浙江农业学报 ›› 2022, Vol. 34 ›› Issue (3): 582-589.DOI: 10.3969/j.issn.1004-1524.2022.03.19
收稿日期:
2021-02-19
出版日期:
2022-03-25
发布日期:
2022-03-30
通讯作者:
王丹
作者简介:
王丹,E-mail: wangdan.nuist@outlook.com基金资助:
CAI Yao(), MIAO Yuxuan, WU Hao, WANG Dan(
)
Received:
2021-02-19
Online:
2022-03-25
Published:
2022-03-30
Contact:
WANG Dan
摘要:
以冬小麦为研究对象,利用开顶式气室试验,开展以环境CO2 浓度为对照(CK)和比CK处理的CO2浓度高200 μmol·mol-1(T)处理的试验,测定冬小麦主要生育期冠层光谱反射率、叶面积指数(LAI)和SPAD值,分析LAI、SPAD值与原始光谱反射率、光谱特征参数的相关性,并探究最优回归反演模型。结果表明,高CO2浓度处理提高冬小麦孕穗-抽穗期和灌浆期的LAI和SPAD值,影响光谱反射率大小,但不改变光谱反射率曲线波形。CO2浓度升高导致红边位置先红移再蓝移。用红黄边面积比(x)估算小麦LAI(y)的回归模型最优,回归方程为y=3.96×10-3x2-8.60×10-2x+1.93,在验证集上的决定系数和均方根误差分别为0.66和0.42。用红边振幅(x)估算小麦SPAD值(y)的回归模型最优,回归方程为y=-5.151×104x2+2.883×103x+33.83,在验证集上的决定系数和均方根误差分别为0.63和4.61。
中图分类号:
蔡瑶, 缪宇轩, 吴浩, 王丹. 高CO2浓度下冬小麦的高光谱特征及其与叶面积指数和SPAD值的反演[J]. 浙江农业学报, 2022, 34(3): 582-589.
CAI Yao, MIAO Yuxuan, WU Hao, WANG Dan. Hyperspectral characteristics and leaf area index (LAI) and SPAD value inversion of winter wheat under elevated CO2 concentration[J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 582-589.
处理 Treatment | LAI | SPAD | ||||||
---|---|---|---|---|---|---|---|---|
拔节期 Jointing stage | 孕穗-抽穗期 Booting-heading stage | 灌浆期 Filling stage | 乳熟期 Milk-ripening stage | 拔节期 Jointing stage | 孕穗-抽穗期 Booting-heading stage | 灌浆期 Filling stage | 乳熟期 Milk-ripening stage | |
CK | 2.09±0.11 b | 2.89±0.46 a | 3.23±0.55 b | 2.15±0.14 a | 48.13±2.72 a | 55.61±2.45 a | 57.31±2.77 b | 49.08±3.45 a |
T | 2.30±0.21 a | 3.05±0.29 a | 3.73±0.34 a | 1.99±0.31 a | 47.65±3.71 a | 58.29±4.34 a | 61.06±3.53 a | 42.73±2.70 b |
表1 不同处理下冬小麦的LAI和SPAD值
Table 1 LAI and SPAD value of winter wheat under different treatments
处理 Treatment | LAI | SPAD | ||||||
---|---|---|---|---|---|---|---|---|
拔节期 Jointing stage | 孕穗-抽穗期 Booting-heading stage | 灌浆期 Filling stage | 乳熟期 Milk-ripening stage | 拔节期 Jointing stage | 孕穗-抽穗期 Booting-heading stage | 灌浆期 Filling stage | 乳熟期 Milk-ripening stage | |
CK | 2.09±0.11 b | 2.89±0.46 a | 3.23±0.55 b | 2.15±0.14 a | 48.13±2.72 a | 55.61±2.45 a | 57.31±2.77 b | 49.08±3.45 a |
T | 2.30±0.21 a | 3.05±0.29 a | 3.73±0.34 a | 1.99±0.31 a | 47.65±3.71 a | 58.29±4.34 a | 61.06±3.53 a | 42.73±2.70 b |
图1 不同生育期冬小麦冠层的光谱反射率 A,拔节期;B,孕穗-抽穗期;C,灌浆期;D,乳熟期。下同。
Fig.1 Spectral reflectance of winter wheat at different growing stages A,Jointing stage; B, Booting-heading stage; C, Filling stage; D, Milk-ripening stage. The same as below.
