方法因肉质性状遗传解析不足存在改良瓶颈。随着高通量技术的发展,基因组选择(genomic selection, GS)凭借其高精度、低成本优势,成为突破肉质遗传改良的关键技术。本文系统梳理了GS模型的发展脉络,对各类GS模型的分类和预测准确性进行了综述。当前仍面临诸多挑战:活体精准表型采集技术尚未突破;现有模型对跨群体、跨环境数据适应性不足;多组学整合机制与表观遗传网络融入育种体系仍有欠缺等。未来需重点研发动态表型传感技术,构建可解释性深度学习框架,创建多组学联合预测模型。通过建立覆盖育种-生产-加工全产业链的遗传评估体系,实现从基因组到表型组的跨尺度解析,为我国优质猪种质创新提供理论支撑与技术路径。
中图分类号:
王彬彬, 齐珂珂, 门小明, 徐子伟. 基因组选择技术在猪肉质育种中的应用与展望[J]. 浙江农业学报, 2025, 37(3): 726-735.
WANG Binbin, QI Keke, MEN Xiaoming, XU Ziwei. Application and perspect of genomic selection in pork quality breeding[J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 726-735.
图2 三种概率密度函数图 学生t分布自由度为2,拉普拉斯分布λ参数为1。
Fig.2 Three probability density function plots The degrees of freedom of the Student-t distribution is 2, and the λ parameter of the Laplace distribution is 1.
[1] | TRAN D, THU N. Meat quality: understanding of meat tenderness and influence of fat content on meat flavor[J ]. Science and Technology for Development, 2006, 9(12): 65-70. |
[2] | HU Z L, PARK C A, REECY J M. Bringing the animal QTLdb and CorrDB into the future: meeting new challenges and providing updated services[J]. Nucleic Acids Research, 2022, 50(D1): D956-D961. |
[3] | 王彬彬, 汪涵, 马翔, 等. 苏淮猪肌内脂肪表型测定及其与IGF2和SCD基因的多态性关联性分析[J]. 畜牧与兽医, 2018, 50(3): 20-25. |
WANG B B, WANG H, MA X, et al. Analysis of intramuscular fat content in Suhuai pigs and its correlation with polymorphisms of IGF2 and SCD genes[J]. Animal Husbandry & Veterinary Medicine, 2018, 50(3): 20-25. (in Chinese with English abstract) | |
[4] | 谈成, 边成, 杨达, 等. 基因组选择技术在农业动物育种中的应用[J]. 遗传, 2017, 39(11): 1033-1045. |
TAN C, BIAN C, YANG D, et al. Application of genomic selection in farm animal breeding[J]. Hereditas, 2017, 39(11): 1033-1045. (in Chinese with English abstract) | |
[5] | HENDERSON C R. Best linear unbiased estimation and prediction under a selection model[J]. Biometrics, 1975, 31(2): 423-447. |
[6] | RIBAUT J M, HOISINGTON D. Marker-assisted selection: new tools and strategies[J]. Trends in Plant Science, 1998, 3(6): 236-239. |
[7] | MEUWISSEN T H, HAYES B J, GODDARD M E. Prediction of total genetic value using genome-wide dense marker maps[J]. Genetics, 2001, 157(4): 1819-1829. |
[8] | GODDARD M E, HAYES B J. Genomic selection[J]. Journal of Animal Breeding and Genetics, 2007, 124(6): 323-330. |
[9] | 尹立林, 马云龙, 项韬, 等. 全基因组选择模型研究进展及展望[J]. 畜牧兽医学报, 2019, 50(2): 233-242. |
YIN L L, MA Y L, XIANG T, et al. The progress and prospect of genomic selection models[J]. Chinese Journal of Animal and Veterinary Sciences, 2019, 50(2): 233-242. (in Chinese with English abstract) | |
[10] | VANRADEN P M. Efficient methods to compute genomic predictions[J]. Journal of Dairy Science, 2008, 91(11): 4414-4423. |
[11] | DE LOS CAMPOS G, NAYA H, GIANOLA D, et al. Predicting quantitative traits with regression models for dense molecular markers and pedigree[J]. Genetics, 2009, 182(1): 375-385. |
[12] | AGUILAR I, MISZTAL I, JOHNSON D L, et al. Hot topic: a unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score[J]. Journal of Dairy Science, 2010, 93(2): 743-752. |
[13] | HABIER D, FERNANDO R L, KIZILKAYA K, et al. Extension of the Bayesian alphabet for genomic selection[J]. BMC Bioinformatics, 2011, 12: 186. |
[14] | YI N J, XU S Z. Bayesian LASSO for quantitative trait loci mapping[J]. Genetics, 2008, 179(2): 1045-1055. |
