浙江农业学报 ›› 2022, Vol. 34 ›› Issue (11): 2533-2541.DOI: 10.3969/j.issn.1004-1524.2022.11.22
收稿日期:2020-11-16
出版日期:2022-11-25
发布日期:2022-11-29
作者简介:*李锋,E-mail: lifengsl@126.com通讯作者:
李锋
基金资助:
LI Chao(
), LI Feng(
), HUANG Weijia
Received:2020-11-16
Online:2022-11-25
Published:2022-11-29
Contact:
LI Feng
摘要:
为了解决传统的水果图像识别算法在特征提取上的缺陷,以及传统卷积神经网络识别率低的问题,设计了一种基于并联卷积神经网络来提取水果特征的识别方法,利用ELU激活函数替代ReLU激活函数,利用最大类间距损失函数结合传统SoftmaxWithLoss损失函数来提高对相似品种的识别准确率。选取Fruit-360数据集中的8个品种,利用边界均衡生成对抗网络(BEGAN)结合传统的数据增强方法生成大量高质量的数据集,并用其进行训练。结果表明,该模型对8个品种的平均识别准确率达98.85%,具有良好的识别效果。
中图分类号:
李超, 李锋, 黄炜嘉. 基于并联卷积神经网络的水果品种识别[J]. 浙江农业学报, 2022, 34(11): 2533-2541.
LI Chao, LI Feng, HUANG Weijia. Fruit variety recognition based on parallel convolutional neural network[J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2533-2541.
| 类别 Category | 传统数据增强 Traditional data enhancement | 基于BEGAN的数据增强 Data enhancement via BEGAN |
|---|---|---|
| 布瑞本苹果 | 93.25 | 95.51 |
| Apple Braeburn | ||
| 红雪苹果 | 93.40 | 95.49 |
| Apple Crimson Snow | ||
| 金色苹果2 | 93.26 | 96.13 |
| Apple Golden2 | ||
| 金色苹果3 | 93.34 | 95.48 |
| Apple Golden3 | ||
| 樱桃1 Cherry1 | 93.58 | 95.46 |
| 樱桃2 Cherry2 | 94.01 | 96.21 |
| Rainer樱桃 | 94.12 | 95.45 |
| Cherry Rainer | ||
| 蜡黑樱桃 | 93.11 | 95.56 |
| Cherry Wax Black |
表1 BEGAN算法与其他数据增强算法的准确率对比
Table 1 Comparison of accuracy of data enhancement with BEGAN and traditional method %
| 类别 Category | 传统数据增强 Traditional data enhancement | 基于BEGAN的数据增强 Data enhancement via BEGAN |
|---|---|---|
| 布瑞本苹果 | 93.25 | 95.51 |
| Apple Braeburn | ||
| 红雪苹果 | 93.40 | 95.49 |
| Apple Crimson Snow | ||
| 金色苹果2 | 93.26 | 96.13 |
| Apple Golden2 | ||
| 金色苹果3 | 93.34 | 95.48 |
| Apple Golden3 | ||
| 樱桃1 Cherry1 | 93.58 | 95.46 |
| 樱桃2 Cherry2 | 94.01 | 96.21 |
| Rainer樱桃 | 94.12 | 95.45 |
| Cherry Rainer | ||
| 蜡黑樱桃 | 93.11 | 95.56 |
| Cherry Wax Black |
| 类别 Category | 旧损失函数 Old loss function | 新损失函数 New loss function |
|---|---|---|
| 布瑞本苹果Apple Braeburn | 98.30 | 98.31 |
| 红雪苹果Apple Crimson Snow | 97.59 | 99.50 |
| 金色苹果2 Apple Golden2 | 97.15 | 98.90 |
| 金色苹果3 Apple Golden3 | 97.80 | 97.85 |
| 樱桃1 Cherry1 | 98.41 | 99.45 |
| 樱桃2 Cherry2 | 97.73 | 98.79 |
| Rainer樱桃Cherry Rainer | 98.10 | 99.15 |
| 蜡黑樱桃Cherry Wax Black | 97.86 | 98.86 |
表2 引入不同损失函数的识别准确率
Table 2 Accuracy of models with different loss functions %
| 类别 Category | 旧损失函数 Old loss function | 新损失函数 New loss function |
|---|---|---|
| 布瑞本苹果Apple Braeburn | 98.30 | 98.31 |
| 红雪苹果Apple Crimson Snow | 97.59 | 99.50 |
| 金色苹果2 Apple Golden2 | 97.15 | 98.90 |
| 金色苹果3 Apple Golden3 | 97.80 | 97.85 |
| 樱桃1 Cherry1 | 98.41 | 99.45 |
| 樱桃2 Cherry2 | 97.73 | 98.79 |
| Rainer樱桃Cherry Rainer | 98.10 | 99.15 |
| 蜡黑樱桃Cherry Wax Black | 97.86 | 98.86 |
| 模型 Model | 准确率 Accuracy |
|---|---|
| 舍去a通道的单只CNN Single CNN without channel a | 97.10 |
| 特征加强+BP神经网络[ Feature enhancement+BP neural network | 98.60 |
| 形状相似的水果自动识别研究[ Automatic recognition of fruits with similar shape | 93.00 |
| 特征提取+单只CNN[ Feature extraction+single CNN | 95.49 |
| 本文模型Proposed model | 98.85 |
表3 不同模型的准确率对比
Table 3 Comparison of accuracy of different algorithms %
| 模型 Model | 准确率 Accuracy |
|---|---|
| 舍去a通道的单只CNN Single CNN without channel a | 97.10 |
| 特征加强+BP神经网络[ Feature enhancement+BP neural network | 98.60 |
| 形状相似的水果自动识别研究[ Automatic recognition of fruits with similar shape | 93.00 |
| 特征提取+单只CNN[ Feature extraction+single CNN | 95.49 |
| 本文模型Proposed model | 98.85 |