生育期 Growing stage | λr/nm | Dr/10-2 | SDr/10-2 | |||
---|---|---|---|---|---|---|
CK | T | CK | T | CK | T | |
拔节期Jointing stage | 732 | 732 | 0.74 | 0.69 | 31.06 | 28.87 |
孕穗-抽穗期Booting-heading stage | 736 | 736 | 0.97 | 0.95 | 38.45 | 37.21 |
灌浆期Filling stage | 735 | 736 | 0.94 | 0.83 | 38.36 | 33.47 |
乳熟期Milk-ripening stage | 718 | 709 | 0.50 | 0.41 | 25.31 | 20.81 |
表2 冬小麦不同生育期的红边特征参数
Table 2 Red edge parameters of winter wheat at different growing stages
生育期 Growing stage | λr/nm | Dr/10-2 | SDr/10-2 | |||
---|---|---|---|---|---|---|
CK | T | CK | T | CK | T | |
拔节期Jointing stage | 732 | 732 | 0.74 | 0.69 | 31.06 | 28.87 |
孕穗-抽穗期Booting-heading stage | 736 | 736 | 0.97 | 0.95 | 38.45 | 37.21 |
灌浆期Filling stage | 735 | 736 | 0.94 | 0.83 | 38.36 | 33.47 |
乳熟期Milk-ripening stage | 718 | 709 | 0.50 | 0.41 | 25.31 | 20.81 |
x | r | 回归方程 Regression equation | 建模集Modeling set | 验证集Validation set | ||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
R777 | 0.63** | y=4.964+0.458 5ln x4.964 | 0.43** | 0.51 | 0.32** | 0.59 |
Dr | 0.70** | y=910.1x2+192.3x+1.16 | 0.52** | 0.46 | 0.40** | 0.56 |
SDr | 0.65** | y=5.748x+0.850 4 | 0.46** | 0.50 | 0.35** | 0.58 |
SDr/SDy | 0.81** | y=3.96×10-3x2-8.60×10-2x+1.93 | 0.78** | 0.32 | 0.66** | 0.42 |
SDr/SDb | 0.68** | y=7.90×10-4x2+5.20×10-2x+1.52 | 0.52** | 0.47 | 0.37** | 0.57 |
SDr-SDy | 0.64** | y=1.150x2+4.600x+1.042 | 0.45** | 0.50 | 0.35** | 0.58 |
SDr-SDb | 0.62** | y=1.610x2+4.800x+1.092 | 0.48** | 0.49 | 0.37** | 0.57 |
(SDr-SDb)/(SDr+SDb) | -0.60** | y=18.90x2-51.08x+36.30 | 0.47** | 0.49 | 0.34** | 0.59 |
表3 LAI估算模型的建立与验证
Table 3 Establishment and validation of LAI estimation model
x | r | 回归方程 Regression equation | 建模集Modeling set | 验证集Validation set | ||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
R777 | 0.63** | y=4.964+0.458 5ln x4.964 | 0.43** | 0.51 | 0.32** | 0.59 |
Dr | 0.70** | y=910.1x2+192.3x+1.16 | 0.52** | 0.46 | 0.40** | 0.56 |
SDr | 0.65** | y=5.748x+0.850 4 | 0.46** | 0.50 | 0.35** | 0.58 |
SDr/SDy | 0.81** | y=3.96×10-3x2-8.60×10-2x+1.93 | 0.78** | 0.32 | 0.66** | 0.42 |
SDr/SDb | 0.68** | y=7.90×10-4x2+5.20×10-2x+1.52 | 0.52** | 0.47 | 0.37** | 0.57 |
SDr-SDy | 0.64** | y=1.150x2+4.600x+1.042 | 0.45** | 0.50 | 0.35** | 0.58 |
SDr-SDb | 0.62** | y=1.610x2+4.800x+1.092 | 0.48** | 0.49 | 0.37** | 0.57 |
(SDr-SDb)/(SDr+SDb) | -0.60** | y=18.90x2-51.08x+36.30 | 0.47** | 0.49 | 0.34** | 0.59 |
x | r | 回归方程 Regression equation | 建模集Modeling set | 验证集Validation set | ||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