[15] | HENDERSON C R. Best linear unbiased prediction of nonadditive genetic merits in noninbred populations[J]. Journal of Animal Science, 1985, 60(1): 111-117. |
[16] | HAYES B J, VISSCHER P M, GODDARD M E. Increased accuracy of artificial selection by using the realized relationship matrix[J]. Genetics Research, 2009, 91(1): 47-60. |
[17] | HOUSTON R D. Future directions in breeding for disease resistance in aquaculture species[J]. Revista Brasileira de Zootecnia, 2017, 46(6): 545-551. |
[18] | MASUDA Y, VANRADEN P M, TSURUTA S, et al. Invited review: unknown-parent groups and metafounders in single-step genomic BLUP[J]. Journal of Dairy Science, 2022, 105(2): 923-939. |
[19] | LEGARRA A, AGUILAR I, MISZTAL I. A relationship matrix including full pedigree and genomic information[J]. Journal of Dairy Science, 2009, 92(9): 4656-4663. |
[20] | AFRAZANDEH M, ABDOLAHI-ARPANAHI R, ABBASI M A, et al. Comparison of different response variables in genomic prediction using GBLUP and ssGBLUP methods in Iranian Holstein cattle[J]. The Journal of Dairy Research, 2022: 1-7. |
[21] | TEISSIER M, LARROQUE H, ROBERT-GRANIÉ C. Weighted single-step genomic BLUP improves accuracy of genomic breeding values for protein content in French dairy goats: a quantitative trait influenced by a major gene[J]. Genetics, Selection, Evolution, 2018, 50(1): 31. |
[22] | ZHANG Z, LIU J F, DING X D, et al. Best linear unbiased prediction of genomic breeding values using a trait-specific marker-derived relationship matrix[J]. PLoS One, 2010, 5(9): e12648. |
[23] | LU S, ZHU J J, DU X, et al. Genomic selection for resistance to Streptococcus agalactiae in GIFT strain of Oreochromis niloticus by GBLUP, wGBLUP, and BayesCπ[J]. Aquaculture, 2020, 523: 735212. |
[24] | SU G, CHRISTENSEN O F, JANSS L, et al. Comparison of genomic predictions using genomic relationship matrices built with different weighting factors to account for locus-specific variances[J]. Journal of Dairy Science, 2014, 97(10): 6547-6559. |
[25] | LIU A X, LUND M S, BOICHARD D, et al. Improvement of genomic prediction by integrating additional single nucleotide polymorphisms selected from imputed whole genome sequencing data[J]. Heredity, 2020, 124(1): 37-49. |
[26] | REN D Y, AN L X, LI B J, et al. Efficient weighting methods for genomic best linear-unbiased prediction (BLUP) adapted to the genetic architectures of quantitative traits[J]. Heredity, 2021, 126(2): 320-334. |
[27] | GONZÁLEZ-CAMACHO J M, DE LOS CAMPOS G, PÉREZ P, et al. Genome-enabled prediction of genetic values using radial basis function neural networks[J]. Theoretical and Applied Genetics, 2012, 125(4): 759-771. |
[28] | MOSER G, LEE S H, HAYES B J, et al. Simultaneous discovery, estimation and prediction analysis of complex traits using a Bayesian mixture model[J]. PLoS Genetics, 2015, 11(4): e1004969. |
[29] | ZHU B, GUO P, WANG Z, et al. Accuracies of genomic prediction for twenty economically important traits in Chinese Simmental beef cattle[J]. Animal Genetics, 2019, 50(6): 634-643. |
[30] | GAO Y, ZHANG R, HU X X, et al. Application of genomic technologies to the improvement of meat quality of farm animals[J]. Meat Science, 2007, 77(1): 36-45. |
