浙江农业学报 ›› 2023, Vol. 35 ›› Issue (11): 2673-2687.DOI: 10.3969/j.issn.1004-1524.20221632
王巍(), 刘吉祥, 孙林鹤, 杜凤凤, 李金凤, 常雅军*(
), 姚东瑞
收稿日期:
2022-11-16
出版日期:
2023-11-25
发布日期:
2023-12-04
作者简介:
王巍(1993—),男,江苏宿迁人,博士研究生,主要从事污染水体生态修复研究。E-mail: izjwang@163.com
通讯作者:
* 常雅军,E-mail: changyj@cnbg.net
基金资助:
WANG Wei(), LIU Jixiang, SUN Linhe, DU Fengfeng, LI Jinfeng, CHANG Yajun*(
), YAO Dongrui
Received:
2022-11-16
Online:
2023-11-25
Published:
2023-12-04
摘要:
为明确浮床水芹不同器官化感物质特征与差异,揭示水芹化感抑藻机制,以浮床水芹为研究对象,基于液相色谱-电喷雾质谱(LC-ESI-MS)代谢组学技术对不同发育阶段水芹种植水和整株不同器官的化感物质种类和含量进行分析。结果显示:在繁殖期、幼苗期和成熟期水芹种植水中检出酚酸类化感物质36种、脂肪酸类化感物质24种,且两类化感物质在幼苗期种植水中的相对含量显著高于繁殖期和成熟期。对幼苗期水芹根、茎、叶中酚酸类和脂肪酸类化感物质进行靶向分析,发现在各器官中共存的酚酸类化感物质有18种,其中阿魏酸和咖啡酸在叶片中含量较高,分别为(15.20 ± 1.98) ng·mg-1和(37.26 ± 2.21) ng·mg-1;各器官中共存的脂肪酸类化感物质有33种,其中硬脂酸和肉豆蔻酸在根和叶中的含量较高,分别为(450.70 ± 14.32) ng·mg-1和(39.54 ± 0.50)ng·mg-1。研究表明,水芹种植水和其体内所含的酚酸类、脂肪酸类化感物质种类丰富,这些物质的释放是浮床水芹在富营养化水体中化感抑藻的主要原因。同时,与繁殖期和成熟期相比,幼苗期水芹叶片的酚酸类和脂肪酸类物质相对含量较高,是制备生物抑藻剂的良好材料。
中图分类号:
王巍, 刘吉祥, 孙林鹤, 杜凤凤, 李金凤, 常雅军, 姚东瑞. 浮床水芹不同器官酚酸类和脂肪酸类化感物质代谢组学分析[J]. 浙江农业学报, 2023, 35(11): 2673-2687.
WANG Wei, LIU Jixiang, SUN Linhe, DU Fengfeng, LI Jinfeng, CHANG Yajun, YAO Dongrui. Metabolomics analysis of allelochemical phenolic acids and fatty acids in various organs of floating bed water dropwort[J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2673-2687.
处理组 Treatments | 种植水体积 Volume of cultured water/mL | 种植水占比 Proportion of cultured water/% | 细胞密度 Cell density/mL-1 | 颜色 Colour | 絮状沉淀 Flocky precipitate |
---|---|---|---|---|---|
A | 0 | 0 | 18.6×108±103 | 墨绿色Deep green | 无Without |
B | 25 | 12.5 | 10.9×107±87 | 黄色Yellow | 少量Paucity |
C | 50 | 25.0 | — | 无色Colourless | 大量Mass |
表1 水芹种植水对铜绿微囊藻的生长影响
Table 1 Effect of cultured water of water dropwort on the growth of Microcystis aeruginosa
处理组 Treatments | 种植水体积 Volume of cultured water/mL | 种植水占比 Proportion of cultured water/% | 细胞密度 Cell density/mL-1 | 颜色 Colour | 絮状沉淀 Flocky precipitate |
---|---|---|---|---|---|
A | 0 | 0 | 18.6×108±103 | 墨绿色Deep green | 无Without |
B | 25 | 12.5 | 10.9×107±87 | 黄色Yellow | 少量Paucity |
C | 50 | 25.0 | — | 无色Colourless | 大量Mass |
图2 样品正、负模式的总离子流谱图 3条曲线为3个样品重复,3条曲线重合度越高,说明试验重复性越好;图中数字为出现峰值的时间(min)。
Fig.2 Total ion chromatogram patterns of samples in positive and negative ion models The3 curves were repeated in 3 samples. The higher the coincidence degree of the 3 curves, the better the repeatability of the test. The number in the figure is the time of the peak (min).
图3 不同时期水芹种植水中各代谢物含量热图 每个方块代表一个样品中某一代谢物的含量,颜色越红代表含量越高,颜色越蓝代表含量越低,各时期1~3为3个生物学重复,A、B为2个技术重复。下同。
Fig.3 Heatmap of metabolites contents in planting water of water dropwort in different development stages Each cube represents the content of a metabolite in a sample. The redder the color is, the higher the content is. The bluer the color is, the lower the content is. Each period 1-3 represent 3 biological repeats, A and B were 2 technical repeats. The same as below.