R770 | 0.71** | y=-191.7x2+213.0x+0.813 0 | 0.56** | 4.37 | 0.47** | 5.56 |
λr | 0.62** | y=2.030×10-2x2-28.76x+1.024×104 | 0.52** | 4.61 | 0.47** | 5.55 |
Dr | 0.78** | y=-5.151×104x2+2.883×103x+33.83 | 0.60** | 4.21 | 0.63** | 4.61 |
SDr | 0.76** | y=62.16x+32.72 | 0.56** | 4.40 | 0.59** | 4.86 |
SDr/SDy | 0.70** | y=2.07×10-2x2-1.17×10-1x+39.28 | 0.50** | 4.67 | 0.58** | 4.95 |
SDr/SDb | 0.67** | y=-9.720×10-3x2+1.003x+38.48 | 0.45** | 4.93 | 0.42** | 5.80 |
SDr-SDy | 0.76** | y=57.81x+33.61 | 0.56** | 4.38 | 0.60** | 4.80 |
SDr-SDb | 0.76** | y=60.93x+34.34 | 0.57** | 4.31 | 0.61** | 4.77 |
(SDr-SDb)/(SDr+SDb) | -0.60** | y=170.6x2-462.8x+357.9 | 0.43** | 5.00 | 0.45** | 5.63 |
表4 SPAD值估算模型的建立与验证
Table 4 Establishment and validation of SPAD value estimation model
x | r | 回归方程 Regression equation | 建模集Modeling set | 验证集Validation set | ||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
R770 | 0.71** | y=-191.7x2+213.0x+0.813 0 | 0.56** | 4.37 | 0.47** | 5.56 |
λr | 0.62** | y=2.030×10-2x2-28.76x+1.024×104 | 0.52** | 4.61 | 0.47** | 5.55 |
Dr | 0.78** | y=-5.151×104x2+2.883×103x+33.83 | 0.60** | 4.21 | 0.63** | 4.61 |
SDr | 0.76** | y=62.16x+32.72 | 0.56** | 4.40 | 0.59** | 4.86 |
SDr/SDy | 0.70** | y=2.07×10-2x2-1.17×10-1x+39.28 | 0.50** | 4.67 | 0.58** | 4.95 |
SDr/SDb | 0.67** | y=-9.720×10-3x2+1.003x+38.48 | 0.45** | 4.93 | 0.42** | 5.80 |
SDr-SDy | 0.76** | y=57.81x+33.61 | 0.56** | 4.38 | 0.60** | 4.80 |
SDr-SDb | 0.76** | y=60.93x+34.34 | 0.57** | 4.31 | 0.61** | 4.77 |
(SDr-SDb)/(SDr+SDb) | -0.60** | y=170.6x2-462.8x+357.9 | 0.43** | 5.00 | 0.45** | 5.63 |
[1] | IPCC. Intergovernmental panel on climate change[M]// Climate change 2014: impacts, adaptation and vulnerability:contribution of Working Group Ⅱ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014. |
[2] | 王国伟, 李阳, 王嘉欣. 不同施肥模式对春玉米生长特性及氮素利用率的影响[J]. 西南农业学报, 2019, 32(9): 2119-2125. |
WANG G W, LI Y, WANG J X. Effects of different fertilization patterns on growth characteristic and nitrogen use efficiency of corn[J]. Southwest China Journal of Agricultural Sciences, 2019, 32(9): 2119-2125. (in Chinese with English abstract) | |
[3] | 郝学明, 王响铃, 宋柏权, 等. 甜菜叶片SPAD值和光合色素的相关性研究[J]. 农学学报, 2019, 9(10): 65-70. |
HAO X M, WANG X L, SONG B Q, et al. Correlation analysis of SPAD value and photosynthetic pigment in sugarbeet leaves[J]. Journal of Agriculture, 2019, 9(10): 65-70. (in Chinese with English abstract) | |
[4] |
CURTIS T, HALFORD N G. Food security: the challenge of increasing wheat yield and the importance of not compromising food safety[J]. The Annals of Applied Biology, 2014, 164(3): 354-372.
