[1] |
顾晓丽, 潘洁, 张衡, 等. 基于物联网架构的我国森林病虫害监测研究进展[J]. 世界林业研究, 2015, 28(2): 48-53.
|
|
GU X L, PAN J, ZHANG H, et al. Review of forest diseases and pests monitoring research in China based on Internet of Things framework[J]. World Forestry Research, 2015, 28(2): 48-53. (in Chinese with English abstract)
|
[2] |
贾少鹏, 高红菊, 杭潇. 基于深度学习的农作物病虫害图像识别技术研究进展[J]. 农业机械学报, 2019, 50(S1): 313-317.
|
|
JIA S P, GAO H J, HANG X. Research progress on image recognition technology of crop pests and diseases based on deep learning[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(S1): 313-317. (in Chinese with English abstract)
|
[3] |
邱道尹, 张红涛, 刘新宇, 等. 基于机器视觉的大田害虫检测系统[J]. 农业机械学报, 2007, 38(1): 120-122.
|
|
QIU D Y, ZHANG H T, LIU X Y, et al. Design of detection system for agriculture field pests based on machine vision[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(1): 120-122. (in Chinese with English abstract)
|
[4] |
WEN C L, GUYER D. Image-based orchard insect automated identification and classification method[J]. Computers and Electronics in Agriculture, 2012, 89: 110-115.
DOI
URL
|
[5] |
LIU T, CHEN W, WU W, et al. Detection of aphids in wheat fields using a computer vision technique[J]. Biosystems Engineering, 2016, 141: 82-93.
DOI
URL
|
[6] |
朱莉, 罗靖, 徐胜勇, 等. 基于颜色特征的油菜害虫机器视觉诊断研究[J]. 农机化研究, 2016, 38(6): 55-58.
|
|
ZHU L, LUO J, XU S Y, et al. Machine vision recognition of rapeseed pests based on color feature[J]. Journal of Agricultural Mechanization Research, 2016, 38(6): 55-58. (in Chinese with English abstract)
|
[7] |
李文勇, 李明, 陈梅香, 等. 基于机器视觉的作物多姿态害虫特征提取与分类方法[J]. 农业工程学报, 2014, 30(14): 154-162.
|
|
LI W Y, LI M, CHEN M X, et al. Feature extraction and classification method of multi-pose pests using machine vision[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(14): 154-162. (in Chinese with English abstract)
|
[8] |
张睿珂, 陈梅香, 李明, 等. 基于机器视觉的蛾类三维姿态中前翅间夹角计算方法[J]. 林业科学, 2017, 53(11): 120-130.
|
|
ZHANG R K, CHEN M X, LI M, et al. Method of extracting forewings angle of 3D pose for the moth based on machine vision[J]. Scientia Silvae Sinicae, 2017, 53(11): 120-130. (in Chinese with English abstract)
|
[9] |
田冉, 陈梅香, 董大明, 等. 红外传感器与机器视觉融合的果树害虫识别及计数方法[J]. 农业工程学报, 2016, 32(20): 195-201.
|
|
TIAN R, CHEN M X, DONG D M, et al. Identification and counting method of orchard pests based on fusion method of infrared sensor and machine vision[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(20): 195-201. (in Chinese with English abstract)
|
[10] |
肖德琴, 张玉康, 范梅红, 等. 基于视觉感知的蔬菜害虫诱捕计数算法[J]. 农业机械学报, 2018, 49(3): 51-58.
|
|
XIAO D Q, ZHANG Y K, FAN M H, et al. Vegetable pest counting algorithm based on visual perception[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(3): 51-58. (in Chinese with English abstract)
|
[11] |
周焱, 刘文萍, 骆有庆, 等. 基于深度学习的小目标受灾树木检测方法[J]. 林业科学, 2021, 57(3): 98-107.
|
|
ZHOU Y, LIU W P, LUO Y Q, et al. Small object detection for infected trees based on the deep learning method[J]. Scientia Silvae Sinicae, 2021, 57(3): 98-107. (in Chinese with English abstract)
|
[12] |
杨国国, 鲍一丹, 刘子毅. 基于图像显著性分析与卷积神经网络的茶园害虫定位与识别[J]. 农业工程学报, 2017, 33(6): 156-162.
|
|
YANG G G, BAO Y D, LIU Z Y. Localization and recognition of pests in tea plantation based on image saliency analysis and convolutional neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(6): 156-162. (in Chinese with English abstract)
|
[13] |
武英洁, 房世波, Piotr Chudzik, 等. 基于Faster R-CNN的野外环境中蝗虫快速识别[J]. 气象与环境学报, 2020, 36(6): 137-143.
|
|
WU Y J, FANG S B, CHUDZIK P, et al. Rapid identification of locust on fields based on Faster R-CNN[J]. Journal of Meteorology and Environment, 2020, 36(6): 137-143. (in Chinese)
|
[14] |
张博, 张苗辉, 陈运忠. 基于空间金字塔池化和深度卷积神经网络的作物害虫识别[J]. 农业工程学报, 2019, 35(19): 209-215.
|
|
ZHANG B, ZHANG M H, CHEN Y Z. Crop pest identification based on spatial pyramid pooling and deep convolution neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(19): 209-215. (in Chinese with English abstract)
|
[15] |
李衡霞, 龙陈锋, 曾蒙, 等. 一种基于深度卷积神经网络的油菜虫害检测方法[J]. 湖南农业大学学报(自然科学版), 2019, 45(5): 560-564.
|
|
LI H X, LONG C F, ZENG M, et al. A detecting method for the rape pests based on deep convolutional neural network[J]. Journal of Hunan Agricultural University (Natural Sciences), 2019, 45(5): 560-564. (in Chinese with English abstract)
|
[16] |
李想. 基于物联网的虫情监测系统[D]. 北京: 北京林业大学, 2019.
|
|
LI X. The pest monitoring system based on the Internet of Things[D]. Beijing: Beijing Forestry University, 2019. (in Chinese with English abstract)
|
[17] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition, June 27-30, 2016, Las Vegas, NV, USA: IEEE, 2016: 779-788.
|
[18] |
王金鹏, 高凯, 姜洪喆,等. 基于改进的轻量化卷积神经网络火龙果检测方法(英)[J]. 农业工程学报, 2020, 36(20): 218-225.
|
|
WANG J P, GAO K, JIANG H Z, et al. Method for detecting dragon fruit based on improved lightweight convolutional neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(20): 218-225.(in English)
|
[19] |
蔡舒平, 孙仲鸣, 刘慧, 等. 基于改进型YOLOv4的果园障碍物实时检测方法[J]. 农业工程学报, 2021, 37(2): 36-43.
|
|
CAI S P, SUN Z M, LIU H, et al. Real-time detection methodology for obstacles in orchards using improved YOLOv4[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(2): 36-43. (in Chinese with English abstract)
|
[20] |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA: IEEE, 2018: 8759-8768.
|
[21] |
鞠默然, 罗海波, 王仲博, 等. 改进的YOLO V3算法及其在小目标检测中的应用[J]. 光学学报, 2019, 39(7): 0715004.
|
|
JU M R, LUO H B, WANG Z B, et al. Improved YOLO V3 algorithm and its application in small target detection[J]. Acta Optica Sinica, 2019, 39(7): 0715004. (in Chinese with English abstract)
|