时期 Stage | 化感物质 Allelochemical | 保留时间 Retention time/min | mzCloud 最佳匹配 mzCloud best match | 差异倍数 Fold change | P值 P value | 变量权重 Variable importance in projection |
---|---|---|---|---|---|---|
幼苗期与繁殖期 | 苯甲酸Benzoic acid | 0.954 | 99.8 | 4.723 | 1.252×10-8 | 1.459 |
Seedling stage and | 弗拉西汀Fraxetin | 2.483 | 97.0 | 92.063 | 1.881×10-2 | 1.274 |
reproductive stage | 对羟基苯甲酸丙酯Propylparaben | 0.909 | 94.6 | 0.213 | 8.183×10-3 | 1.320 |
3',4'-二羟基苯基丙酮 | 0.935 | 76.8 | 0.234 | 5.560×10-3 | 1.331 | |
3',4'-Dihydroxyphenylacetone | ||||||
幼苗期与成熟期 | 苯甲酸Benzoic acid | 0.715 | 99.9 | 1.448 | 1.659×10-2 | 1.071 |
Seedling stage and | 水杨酸Salicylic acid | 1.991 | 98.2 | 5.846 | 1.014×10-6 | 1.555 |
mature stage | 咖啡酸Caffeic acid | 6.594 | 97.4 | 5.023 | 2.018×10-3 | 1.282 |
2-甲基-4,6-二硝基苯酚 | 0.790 | 96.5 | 2.852 | 7.863×10-4 | 1.332 | |
3-2-Methyl-4,6-dinitrophenol | ||||||
4-羟基苯甲醛 4-Hydroxybenzaldehyde | 2.511 | 95.7 | 2.753 | 5.664×10-4 | 1.369 | |
阿魏酸Ferulic acid | 2.626 | 94.9 | 2.122 | 2.857×10-3 | 1.264 | |
3-氨基水杨酸 3-Aminosalicylic acid | 4.934 | 94.4 | 2.868 | 1.536×10-3 | 1.302 | |
儿茶酚Catechol | 0.647 | 85.7 | 3.054 | 1.595×10-2 | 1.100 | |
2-(2'-羟基-3,5'-二叔丁基苯基)-5-氯苯 | 0.802 | 84.3 | 18.531 | 1.371×10-4 | 1.424 | |
并三唑 2-(2'-Hydroxy-3,5'-di-tert-butylphenyl)- 5-chlorobenzotriazole | ||||||
3,5-二羟基苯甲酸3,5-Dihydroxybenzoic acid | 7.220 | 81.8 | 8.163 | 1.049×10-2 | 1.145 | |
4-二硝基苯酚 2,4-Dinitrophenol | 0.821 | 73.8 | 2.389 | 3.328×10-3 | 1.229 |
表2 不同发育时期水芹种植水中存在显著差异的酚酸类化感物质
Table 2 Phenolic acid allelochemicals with significant differences in planting water of water dropwort in different developmental stages
时期 Stage | 化感物质 Allelochemical | 保留时间 Retention time/min | mzCloud 最佳匹配 mzCloud best match | 差异倍数 Fold change | P值 P value | 变量权重 Variable importance in projection |
---|---|---|---|---|---|---|
幼苗期与繁殖期 | 苯甲酸Benzoic acid | 0.954 | 99.8 | 4.723 | 1.252×10-8 | 1.459 |
Seedling stage and | 弗拉西汀Fraxetin | 2.483 | 97.0 | 92.063 | 1.881×10-2 | 1.274 |
reproductive stage | 对羟基苯甲酸丙酯Propylparaben | 0.909 | 94.6 | 0.213 | 8.183×10-3 | 1.320 |
3',4'-二羟基苯基丙酮 | 0.935 | 76.8 | 0.234 | 5.560×10-3 | 1.331 | |
3',4'-Dihydroxyphenylacetone | ||||||
幼苗期与成熟期 | 苯甲酸Benzoic acid | 0.715 | 99.9 | 1.448 | 1.659×10-2 | 1.071 |
Seedling stage and | 水杨酸Salicylic acid | 1.991 | 98.2 | 5.846 | 1.014×10-6 | 1.555 |
mature stage | 咖啡酸Caffeic acid | 6.594 | 97.4 | 5.023 | 2.018×10-3 | 1.282 |
2-甲基-4,6-二硝基苯酚 | 0.790 | 96.5 | 2.852 | 7.863×10-4 | 1.332 | |
3-2-Methyl-4,6-dinitrophenol | ||||||
4-羟基苯甲醛 4-Hydroxybenzaldehyde | 2.511 | 95.7 | 2.753 | 5.664×10-4 | 1.369 | |
阿魏酸Ferulic acid | 2.626 | 94.9 | 2.122 | 2.857×10-3 | 1.264 | |
3-氨基水杨酸 3-Aminosalicylic acid | 4.934 | 94.4 | 2.868 | 1.536×10-3 | 1.302 | |
儿茶酚Catechol | 0.647 | 85.7 | 3.054 | 1.595×10-2 | 1.100 | |
2-(2'-羟基-3,5'-二叔丁基苯基)-5-氯苯 | 0.802 | 84.3 | 18.531 | 1.371×10-4 | 1.424 | |
并三唑 2-(2'-Hydroxy-3,5'-di-tert-butylphenyl)- 5-chlorobenzotriazole | ||||||
3,5-二羟基苯甲酸3,5-Dihydroxybenzoic acid | 7.220 | 81.8 | 8.163 | 1.049×10-2 | 1.145 | |