DOI URL |
[5] | 牛胤全, 史雨刚, 汤小莎, 等. 高CO2浓度、干旱及其互作对不同持绿型小麦幼苗的影响[J]. 应用生态学报, 2020, 31(7): 2407-2414. |
NIU Y Q, SHI Y G, TANG X S, et al. Effects of high CO2 concentration, drought, and their interaction on different stay-green wheat seedlings[J]. Chinese Journal of Applied Ecology, 2020, 31(7): 2407-2414. (in Chinese with English abstract) | |
[6] | 范金杰, 俞杨浏, 左强, 等. 大气CO2浓度升高对小麦蒸腾耗水与根系吸水的影响[J]. 农业工程学报, 2020, 36(3): 92-98. |
FAN J J, YU Y L, ZUO Q, et al. Effects of elevated CO2 concentration on transpiration and root-water-uptake of wheat[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(3): 92-98. (in Chinese with English abstract) | |
[7] | 赵小敏, 孙小香, 王芳东, 等. 水稻高光谱遥感监测研究综述[J]. 江西农业大学学报, 2019, 41(1): 1-12. |
ZHAO X M, SUN X X, WANG F D, et al. A summary of the researches on hyperspectral remote sensing monitoring of rice[J]. Acta Agriculturae Universitatis Jiangxiensis, 2019, 41(1): 1-12. (in Chinese with English abstract) | |
[8] | 杨福芹, 冯海宽, 李振海, 等. 基于高光谱的苹果叶片叶绿素含量估算[J]. 浙江农业学报, 2017, 29(10): 1742-1748. |
YANG F Q, FENG H K, LI Z H, et al. Estimation of apple leaf chlorophyll content based on hyperspectral data[J]. Acta Agriculturae Zhejiangensis, 2017, 29(10): 1742-1748. (in Chinese with English abstract) | |
[9] | 孙华林, 耿石英, 王小燕, 等. 晚播条件下基于高光谱的小麦叶面积指数估算方法[J]. 光谱学与光谱分析, 2019, 39(4): 1199-1206. |
SUN H L, GENG S Y, WANG X Y, et al. Estimation method of wheat leaf area index based on hyperspectral under late sowing conditions[J]. Spectroscopy and Spectral Analysis, 2019, 39(4): 1199-1206. (in Chinese with English abstract) | |
[10] | 陆锡昆, 罗亚辉, 蒋蘋, 等. 基于高光谱的油茶籽含水量检测方法[J]. 浙江农业学报, 2020, 32(7): 1302-1310. |
LU X K, LUO Y H, JIANG P, et al. Detection of water content in Camellia seeds based on hyperspectrum[J]. Acta Agriculturae Zhejiangensis, 2020, 32(7): 1302-1310. (in Chinese with English abstract) | |
[11] | 崔怀洋, 徐晖, 张伟, 等. 基于高光谱的倒伏冬小麦产量预测模型研究[J]. 麦类作物学报, 2015, 35(8): 1155-1160. |
CUI H Y, XU H, ZHANG W, et al. Yield estimation model of lodging winter wheat based on hyperspectral remote sensing[J]. Journal of Triticeae Crops, 2015, 35(8): 1155-1160. (in Chinese with English abstract) | |
[12] | 尼加提·卡斯木, 师庆东, 王敬哲, 等. 基于高光谱特征和偏最小二乘法的春小麦叶绿素含量估算[J]. 农业工程学报, 2017, 33(22): 208-216. |
NIJAT K, SHI Q D, WANG J Z, et al. Estimation of spring wheat chlorophyll content based on hyperspectral features and PLSR model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(22): 208-216. (in Chinese with English abstract) | |