[31] | GIANOLA D. Priors in whole-genome regression: the Bayesian alphabet returns[J]. Genetics, 2013, 194(3): 573-596. |
[32] | DA SILVA F A, VIANA A P, CORREA C C G, et al. Bayesian ridge regression shows the best fit for SSR markers in Psidium guajava among Bayesian models[J]. Scientific Reports, 2021, 11(1): 13639. |
[33] | MEUWISSEN T, VAN DEN BERG I, GODDARD M. On the use of whole-genome sequence data for across-breed genomic prediction and fine-scale mapping of QTL[J]. Genetics, Selection, Evolution, 2021, 53(1): 19. |
[34] | KJETSÅ M V, GJUVSLAND A B, NORDBØ Ø, et al. Accuracy of genomic prediction of maternal traits in pigs using Bayesian variable selection methods[J]. Journal of Animal Breeding and Genetics, 2022, 139(6): 654-665. |
[35] | 张瑞峰, 黄珍, 谢水华, 等. 猪全基因组选择技术发展现状和应用前景[J]. 中国畜牧杂志, 2023, 59(10): 21-29. |
ZHANG R F, HUANG Z, XIE S H, et al. The development status and application prospect of genomic selection for pigs[J]. Chinese Journal of Animal Science, 2023, 59(10): 21-29. (in Chinese with English abstract) | |
[36] | XIE L, QIN J T, RAO L, et al. Genetic dissection and genomic prediction for pork cuts and carcass morphology traits in pig[J]. Journal of Animal Science and Biotechnology, 2023, 14(1): 116. |
[37] | LARZUL C. How to improve meat quality and welfare in entire male pigs by genetics[J]. Animals, 2021, 11(3): 699. |
[38] | SALEK ARDESTANI S, JAFARIKIA M, SARGOLZAEI M, et al. Genomic prediction of average daily gain, back-fat thickness, and loin muscle depth using different genomic tools in Canadian swine populations[J]. Frontiers in Genetics, 2021, 12: 665344. |
[39] | MEHER P K, RUSTGI S, KUMAR A. Performance of Bayesian and BLUP alphabets for genomic prediction: analysis, comparison and results[J]. Heredity, 2022, 128(6): 519-530. |
[40] | WON S, JUNG J, PARK E, et al. Identification of genes related to intramuscular fat content of pigs using genome-wide association study[J]. Asian-Australasian Journal of Animal Sciences, 2018, 31(2): 157-162. |
[41] | HERNÁNDEZ-SÁNCHEZ J, AMILLS M, PENA R N, et al. Genomic architecture of heritability and genetic correlations for intramuscular and back fat contents in Duroc pigs[J]. Journal of Animal Science, 2013, 91(2): 623-632. |
[42] | SUZUKI K, INOMATA K, KATOH K, et al. Genetic correlations among carcass cross-sectional fat area ratios, production traits, intramuscular fat, and serum leptin concentration in Duroc pigs[J]. Journal of Animal Science, 2009, 87(7): 2209-2215. |
[43] | WANG B B, LI P H, HOU L M, et al. Genome-wide association study and genomic prediction for intramuscular fat content in Suhuai pigs using imputed whole-genome sequencing data[J]. Evolutionary Applications, 2022, 15(12): 2054-2066. |
[44] | LIU Q, LONG Y, ZHANG Y F, et al. Phenotypic and genetic correlations of pork myoglobin content with meat colour and other traits in an eight breed-crossed heterogeneous population[J]. Animal, 2021, 15(11): 100364. |
[45] | YAN M, LI L Y, HUANG Y Z, et al. Investigation on muscle fiber types and meat quality and estimation of their heritability and correlation coefficients with each other in four pig populations[J]. Animal Science Journal, 2024, 95(1): e13915. |
[46] | ZHUANG Z W, WU J, XU C N, et al. The genetic architecture of meat quality traits in a crossbred commercial pig population[J]. Foods, 2022, 11(19): 3143. |