4-二硝基苯酚 2,4-Dinitrophenol | 0.821 | 73.8 | 2.389 | 3.328×10-3 | 1.229 |
时期 Stage | 化感物质 Allelochemical | 保留时间 Retention time/min | mzCloud 最佳匹配 mzCloud best match | 差异倍数 Fold change | P值 P value | 变量权重 Variable importance in projection |
---|---|---|---|---|---|---|
幼苗期与繁殖期 | DL-乳酸DL-Carnitine | 7.400 | 97.5 | 0.092 | 6.464×10-6 | 2.122 |
Seedling stage and | 硬脂酸Stearic acid | 0.966 | 95.7 | 2.393 | 1.097×10-4 | 4.559 |
reproductive stage | 壬二酸Azelaic acid | 1.773 | 91.6 | 8.601 | 6.691×10-8 | 1.092 |
幼苗期与成熟期 | 羟基丁酸3-Hydroxybutyric acid | 0.715 | 99.9 | 1.448 | 1.659×10-2 | 1.071 |
Seedling stage and | 柠檬酸Citric acid | 13.655 | 99.1 | 1.736 | 2.097×10-2 | 1.068 |
mature stage | 3,3-二甲基戊二酸3,3-Dimethylglutaric acid | 2.420 | 97.9 | 2.187 | 1.997×10-4 | 1.401 |
硬脂酸Stearic acid | 0.966 | 95.7 | 1.637 | 7.875×10-3 | 1.166 | |
3-叔丁基己二酸3-tert-Butyladipic acid | 4.784 | 93.6 | 2.323 | 2.965×10-4 | 1.387 | |
癸酸Decanoic acid | 1.289 | 88.3 | 70.943 | 1.023×10-6 | 1.548 |
表3 不同发育时期水芹种植水中存在显著差异的脂肪酸类化感物质
Table 3 Fatty acid allelochemicals with significant differences in planting water of water dropwort in different developmental stages
时期 Stage | 化感物质 Allelochemical | 保留时间 Retention time/min | mzCloud 最佳匹配 mzCloud best match | 差异倍数 Fold change | P值 P value | 变量权重 Variable importance in projection |
---|---|---|---|---|---|---|
幼苗期与繁殖期 | DL-乳酸DL-Carnitine | 7.400 | 97.5 | 0.092 | 6.464×10-6 | 2.122 |
Seedling stage and | 硬脂酸Stearic acid | 0.966 | 95.7 | 2.393 | 1.097×10-4 | 4.559 |
reproductive stage | 壬二酸Azelaic acid | 1.773 | 91.6 | 8.601 | 6.691×10-8 | 1.092 |
幼苗期与成熟期 | 羟基丁酸3-Hydroxybutyric acid | 0.715 | 99.9 | 1.448 | 1.659×10-2 | 1.071 |
Seedling stage and | 柠檬酸Citric acid | 13.655 | 99.1 | 1.736 | 2.097×10-2 | 1.068 |
mature stage | 3,3-二甲基戊二酸3,3-Dimethylglutaric acid | 2.420 | 97.9 | 2.187 | 1.997×10-4 | 1.401 |
硬脂酸Stearic acid | 0.966 | 95.7 | 1.637 | 7.875×10-3 | 1.166 | |
3-叔丁基己二酸3-tert-Butyladipic acid | 4.784 | 93.6 | 2.323 | 2.965×10-4 | 1.387 | |
癸酸Decanoic acid | 1.289 | 88.3 | 70.943 | 1.023×10-6 | 1.548 |
酚酸类 Phenolic acid | 占比Proportion/% | 含量Content/(ng·mg-1) | ||||
---|---|---|---|---|---|---|
根Root | 茎Stem | 叶Leaf | 根Root | 茎Stem | 叶Leaf | |
没食子酸Gallic acid | 1.19 | 1.00 | 4.65 | 0.32±0.01 b | 0.16±0.09 c | 3.26±0.01 a |
苯丙氨酸L-Phenylalanine | 0.07 | 0.12 | 0.08 | 0.02±0.01 b | 0.02±0.01 b | 0.06±0.01 a |
原儿茶酸3,4-Dihydroxybenzoic acid | 0.28 | 0.32 | 0.22 | 0.08±0.01 b | 0.05±0.02 b | 0.15±0.01 a |
原儿茶醛Protocatechualdehyde | 1.06 | 0.79 | 1.24 | 0.28±0.04 b | 0.12±0.01 b | 0.87±0.10 a |
香草酸Vanillic acid | 2.66 | 3.31 | 6.45 | 0.71±0.01 b | 0.51±0.07 b | 4.52±0.44 a |
咖啡酸Caffeic acid | 28.76 | 18.77 | 53.16 | 7.70±0.74 b | 2.92±0.17 c | 37.26±2.21 a |
丁香酸Syringic acid | 0.25 | 0.10 | 0.15 | 0.07±0.01 b | 0.02±0.01 c | 0.10±0.01 a |
表儿茶素L-Epicatechin | 0.010 | 0.003 | 0.002 | 0.01×10-1±0.01 ab | 0.05×10-2±0.01 b | 0.02×10-1±0.01 a |
4-羟基苯甲酸4-Hydroxybenzoic acid | 4.16 | 4.78 | 1.61 | 1.11±0.14 a | 0.74±0.01 b | 1.13±0.03 a |
香草醛Vanillin | 4.18 | 4.74 | 1.60 | 1.12±0.16 a | 0.74±0.04 b | 1.12±0.06 a |
4-羟基肉桂酸4-Hydroxycinnamic acid | 14.4 | 11.21 | 5.44 | 3.86±0.29 a | 1.75±1.12 a | 3.81±0.33 a |
丁香醛Syringaldehyde | 0.64 | 0.91 | 1.94 | 0.17±0.01 b | 0.14±0.08 b | 1.36±0.08 a |
阿魏酸Ferulic acid | 41.26 | 52.54 | 21.69 | 11.05±0.62 b | 8.18±0.33 b | 15.20±1.98 a |
3,5-二甲氧基肉桂酸 | 0.22 | 0.63 | 1.33 | 0.06±0.01 b | 0.10±0.02 b | 0.93±0.21 a |
3,5-Dimethoxycinnamic acid | ||||||
水杨酸Salicylic acid | 0.06 | 0.08 | 0.05 | 0.01±0.01 b | 0.01±0.01 b | 0.04±0.01 a |
苯甲酸Benzoic acid | 0.58 | 0.56 | 0.20 | 0.15±0.02 a | 0.09±0.03 b | 0.14±0.01 a |
氢化肉桂酸Hydrocinnamic acid | 0.18 | 0.01 | 0.02 | 0.05±0.01 a | 0.02×10-1±0.01 c | 0.01±0.01 b |
反式肉桂酸Trans-cinnamic acid | 0.05 | 0.12 | 0.17 | 0.01±0.01 b | 0.02±0.01 b | 0.12±0.02 a |
表4 水芹根、茎和叶3个不同器官中酚酸占比和含量
Table 4 Analysis on the proportion and content of phenolic acid in root, stem and leaf of water dropwort
酚酸类 Phenolic acid | 占比Proportion/% | 含量Content/(ng·mg-1) | ||||
---|---|---|---|---|---|---|
根Root | 茎Stem | 叶Leaf | 根Root | 茎Stem | 叶Leaf | |
没食子酸Gallic acid | 1.19 | 1.00 | 4.65 | 0.32±0.01 b | 0.16±0.09 c | 3.26±0.01 a |
苯丙氨酸L-Phenylalanine | 0.07 | 0.12 | 0.08 | 0.02±0.01 b | 0.02±0.01 b | 0.06±0.01 a |
原儿茶酸3,4-Dihydroxybenzoic acid | 0.28 | 0.32 | 0.22 | 0.08±0.01 b | 0.05±0.02 b | 0.15±0.01 a |
原儿茶醛Protocatechualdehyde | 1.06 | 0.79 | 1.24 | 0.28±0.04 b | 0.12±0.01 b | 0.87±0.10 a |
香草酸Vanillic acid | 2.66 | 3.31 | 6.45 | 0.71±0.01 b | 0.51±0.07 b | 4.52±0.44 a |
咖啡酸Caffeic acid | 28.76 | 18.77 | 53.16 | 7.70±0.74 b | 2.92±0.17 c | 37.26±2.21 a |
丁香酸Syringic acid | 0.25 | 0.10 | 0.15 | 0.07±0.01 b | 0.02±0.01 c | 0.10±0.01 a |
表儿茶素L-Epicatechin | 0.010 | 0.003 | 0.002 | 0.01×10-1±0.01 ab | 0.05×10-2±0.01 b | 0.02×10-1±0.01 a |
4-羟基苯甲酸4-Hydroxybenzoic acid | 4.16 | 4.78 | 1.61 | 1.11±0.14 a | 0.74±0.01 b | 1.13±0.03 a |
香草醛Vanillin | 4.18 | 4.74 | 1.60 | 1.12±0.16 a | 0.74±0.04 b | 1.12±0.06 a |
4-羟基肉桂酸4-Hydroxycinnamic acid | 14.4 | 11.21 | 5.44 | 3.86±0.29 a | 1.75±1.12 a | 3.81±0.33 a |
丁香醛Syringaldehyde | 0.64 | 0.91 | 1.94 | 0.17±0.01 b | 0.14±0.08 b | 1.36±0.08 a |
阿魏酸Ferulic acid | 41.26 | 52.54 | 21.69 | 11.05±0.62 b | 8.18±0.33 b | 15.20±1.98 a |
3,5-二甲氧基肉桂酸 | 0.22 | 0.63 | 1.33 | 0.06±0.01 b | 0.10±0.02 b | 0.93±0.21 a |
3,5-Dimethoxycinnamic acid | ||||||
水杨酸Salicylic acid | 0.06 | 0.08 | 0.05 | 0.01±0.01 b | 0.01±0.01 b | 0.04±0.01 a |
苯甲酸Benzoic acid | 0.58 | 0.56 | 0.20 | 0.15±0.02 a | 0.09±0.03 b | 0.14±0.01 a |
氢化肉桂酸Hydrocinnamic acid | 0.18 | 0.01 | 0.02 | 0.05±0.01 a | 0.02×10-1±0.01 c | 0.01±0.01 b |
反式肉桂酸Trans-cinnamic acid | 0.05 | 0.12 | 0.17 | 0.01±0.01 b | 0.02±0.01 b | 0.12±0.02 a |
脂肪酸类 Fatty acid | 占比Proportion/% | 含量Content/(ng·mg-1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
根Root | 茎Stem | 叶Leaf | 根Root | 茎Stem | 叶Leaf | |||||||
葵酸Decanoate | 0.21 | 0.22 | 0.14 | 6.52±0.07 a | 6.54±0.04 a | 6.54±0.04 a | ||||||
十一醇Undecanoate | 0.65 | 0.67 | 0.43 | 20.31±0.22 a | 19.98±0.28 a | 20.15±0.09 a | ||||||