[13] | 吴启侠, 晏军, 朱建强, 等. 花后浅地下水埋深对小麦高光谱特征的影响及叶绿素估算模型[J]. 灌溉排水学报, 2018, 37(9): 29-35. |
WU Q X, YAN J, ZHU J Q, et al. Effects of the depth of shallow groundwater table during post-anthesis stage on hyperspectral characteristics of winter wheat as well as model for predicting leaf chlorophyll content[J]. Journal of Irrigation and Drainage, 2018, 37(9): 29-35. (in Chinese with English abstract) | |
[14] | 王晓星, 常庆瑞, 刘梦云, 等. 冬小麦冠层水平叶绿素含量的高光谱估测[J]. 西北农林科技大学学报(自然科学版), 2016, 44(2): 48-54. |
WANG X X, CHANG Q R, LIU M Y, et al. Hyper-spectral estimation of chlorophyll content in canopy of winter wheat[J]. Journal of Northwest A & F University (Natural Science Edition), 2016, 44(2): 48-54. (in Chinese with English abstract) | |
[15] | 陶惠林, 冯海宽, 杨贵军, 等. 基于无人机成像高光谱影像的冬小麦LAI估测[J]. 农业机械学报, 2020, 51(1): 176-187. |
TAO H L, FENG H K, YANG G J, et al. Leaf area index estimation of winter wheat based on UAV imaging hyperspectral imagery[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(1): 176-187. (in Chinese with English abstract) | |
[16] | 王卓卓, 何英彬, 罗善军, 等. 基于冠层高光谱数据与马氏距离的马铃薯品种识别[J]. 江苏农业学报, 2018, 34(5): 1036-1041. |
WANG Z Z, HE Y B, LUO S J, et al. Variety identification of potatoes based on canopy hyperspectral data and Mahalanobis distance[J]. Jiangsu Journal of Agricultural Sciences, 2018, 34(5): 1036-1041. (in Chinese with English abstract) | |
[17] | 刘二华, 周广胜, 周莉. 不同干旱条件下夏玉米全生育期冠层吸收光合有效辐射比的高光谱遥感反演[J]. 应用生态学报, 2019, 30(6): 2021-2029. |
LIU E H, ZHOU G S, ZHOU L. Fraction of absorbed photosynthetically active radiation over summer maize canopy estimated by hyperspectral remote sensing under different drought conditions[J]. Chinese Journal of Applied Ecology, 2019, 30(6): 2021-2029. (in Chinese with English abstract) | |
[18] | 贺婷, 李建东, 刘桂鹏, 等. 基于高光谱遥感的玉米全氮含量估测模型[J]. 沈阳农业大学学报, 2016, 47(3): 257-265. |
HE T, LI J D, LIU G P, et al. Estimation models of maize total nitrogen content based on hyperspectral remote sensing[J]. Journal of Shenyang Agricultural University, 2016, 47(3): 257-265. (in Chinese with English abstract) | |
[19] |
SHI T Z, WANG J J, LIU H Z, et al. Estimating leaf nitrogen concentration in heterogeneous crop plants from hyperspectral reflectance[J]. International Journal of Remote Sensing, 2015, 36(18): 4652-4667.
