浙江农业学报 ›› 2022, Vol. 34 ›› Issue (11): 2491-2503.DOI: 10.3969/j.issn.1004-1524.2022.11.18

• 环境科学 • 上一篇    下一篇

基于高分三号卫星数据与Η/Α/α-分解特征参数的农作物分类研究

赵丽仙(), 张王菲(), 李云, 张庭苇, 黄国然   

  1. 西南林业大学 林学院,云南 昆明 650224
  • 收稿日期:2021-09-09 出版日期:2022-11-25 发布日期:2022-11-29
  • 通讯作者: 张王菲
  • 作者简介:*张王菲,E-mail:mekmzwf@163.com
    赵丽仙(1996—),女,白族,云南大理人,硕士研究生,主要从事资源环境遥感研究。E-mail:zhaolx1108@foxmail.com
  • 基金资助:
    国家自然科学基金地区科学基金(42161059);国家自然科学基金地区科学基金(30860240);国家自然科学基金地区科学基金(32160365);高分辨率对地观测系统重大专项(21-Y20B01-9001-19/22-1);云南省万人计划“青年拔尖人才”专项(80201444)

Crops classification based on GF-3 satellite data and Η/Α/α- decomposition characteristic parameters

ZHAO Lixian(), ZHANG Wangfei(), LI Yun, ZHANG Tingwei, HUANG Guoran   

  1. College of Forestry, Southwest Forestry University, Kunming 650224, China
  • Received:2021-09-09 Online:2022-11-25 Published:2022-11-29
  • Contact: ZHANG Wangfei

摘要:

利用高分三号(GF-3)卫星的全极化C波段多极化合成孔径雷达数据,基于Η/Α/ α -极化分解提取香农熵(SE)及其强度分量(SEI)和极化分量(SEP)、单次反射特征值相对差异度(SERD)、二次反射特征值相对差异度(DERD)、极化比(PF)、基准高度(PH)、极化不对称性(PA)和雷达植被指数(RVI)共9个特征参数,将其应用于农作物分类研究中,以支持向量机(SVM)和随机森林(RF)算法为例,初步探索了基于Η/Α/ α -分解提取的这9个特征参数在GF-3数据支持下的农作物分类潜力。结果显示:单独将SERD、PH、PF、RVI和SEP参数用于2种分类方法时,分类精度较高,在82%~92%;但单独运用PA、DERD、SE和SEI的分类精度均低于80%。将分类精度较低的4个参数组合后,分类精度明显提高,在SVM和RF下的总体分类精度分别达到93.02%和92.05%,Kappa系数均大于0.8。结果表明,基于全极化GF-3数据和Η/Α/ α -极化分解方法提取的9个特征参数,能很好地表征农作物的散射特征,可用于农作物分类研究。

关键词: 扩展参数, 高分三号卫星, 农作物分类

Abstract:

Based on the civil C-band synthetic aperture radar data of GF-3 satellite, Shannon entropy (SE) and its intensity components (SEI) and polarization components (SEP), single bounce eigenvalue relative difference (SERD), double bounce eigenvalue relative difference (DERD), polarization fraction (PF), pedestal height (PH), polarimetric asymmetry (PA) and radar vegetation index (RVI) were extracted from GF-3 full polarimetric data by Η/Α/ α - polarization decomposition method. With application of support vector machine (SVM) and random forest (RF), the potential of these parameters extracted by Η/Α/ α - decomposition from GF-3 data in crops classification was preliminarily explored. The results showed that when SERD, PH, PF, RVI and SEP parameters were used alone, the classification accuracies were relatively high (82%-92%). When PA, DERD, SE and SEI parameters were used alone, the classification accuracy was less than 80%. However, the combination of PA, DERD, SE and SEI parameters improved the classification accuracies to 93.02% and 92.05%, respectively, under SVM and RF, and the Kappa coefficients were all greater than 0.8. Therefore, the nine characteristic parameters extracted by Η/Α/ α - polarization decomposition from GF-3 data could well characterize the scattering characteristics of crops and could be used in crops classification.

Key words: extended parameters, GF-3 satellite, crops classification

中图分类号: