浙江农业学报

• 生物系统工程 • 上一篇    下一篇

基于机器视觉的蔬菜种子活力指数检测算法研究及系统实现

  

  1. (1 安徽大学 电子信息工程学院,安徽 合肥230601; 2 北京农业信息技术研究中心,北京100097;3 国家农业信息化工程技术研究中心,北京100097;4农业部农业信息技术重点实验室,北京100097;5 北京市农业物联网工程技术研究中心,北京100097)
  • 出版日期:2015-12-25 发布日期:2016-01-05

Study on vegetable seed vigor index detection algorithm and system realization based on machine vision

  1. (1 School of Electronic and Information Engineering, Anhui University, Hefei 230601, China; 2 Beijing Research Center for Information Technology in Agriculture, Beijing 100097, China; 3 National Engineering Research Center for Information Technology in Agriculture, Bejing 100097, China; 4 Key Laboratory of Agri\|informatics, Ministry of Agriculture, Beijing 100097, China; 5 Beijing Engineering Research Center of Agricultural Internet of Things, Beijing 100097, China)
  • Online:2015-12-25 Published:2016-01-05

摘要: 常规的种子活力检测存在主观性强、花费高、人工操作难等不足,无法满足当前自动化育种的发展需求。为了提高种子活力检测的自动化水平和质量,以辣椒种子图像为研究对象,利用创新的过黄特征法将种子图像灰度化,此方法可充分保留种子信息,通过阈值处理,可降低系统去除噪声所需的处理时间,为了标记每粒种子,采用漫水填充算法将种子填充为不同的灰度值;编程计算了种子发芽指数和种子平均根长,最终得出种子活力指数计算结果。通过不同种子图像的处理与试验,表明该算法在种子分离、活力指数计算方面具有一定优势,可适用于不同种子活力评估;对系统的评估精度进行试验测试,结果显示,自主开发的种子活力指数检测系统计算的种子活力指数准确率高达92%以上,可为蔬菜种子在线化生产提供参考。

关键词: 辣椒种子, 算法, 图像处理, 活力评估, 种子活力指数, 准确率

Abstract: Conventional vigor tests couldnt meet current demand for the development of automatic breeding because of their subjectivity, high cost and difficult operations. In order to improve the automatic level and quality of seed vigor detection, chili seed images were used to study the detection method. The innovative gray transformation was used to process seed\|color images. This method could protect seed information enough. Combining self\|developed system characteristics, threshold processing was used to remove noise, which could reduce the time of system processing seed images. For marking every seed, the paper used cvFloodFill algorithm to fill seeds into different gray values. Then the seed germination index and average seed radicle length could be acquired by self\|developed software. Finally we combined system hardware and software perfectly. Through processing different seed images, the result showed the system algorithm had certain advantages in the processing of such images. For assessing precision of system through calculation of chili seed vigor index, the results showed that the accuracy of seed vigor index detection was greatly high, surpass 92%. So this system could provide research foundation for online production of vegetable seeds.

Key words: chili seed, algorithms, image processing, vigor assessment, seed vigor index, accuracy