| [1] | 吕秋霞, 张景鸿. 基于神经网络的水果自动分类系统设计[J]. 安徽农业科学, 2009, 37(35): 17392-17394. |
| LYU Q X, ZHANG J H. Design of a fruit automatic classification system based on neural network[J]. Journal of Anhui Agricultural Sciences, 2009, 37(35): 17392-17394. (in Chinese with English abstract) | |
| [2] | 陈源, 张长江. 水果自动识别的BP神经网络方法[J]. 微型机与应用, 2010, 29(22): 40-43. |
| CHEN Y, ZHANG C J. Automatic recognition for fruit based on BP neural network[J]. Microcomputer & Its Applications, 2010, 29(22): 40-43. (in Chinese with English abstract) | |
| [3] | 王水平, 唐振民, 范春年, 等. 基于SVM的水果分类算法研究[J]. 武汉理工大学学报, 2010, 32(16): 44-47. |
| WANG S P, TANG Z M, FAN C N, et al. Recognition algorithm of fruits based on SVM[J]. Journal of Wuhan University of Technology, 2010, 32(16): 44-47. (in Chinese with English abstract) | |
| [4] | 董立岩, 苑森淼, 刘光远, 等. 基于贝叶斯分类器的图像分类[J]. 吉林大学学报(理学版), 2007, 45(2): 249-253. |
| DONG L Y, YUAN S M, LIU G Y, et al. Image classification based on Bayesian classifier[J]. Journal of Jilin University (Science Edition), 2007, 45(2): 249-253. (in Chinese with English abstract) | |
| [5] | 余肖生, 周宁, 张芳芳. 基于KNN的图像自动分类模型研究[J]. 中国图书馆学报, 2007, 33(1): 74-76. |
| YU X S, ZHOU N, ZHANG F F. A KNN-based model for automatic image categorization[J]. Journal of Library Science in China, 2007, 33(1): 74-76. (in Chinese with English abstract) | |
| [6] | DENG L M, LUAN T, MA W J. Research on maize varieties recognition system based on image processing[J]. Applied Mechanics and Materials, 2013, 397/398/399/400: 2335-2339. |
| [7] |
王彦翔, 张艳, 杨成娅, 等. 基于深度学习的农作物病害图像识别技术进展[J]. 浙江农业学报, 2019, 31(4): 669-676.
DOI |
|
WANG Y X, ZHANG Y, YANG C Y, et al. Advances in new nondestructive detection and identification techniques of crop diseases based on deep learning[J]. Acta Agriculturae Zhejiangensis, 2019, 31(4): 669-676. (in Chinese with English abstract)
DOI |
|
| [8] | SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 2015: 1-9. |
| [9] | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].(2004-09-04)[2020-11-16]. http://arxiv.org/pdf/1409.1556v6.pdf. |
| [10] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016: 770-778. |
| [11] | 程荣花, 马飞, 梁亚红. 形状相似水果自动化识别研究[J]. 山东农业科学, 2015, 47(8): 116-118. |
| CHENG R H, MA F, LIANG Y H. Research on automatic recognition of shape similar fruits[J]. Shandong Agricultural Sciences, 2015, 47(8): 116-118. (in Chinese with English abstract) | |
| [12] | 曾平平, 李林升. 基于卷积神经网络的水果图像分类识别研究[J]. 机械设计与研究, 2019, 35(1): 23-26. |
| ZENG P P, LI L S. Classification and recognition of common fruit images based on convolutional neural network[J]. Machine Design & Research, 2019, 35(1): 23-26. (in Chinese with English abstract) | |
| [13] | 徐岩, 刘林, 李中远, 等. 基于卷积神经网络的玉米品种识别[J]. 江苏农业学报, 2020, 36(1): 18-23. |
| XU Y, LIU L, LI Z Y, et al. Recognition of maize varieties based on convolutional neural network[J]. Jiangsu Journal of Agricultural Sciences, 2020, 36(1): 18-23. (in Chinese with English abstract) | |
| [14] | 许伟栋, 赵忠盖. 基于卷积神经网络和支持向量机算法的马铃薯表面缺陷检测[J]. 江苏农业学报, 2018, 34(6): 1378-1385. |
| XU W D, ZHAO Z G. Potato surface defects detection based on convolution neural networks and support vector machine algorithm[J]. Jiangsu Journal of Agricultural Sciences, 2018, 34(6): 1378-1385. (in Chinese with English abstract) | |
| [15] |
HUANG B, CHEN W H, WU X M, et al. High-quality face image generated with conditional boundary equilibrium generative adversarial networks[J]. Pattern Recognition Letters, 2018, 111: 72-79.