月桂酸Laurate | 0.87 | 0.91 | 0.59 | 27.26±0.27 a | 27.33±0.20 a | 27.46±0.22 a | ||||||
十三碳酸Tridecanoate | 0.85 | 0.89 | 0.57 | 26.71±0.26 a | 26.53±0.27 a | 26.66±0.13 a | ||||||
肉豆蔻酸Myristate | 1.24 | 1.26 | 0.85 | 38.73±0.69 a | 37.69±0.91 a | 39.54±0.50 a | ||||||
肉豆蔻脑酸Myristoleate | 1.46 | 1.52 | 0.97 | 45.69±0.42 a | 45.58±0.40 a | 45.14±0.40 a | ||||||
十五烷酸Pentadecanoate | 0.73 | 0.76 | 0.49 | 22.96±0.26 a | 22.90±0.34 a | 22.88±0.15 a | ||||||
十五碳烯酸Pentadecenoate | 0.79 | 0.83 | 0.54 | 24.83±0.33 a | 24.95±0.08 a | 24.90±0.19 a | ||||||
棕榈酸Palmitate | 20.53 | 19.75 | 16.78 | 641.92±26.54 b | 590.62±27.56 b | 778.74±8.22 a | ||||||
棕榈油酸Palmitoleate | 1.42 | 1.38 | 0.89 | 44.36±1.59 a | 41.23±0.32 b | 41.15±0.19 b | ||||||
十七烷酸Heptadecanoate | 0.56 | 0.59 | 0.38 | 17.48±0.20 a | 17.51±0.30 a | 17.78±0.09 a | ||||||
十七碳烯酸Heptadecenoate | 9.42 | 8.75 | 5.71 | 294.44±15.07 a | 261.79±9.40 a | 265.16±13.61 a | ||||||
硬脂酸Stearate | 14.42 | 12.65 | 8.67 | 450.70±14.32 a | 378.33±15.46 b | 402.62±15.97 ab | ||||||
反油酸Elaidate | 10.46 | 10.95 | 1.25 | 326.99±17.35 a | 327.64±45.34 a | 58.18±0.61 b | ||||||
油酸Oleate | 0.31 | 0.37 | 0.71 | 9.67±0.66 b | 11.17±2.20 b | 32.75±1.96 a | ||||||
反亚油酸Linoelaidate | 4.99 | 4.89 | 7.69 | 155.97±2.59 b | 146.37±13.96 b | 357.06±16.64 a | ||||||
亚油酸Linoleate | 4.84 | 4.71 | 7.62 | 151.22±2.29 b | 140.78±14.60 b | 353.45±16.88 a | ||||||
花生酸Arachidate | 0.48 | 0.52 | 0.33 | 15.11±0.03 a | 15.66±0.53 a | 15.11±0.19 a | ||||||
γ-亚麻酸γ-Linolenate | 1.09 | 2.03 | 13.16 | 34.08±1.07 b | 60.70±3.62 b | 610.99±24.90 a | ||||||
11-二十碳烯酸11-Eicosenoate | 1.14 | 1.16 | 5.93 | 35.70±1.06 b | 34.71±0.40 b | 275.29±9.58 a | ||||||
亚麻酸Linolenate | 1.25 | 2.19 | 10.57 | 39.02±0.89 b | 65.49±6.02 b | 490.67±19.78 a | ||||||
二十一烷酸Heneicosanoate | 0.59 | 0.62 | 0.90 | 18.34±0.16 b | 18.46±0.19 b | 41.71±1.81 a | ||||||
二十碳二烯酸11,14-Eicosadienoate | 0.98 | 1.03 | 0.68 | 30.52±0.40 a | 30.75±0.27 a | 31.36±0.38 a | ||||||
山嵛酸Behenate | 0.82 | 0.89 | 0.59 | 25.67±0.42 b | 26.69±0.47 ab | 27.43±0.47 a | ||||||
顺-8,11,14-二十碳三烯酸 | 1.21 | 1.26 | 0.82 | 37.98±0.50 a | 37.73±0.27 a | 38.18±0.25 a | ||||||
Cis-8,11,14-eicosatrienoic acid | ||||||||||||
芥酸Erucate | 5.13 | 4.84 | 3.20 | 160.50±4.42 a | 144.72±4.28 a | 148.52±5.95 a | ||||||
1,14,17-顺-二十碳三烯酸 | 1.54 | 1.55 | 1.17 | 48.12±1.38 b | 46.42±0.29 b | 54.13±0.34 a | ||||||
1,14,17-Eicosatrienoate | ||||||||||||
二十三酸Tricosanoate | 0.68 | 0.71 | 0.46 | 21.28±0.28 a | 21.16±0.25 a | 21.31±0.19 a | ||||||
花生四烯酸Arachidonate | 1.85 | 2.18 | 1.47 | 57.96±0.12 b | 65.29±0.08 a | 68.00±0.91 a | ||||||
二十二碳二烯酸Docosadienoate | 1.60 | 1.68 | 1.08 | 50.01±0.30 a | 50.36±0.54 a | 50.27±0.41 a | ||||||
木蜡酸Lignocerate | 1.85 | 1.91 | 1.28 | 57.78±0.84 ab | 57.16±0.33 b | 59.55±0.33 a | ||||||
二十碳五烯酸Eicosapentaenoate | 1.53 | 1.61 | 1.04 | 47.86±0.49 a | 48.02±0.28 a | 48.06±0.37 a | ||||||
二十四碳烯酸Nervonate | 1.91 | 2.00 | 1.29 | 59.65±0.26 a | 59.85±0.47 a | 59.68±0.46 a | ||||||
二十二碳六烯酸Docosahexaenoate | 2.58 | 2.70 | 1.74 | 80.66±0.83 a | 80.86±0.69 a | 80.94±0.77 a |