DOI URL |
[20] | 刘昌华, 方征, 陈志超, 等. ASD Field Spec3野外便携式高光谱仪诊断冬小麦氮营养[J]. 农业工程学报, 2018, 34(19): 162-169. |
LIU C H, FANG Z, CHEN Z C, et al. Nitrogen nutrition diagnosis of winter wheat based on ASD Field Spec3[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(19): 162-169. (in Chinese with English abstract) | |
[21] | 耿石英, 孙华林, 王小燕, 等. 不同氮肥处理下小麦冠层和叶片光谱特征及产量分析[J]. 光谱学与光谱分析, 2018, 38(11): 3534-3540. |
GENG S Y, SUN H L, WANG X Y, et al. Relationships between characteristics of wheat canopy and leaf spectral reflectance and yield under different nitrogen treatments[J]. Spectroscopy and Spectral Analysis, 2018, 38(11): 3534-3540. (in Chinese with English abstract) | |
[22] | 刘佳, 王利民, 杨福刚, 等. 基于高光谱微分指数监测春玉米大斑病的研究[J]. 中国农学通报, 2019, 35(6): 143-150. |
LIU J, WANG L M, YANG F G, et al. Spring corn leaf blight monitoring based on hyperspectral derivative index[J]. Chinese Agricultural Science Bulletin, 2019, 35(6): 143-150. (in Chinese with English abstract) | |
[23] |
ZHU J Y, YU Q, ZHU H, et al. Response of dust particle pollution and construction of a leaf dust deposition prediction model based on leaf reflection spectrum characteristics[J]. Environmental Science and Pollution Research International, 2019, 26(36): 36764-36775.
DOI URL |
[24] | 任哲, 陈怀亮, 王连喜, 等. 利用交叉验证的小麦LAI反演模型研究[J]. 国土资源遥感, 2015, 27(4): 34-40. |
REN Z, CHEN H L, WANG L X, et al. Research on inversion model of wheat LAI using cross-validation[J]. Remote Sensing for Land & Resources, 2015, 27(4): 34-40. (in Chinese with English abstract) | |
[25] |
ZHU J Y, ZHANG X N, HE W J, et al. Response of plant reflectance spectrum to simulated dust deposition and its estimation model[J]. Scientific Reports, 2020, 10: 15803.
DOI URL |
[26] | 贺可勋, 赵书河, 来建斌, 等. 水分胁迫对小麦光谱红边参数和产量变化的影响[J]. 光谱学与光谱分析, 2013, 33(8): 2143-2147. |
HE K X, ZHAO S H, LAI J B, et al. Effects of water stress on red-edge parameters and yield in wheat cropping[J]. Spectroscopy and Spectral Analysis, 2013, 33(8): 2143-2147. (in Chinese with English abstract) | |
[27] | 史冰全, 张晓丽, 白雪琪, 等. 基于“三边”参数的油松林叶绿素估算模型[J]. 东北林业大学学报, 2015, 43(5): 80-83. |
SHI B Q, ZHANG X L, BAI X Q, et al. Chlorophyll estimation model of Pinus tabulaeformis based on “Sanbian” parameters[J]. Journal of Northeast Forestry University, 2015, 43(5): 80-83. (in Chinese with English abstract) | |
[28] | 李军玲, 彭记永. 不同生育时期冬小麦叶面积指数地面高光谱遥感模型研究[J]. 麦类作物学报, 2018, 38(8): 979-987. |
LI J L, PENG J Y. Estimation of winter wheat LAI at different growth stages based on canopy hyperspectral remote sensing system[J]. Journal of Triticeae Crops, 2018, 38(8): 979-987. (in Chinese with English abstract) | |
[29] |
OMMEN O E, DONNELLY A, VANHOUTVIN S, et al. Chlorophyll content of spring wheat flag leaves grown under elevated CO2 concentrations and other environmental stresses within the ‘ESPACE-wheat’ project[J]. European Journal of Agronomy, 1999, 10(3/4): 197-203.