[47] | ZHUANG Z W, WU J, QIU Y B, et al. Improving the accuracy of genomic prediction for meat quality traits using whole genome sequence data in pigs[J]. Journal of Animal Science and Biotechnology, 2023, 14(1): 67. |
[48] | 刘航. 肉色候选基因的鉴定及其在基因组选择中的应用[D]. 南京: 南京农业大学, 2021. |
LIU H. Identification of candidate genes associated with meat color traits in suhuai pigs and its application in genome selection[D]. Nanjing: Nanjing Agricultural University, 2021. (in Chinese with English abstract) | |
[49] | LOPEZ B I, SANTIAGO K G, LEE D H, et al. Single-step genomic evaluation for meat quality traits, sensory characteristics, and fatty-acid composition in duroc pigs[J]. Genes, 2020, 11(9): 1062. |
[50] | BARAJAS B K A, CANTET R J C, STEIBEL J P, et al. Heritability estimates and predictive ability for pig meat quality traits using identity-by-state and identity-by-descent relationships in an F2 population[J]. Journal of Animal Breeding and Genetics, 2023, 140(1): 13-27. |
[51] | DUARTE D A S, SCHROYEN M, MOTA R R, et al. Recent genetic advances on boar taint reduction as an alternative to castration: a review[J]. Journal of Applied Genetics, 2021, 62(1): 137-150. |
[52] | DUGUÉ C, PRUNIER A, MERCAT M J, et al. Genetic determinism of boar taint and relationship with growth traits, meat quality and lesions[J]. Animal, 2020, 14(7): 1333-1341. |
[53] | DE CAMPOS C F, LOPES M S, E SILVA F F, et al. Genomic selection for boar taint compounds and carcass traits in a commercial pig population[J]. Livestock Science, 2015, 174: 10-17. |
[54] | FAGGION S, BOSCHI E, VERONEZE R, et al. Genomic prediction and genome-wide association study for boar taint compounds[J]. Animals, 2023, 13(15): 2450. |
[1] | 张楚妮, 徐计东, 高钦, 单颖, 方维焕, 李肖梁. 丁酸抑制猪流行性腹泻病毒体外复制的分子机制[J]. 浙江农业学报, 2025, 37(3): 579-590. |
[2] | 赵嘉豪, 徐杏, 周卫东, 杨华, 赵喜红, 汪雯. 猪场废水与周边水环境中细菌和耐药基因的特征[J]. 浙江农业学报, 2025, 37(3): 621-632. |
[3] | 诸绿寒, 方堃, 吴晓丽, 姚青, 谢淑丽, 郑雷, 敖月, 陈黎洪, 赵珂, 魏俊, 张晋. 微波辅助过热蒸汽加热对猪肉糜理化特性和感官品质的影响[J]. 浙江农业学报, 2025, 37(3): 679-688. |
[4] | 向进, 王春源, 吴燕, 谭元成, 杨酸, 张依裕. 柯乐猪CRISP3基因SNP鉴定及其对繁殖性状的影响[J]. 浙江农业学报, 2024, 36(6): 1270-1278. |
[5] | 秦凯鹏, 门小明, 徐子伟. 猪肉鲜味物质及其形成机理研究进展[J]. 浙江农业学报, 2024, 36(3): 719-728. |
[6] | 吴兴凤, 章啸君, 朱江, 余敏洁, 徐娥, 马灵燕, 肖英平. 腹泻仔猪肠道菌群结构特征及肠道炎症因子、腺苷酸环化酶和鸟苷酸环化酶mRNA表达变化研究[J]. 浙江农业学报, 2024, 36(11): 2465-2475. |
[7] | 刘伟东, 周素茵, 徐爱俊, 叶俊华. 生猪虹膜快速定位算法研究[J]. 浙江农业学报, 2024, 36(11): 2617-2626. |
[8] | 华涛, 常晨, 李倩文, 张道华, 唐波. 猪细小病毒1~7型全基因组遗传变异[J]. 浙江农业学报, 2024, 36(10): 2193-2203. |
[9] | 潘梓博, 周昕, 徐杏, 刘凯歌, 吉洪湖, 路伏增, 叶春林, 周卫东. 基于激光-视觉融合的配怀猪舍内导航建图技术研究[J]. 浙江农业学报, 2024, 36(10): 2358-2367. |
[10] | 李颀, 李煜哲. 弱光条件下猪舍清洗目标检测[J]. 浙江农业学报, 2023, 35(9): 2240-2249. |
[11] | 潘亚杰, 常会庆, 宋盼盼. 规模化猪场粪便养分特征与堆肥过程中填料添加的影响[J]. 浙江农业学报, 2023, 35(7): 1690-1698. |
[12] | 孙仁杰, 单颖, 安慧婷, 王雅婷, 谢荣辉, 张传亮, 赵灵燕, 方维焕, 李肖梁. 猪圆环病毒3型与宿主相互作用机制研究进展[J]. 浙江农业学报, 2023, 35(7): 1755-1762. |
[13] | 刘苇, 陶建平. 畜禽禁养区政策何以影响中国生猪市场稳定?[J]. 浙江农业学报, 2023, 35(5): 1195-1210. |
[14] | 杨酸, 郭小江, 杨红文, 熊力, 李晨, 谭元成, 王春源, 张依裕. 柯乐猪PRLR基因多态性与繁殖性状的关联性[J]. 浙江农业学报, 2023, 35(3): 556-564. |
[15] | 杨悦, 邵靓, 张鹏飞, 陈弟诗, 陈婉婷, 王印, 罗燕, 杨泽晓, 姚学萍, 任梅渗. 基于PMA-qPCR方法检测兽用消毒剂对非洲猪瘟病毒的灭活效率[J]. 浙江农业学报, 2023, 35(2): 301-307. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||