表5 水芹根、茎和叶中脂肪酸占比和含量
Table 5 Analysis on the proportion and content of fatty acids in root, stem and leaf of water dropwort
脂肪酸类 Fatty acid | 占比Proportion/% | 含量Content/(ng·mg-1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
根Root | 茎Stem | 叶Leaf | 根Root | 茎Stem | 叶Leaf | |||||||
葵酸Decanoate | 0.21 | 0.22 | 0.14 | 6.52±0.07 a | 6.54±0.04 a | 6.54±0.04 a | ||||||
十一醇Undecanoate | 0.65 | 0.67 | 0.43 | 20.31±0.22 a | 19.98±0.28 a | 20.15±0.09 a | ||||||
月桂酸Laurate | 0.87 | 0.91 | 0.59 | 27.26±0.27 a | 27.33±0.20 a | 27.46±0.22 a | ||||||
十三碳酸Tridecanoate | 0.85 | 0.89 | 0.57 | 26.71±0.26 a | 26.53±0.27 a | 26.66±0.13 a | ||||||
肉豆蔻酸Myristate | 1.24 | 1.26 | 0.85 | 38.73±0.69 a | 37.69±0.91 a | 39.54±0.50 a | ||||||
肉豆蔻脑酸Myristoleate | 1.46 | 1.52 | 0.97 | 45.69±0.42 a | 45.58±0.40 a | 45.14±0.40 a | ||||||
十五烷酸Pentadecanoate | 0.73 | 0.76 | 0.49 | 22.96±0.26 a | 22.90±0.34 a | 22.88±0.15 a | ||||||
十五碳烯酸Pentadecenoate | 0.79 | 0.83 | 0.54 | 24.83±0.33 a | 24.95±0.08 a | 24.90±0.19 a | ||||||
棕榈酸Palmitate | 20.53 | 19.75 | 16.78 | 641.92±26.54 b | 590.62±27.56 b | 778.74±8.22 a | ||||||
棕榈油酸Palmitoleate | 1.42 | 1.38 | 0.89 | 44.36±1.59 a | 41.23±0.32 b | 41.15±0.19 b | ||||||
十七烷酸Heptadecanoate | 0.56 | 0.59 | 0.38 | 17.48±0.20 a | 17.51±0.30 a | 17.78±0.09 a | ||||||
十七碳烯酸Heptadecenoate | 9.42 | 8.75 | 5.71 | 294.44±15.07 a | 261.79±9.40 a | 265.16±13.61 a | ||||||
硬脂酸Stearate | 14.42 | 12.65 | 8.67 | 450.70±14.32 a | 378.33±15.46 b | 402.62±15.97 ab | ||||||
反油酸Elaidate | 10.46 | 10.95 | 1.25 | 326.99±17.35 a | 327.64±45.34 a | 58.18±0.61 b | ||||||
油酸Oleate | 0.31 | 0.37 | 0.71 | 9.67±0.66 b | 11.17±2.20 b | 32.75±1.96 a | ||||||
反亚油酸Linoelaidate | 4.99 | 4.89 | 7.69 | 155.97±2.59 b | 146.37±13.96 b | 357.06±16.64 a | ||||||
亚油酸Linoleate | 4.84 | 4.71 | 7.62 | 151.22±2.29 b | 140.78±14.60 b | 353.45±16.88 a | ||||||
花生酸Arachidate | 0.48 | 0.52 | 0.33 | 15.11±0.03 a | 15.66±0.53 a | 15.11±0.19 a | ||||||
γ-亚麻酸γ-Linolenate | 1.09 | 2.03 | 13.16 | 34.08±1.07 b | 60.70±3.62 b | 610.99±24.90 a | ||||||
11-二十碳烯酸11-Eicosenoate | 1.14 | 1.16 | 5.93 | 35.70±1.06 b | 34.71±0.40 b | 275.29±9.58 a | ||||||
亚麻酸Linolenate | 1.25 | 2.19 | 10.57 | 39.02±0.89 b | 65.49±6.02 b | 490.67±19.78 a | ||||||
二十一烷酸Heneicosanoate | 0.59 | 0.62 | 0.90 | 18.34±0.16 b | 18.46±0.19 b | 41.71±1.81 a | ||||||
二十碳二烯酸11,14-Eicosadienoate | 0.98 | 1.03 | 0.68 | 30.52±0.40 a | 30.75±0.27 a | 31.36±0.38 a | ||||||
山嵛酸Behenate | 0.82 | 0.89 | 0.59 | 25.67±0.42 b | 26.69±0.47 ab | 27.43±0.47 a | ||||||
顺-8,11,14-二十碳三烯酸 | 1.21 | 1.26 | 0.82 | 37.98±0.50 a | 37.73±0.27 a | 38.18±0.25 a | ||||||
Cis-8,11,14-eicosatrienoic acid | ||||||||||||
芥酸Erucate | 5.13 | 4.84 | 3.20 | 160.50±4.42 a | 144.72±4.28 a | 148.52±5.95 a | ||||||
1,14,17-顺-二十碳三烯酸 | 1.54 | 1.55 | 1.17 | 48.12±1.38 b | 46.42±0.29 b | 54.13±0.34 a | ||||||
1,14,17-Eicosatrienoate | ||||||||||||
二十三酸Tricosanoate | 0.68 | 0.71 | 0.46 | 21.28±0.28 a | 21.16±0.25 a | 21.31±0.19 a | ||||||