DOI URL |
| [16] | 白玉, 姜东民, 裴加军, 等. 改进的ELU卷积神经网络在SAR图像舰船检测中的应用[J]. 测绘通报, 2018(1): 125-128. |
| BAI Y, JIANG D M, PEI J J, et al. Application of an improved ELU convolution neural network in the SAR image ship detection[J]. Bulletin of Surveying and Mapping, 2018(1): 125-128. (in Chinese with English abstract) | |
| [17] | LEBEDEV V, LEMPITSKY V. Speeding up convolutional neural networks: a survey[J]. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2018, 66(6): 799-811. |
| [18] | 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251. |
| ZHOU F Y, JIN L P, DONG J. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(6): 1229-1251. (in Chinese with English abstract) |
| [1] | 吕胤春, 段恩泽, 朱一星, 郑霞, 柏宗春. 基于YOLOv8-Swin Transformer模型的翻覆肉鸭实时检测[J]. 浙江农业学报, 2025, 37(7): 1556-1566. |
| [2] | 郑航, 冯昊栋, 薛向磊, 叶云翔, 于健麟, 俞国红. 基于实例分割的叶菜垄间导航线提取算法研究[J]. 浙江农业学报, 2025, 37(3): 701-711. |
| [3] | 程嘉瑜, 陈妙金, 李彤, 孙奇男, 张小斌, 赵懿滢, 朱怡航, 顾清. 基于改进Faster-RCNN网络的无人机遥感影像桃树检测[J]. 浙江农业学报, 2024, 36(8): 1909-1919. |
| [4] | 潘攀, 张建华, 郑晓明, 周国民, 胡林, 冯全, 柴秀娟. 深度学习在作物及其近缘种抗病性智能鉴定上的研究进展[J]. 浙江农业学报, 2023, 35(8): 1993-2012. |
| [5] | 朱冬琴, 冯全, 张建华. 基于剪枝的植物病害识别方法[J]. 浙江农业学报, 2023, 35(6): 1462-1472. |
| [6] | 白卫卫, 赵雪妮, 罗斌, 赵薇, 黄硕, 张晗. 基于YOLOv5的小麦种子发芽检测方法研究[J]. 浙江农业学报, 2023, 35(2): 445-454. |
| [7] | 朱世松, 马婉丽, 赵理山, 郑艳梅, 郑先波, 芦碧波. 基于改进的LinkNet的苹果叶片图像分割算法[J]. 浙江农业学报, 2023, 35(1): 202-214. |
| [8] | 陈道怀, 汪杭军. 基于改进YOLOv4的林业害虫检测[J]. 浙江农业学报, 2022, 34(6): 1306-1315. |
| [9] | 林孝腾, 孙茜, 郑书河. 基于OpenCV的低能耗植物工厂照明系统设计与试验[J]. 浙江农业学报, 2022, 34(3): 626-635. |
| [10] | 柴琴琴, 曾建, 张勋. 基于贝叶斯优化卷积神经网络的金线莲伪品鉴别[J]. 浙江农业学报, 2022, 34(2): 391-396. |
| [11] | 张晴晴, 刘连忠, 宁井铭, 吴国栋, 江朝晖, 李孟杰, 李栋梁. 基于YOLOV3优化模型的复杂场景下茶树嫩芽识别[J]. 浙江农业学报, 2021, 33(9): 1740-1747. |
| [12] | 鲍烈, 王曼韬, 刘江川, 文波, 明月. 基于卷积神经网络的小麦产量预估方法[J]. 浙江农业学报, 2020, 32(12): 2244-2252. |
| [13] | 蒋丰千, 李旸, 余大为, 孙敏, 张恩宝. 基于Caffe卷积神经网络的大豆病害检测系统[J]. 浙江农业学报, 2019, 31(7): 1177-1183. |
| [14] | 刘志, 贺正, 苗芳芳, 贾彪. 基于无人机的水肥一体化玉米出苗率估算方法与试验[J]. 浙江农业学报, 2019, 31(6): 977-985. |
| [15] | 王彦翔, 张艳, 杨成娅, 孟庆龙, 尚静. 基于深度学习的农作物病害图像识别技术进展[J]. 浙江农业学报, 2019, 31(4): 669-676. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||