DOI URL |
[30] |
GRAY S B, DERMODY O, DELUCIA E H. Spectral reflectance from a soybean canopy exposed to elevated CO2 and O3[J]. Journal of Experimental Botany, 2010, 61(15): 4413-4422.
DOI URL |
[1] | 王佳, 慕瑞瑞, 杨乔乔, 刘伟, 张月荷, 康建宏. 滴灌水肥一体化下施钾量对宁夏春玉米叶绿素荧光特性与产量的影响[J]. 浙江农业学报, 2021, 33(8): 1347-1357. |
[2] | 张矞勋, 王磊, 璩向宁, 曹媛, 吴梦瑶, 于瑞鑫, 孙源. GF-1/WFV在玉米叶面积指数估算中的应用研究[J]. 浙江农业学报, 2021, 33(5): 861-872. |
[3] | 姚钊, 王重阳, 崔静. 小麦不同穗位籽粒灌浆特性的影响[J]. 浙江农业学报, 2021, 33(4): 576-585. |
[4] | 王潭刚, 孙婷, 王冀川, 李慧琴, 高振, 石元强. 播期和密度对滴灌冬小麦群体结构与抗倒特性的影响[J]. 浙江农业学报, 2021, 33(2): 193-202. |
[5] | 郭晗, 徐敏贤, 徐飞飞, 罗明, 陆洲, 张序. 基于机载高光谱数据的田间尺度胡敏酸含量估算[J]. 浙江农业学报, 2021, 33(12): 2358-2369. |
[6] | 肖志云, 王伊凝. 基于RF-VR的紫丁香叶片叶绿素含量高光谱反演[J]. 浙江农业学报, 2021, 33(11): 2164-2173. |
[7] | 钱家炜, 刘晓青, 张静静, 周卫红, 李建龙. 张家港市农田土壤重金属含量高光谱遥感监测模型构建[J]. 浙江农业学报, 2020, 32(8): 1437-1445. |
[8] | 陆锡昆, 罗亚辉, 蒋蘋, 胡文武. 基于高光谱的油茶籽含水量检测方法[J]. 浙江农业学报, 2020, 32(7): 1302-1310. |
[9] | 禹文杰, 王彩霞, 乔芦, 王松磊, 贺晓光. 基于高光谱成像技术的泾源黄牛肉色度PLSR预测模型构建[J]. 浙江农业学报, 2020, 32(3): 527-533. |
[10] | 王念一, 于丰华, 许童羽, 杜文, 郭忠辉, 张国圣. 基于机器学习的粳稻叶片叶绿素含量高光谱反演建模[J]. 浙江农业学报, 2020, 32(2): 359-366. |
[11] | 宋春雨, 甘淑, 袁希平, 胡琳, 李雁, 闫馨方. 滇中典型乔木植被高光谱特征[J]. 浙江农业学报, 2020, 32(11): 1978-1986. |
[12] | 方向, 金秀, 朱娟娟, 李绍稳. 基于可见-近红外光谱预处理建模的土壤速效氮含量预测[J]. 浙江农业学报, 2019, 31(9): 1523-1530. |
[13] | 孟庆龙, 张艳, 尚静. 基于高光谱成像的猕猴桃表面疤痕无损识别[J]. 浙江农业学报, 2019, 31(8): 1372-1378. |
[14] | 方芳, 何序晨, 张志豪, 张勤, 关亚静, 胡晋, 胡伟民. 玉米自交系苗期对高温胁迫的响应机制及其抗逆性[J]. 浙江农业学报, 2019, 31(7): 1045-1056. |
[15] | 王枭轩, 孟庆岩, 张海香, 魏香琴, 杨泽楠. 基于粒子群神经网络模型反演玉米、小麦叶面积指数[J]. 浙江农业学报, 2019, 31(7): 1170-1176. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||