花生四烯酸Arachidonate | 1.85 | 2.18 | 1.47 | 57.96±0.12 b | 65.29±0.08 a | 68.00±0.91 a | ||||||
二十二碳二烯酸Docosadienoate | 1.60 | 1.68 | 1.08 | 50.01±0.30 a | 50.36±0.54 a | 50.27±0.41 a | ||||||
木蜡酸Lignocerate | 1.85 | 1.91 | 1.28 | 57.78±0.84 ab | 57.16±0.33 b | 59.55±0.33 a | ||||||
二十碳五烯酸Eicosapentaenoate | 1.53 | 1.61 | 1.04 | 47.86±0.49 a | 48.02±0.28 a | 48.06±0.37 a | ||||||
二十四碳烯酸Nervonate | 1.91 | 2.00 | 1.29 | 59.65±0.26 a | 59.85±0.47 a | 59.68±0.46 a | ||||||
二十二碳六烯酸Docosahexaenoate | 2.58 | 2.70 | 1.74 | 80.66±0.83 a | 80.86±0.69 a | 80.94±0.77 a |
[1] | CHIANG I Z, HUANG W Y, WU J T. Allelochemicals of Botryococcus braunii (Chlorophyceae)[J]. Journal of Phycology, 2004, 40(3): 474-480. |
[2] | NAKAI S, INOUE Y, HOSOMI M, et al. Growth inhibition of blue-green algae by allelopathic effects of macrophytes[J]. Water Science and Technology, 1999, 39(8): 47-53. |
[3] | NEILEN A D, HAWKER D W, O'BRIEN K R, et al. Phytotoxic effects of terrestrial dissolved organic matter on a freshwater cyanobacteria and green algae species is affected by plant source and DOM chemical composition[J]. Chemosphere, 2017, 184: 969-980. |
[4] | YU S M, LI C, XU C C, et al. Understanding the inhibitory mechanism of antialgal allelochemical flavonoids from genetic variations: photosynthesis, toxin synthesis and nutrient utility[J]. Ecotoxicology and Environmental Safety, 2019, 177: 18-24. |
[5] | HUA Q, LIU Y G, YAN Z L, et al. Allelopathic effect of the rice straw aqueous extract on the growth of Microcystis aeruginosa[J]. Ecotoxicology and Environmental Safety, 2018, 148: 953-959. |
[6] | TAN K T, HUANG Z Q, JI R B, et al. A review of allelopathy on microalgae[J]. Microbiology, 2019, 165(6): 587-592. |
[7] | MOOSAVI A, AFSHARI R T, ASADI A, et al. Allelopathic effects of aqueous extract of leaf stem and root of Sorghum bicolor on seed germination and seedling growth of Vigna radiata L[J]. Notulae Scientia Biologicae, 2011, 3(2): 114-118. |
[8] | SODAEIZADEH H, RAFIEIOLHOSSAINI M, HAVLÍK J, et al. Allelopathic activity of different plant parts of Peganum harmala L. and identification of their growth inhibitors substances[J]. Plant Growth Regulation, 2009, 59(3): 227-236. |
[9] | SUN F, PEI H Y, HU W R, et al. The lysis of Microcystis aeruginosa in AlCl3 coagulation and sedimentation processes[J]. Chemical Engineering Journal, 2012, 193/194: 196-202. |
[10] | GAO J Q, YANG L, ZHONG R, et al. Comparison of nitrogen and phosphorus removal efficiency between two types of baffled vertical flow constructed wetlands planted with Oenanthe javanica[J]. Water Science and Technology, 2020, 81(9): 2023-2032. |
[11] | SUNJEET K, LI G J, HUANG X F, et al. Phenotypic, nutritional, and antioxidant characterization of blanched Oenanthe javanica for preferable Cultivar [J]. Frontiers in Plant Science, 2021, 12: 639639. |
[12] | XUE Z. Allelopathy effects of Oenanthe javanica extracts on Scenedesmus obliquus[J]. Bulletin of Botanical Research, 2011, 31(6): 735-757. |
[13] | KONG Y, PENG Y Z, ZHANG Z, et al. Removal of Microcystis aeruginosa by ultrasound: Inactivation mechanism and release of algal organic matter[J]. Ultrasonics Sonochemistry, 2019, 56: 447-457. |
[14] | SERRÀ A, PIP P, GÓMEZ E, et al. Efficient magnetic hybrid ZnO-based photocatalysts for visible-light-driven removal of toxic cyanobacteria blooms and cyanotoxins[J]. Applied Catalysis B: Environmental, 2020, 268: 118745. |
[15] | GONG H, CHU W, CHEN M J, et al. A systematic study on photocatalysis of antipyrine: catalyst characterization, parameter optimization, reaction mechanism and toxicity evolution to plankton[J]. Water Research, 2017, 112: 167-175. |
[16] | WANG B L, LI Y Y, ZHENG J L, et al. Efficient removal of U(VI) from aqueous solutions using the magnetic biochar derived from the biomass of a bloom-forming cyanobacterium (Microcystis aeruginosa)[J]. Chemosphere, 2020, 254: 126898. |
[17] | TSAI K P, UZUN H, CHEN H, et al. Control wildfire-induced Microcystis aeruginosa blooms by copper sulfate: trade-offs between reducing algal organic matter and promoting disinfection byproduct formation[J]. Water Research, 2019, 158: 227-236. |
[18] | ZHANG D Y, YE Q, ZHANG F X, et al. Flocculating properties and potential of Halobacillus sp. strain H9 for the mitigation of Microcystis aeruginosa blooms[J]. Chemosphere, 2019, 218: 138-146. |
[19] | 边归国. 浮水植物化感作用抑制藻类的机理与应用[J]. 水生生物学报, 2012, 36(5): 978-982. |
BIAN G G. Mechanism and application of allelopathy of floating plants to inhibit algae[J]. Acta Hydrobiologica Sinica, 2012, 36(5): 978-982. (in Chinese) | |
[20] | 吴振斌. 大型水生植物对藻类的化感作用[M]. 北京: 科学出版社, 2016: 44-49. |
[21] | 倪利晓, 陈世金, 任高翔, 等. 陆生植物化感作用的抑藻研究进展[J]. 生态环境学报, 2011, 20(S1): 1176-1182. |
NI L X, CHEN S J, REN G X, et al. Advance research on the allelopathy of terrestrial plants in inhibition of algae[J]. Ecology and Environmental Sciences, 2011, 20(S1): 1176-1182. (in Chinese with English abstract) | |
[22] | 周丽, 付子轼, 陈桂发, 等. 陆生植物化感抑制铜绿微囊藻作用效应及机制研究进展[J]. 应用生态学报, 2018, 29(5): 1715-1724. |
ZHOU L, FU Z S, CHEN G F, et al. Research advance in allelopathy effect and mechanism of terrestrial plants in inhibition of Microcystis aeruginosa[J]. Chinese Journal of Applied Ecology, 2018, 29(5): 1715-1724. (in Chinese with English abstract) | |
[23] | PARK M H, HWANG S J, AHN C Y, et al. Screening of seventeen oak extracts for the growth inhibition of the cyanobacterium Microcystis aeruginosa Kützem. Elenkin[J]. Bulletin of Environmental Contamination and Toxicology, 2006, 77(1): 9-14. |
[24] | NAKAI S, INOUE Y, HOSOMI M. Algal growth inhibition effects and inducement modes by plant-producing phenols[J]. Water Research, 2001, 35(7): 1855-1859. |
[25] | ZHU J Y, LIU B Y, WANG J, et al. Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte (Myriophyllum spicatum) and its secretion[J]. Aquatic Toxicology, 2010, 98(2): 196-203. |
[26] | ZHANG S H, ZHANG S Y, LI G. Acorus calamus root extracts to control harmful cyanobacteria blooms[J]. Ecological Engineering, 2016, 94: 95-101. |
[27] | QIAN Y P, XU N, LIU J A, et al. Inhibitory effects of Pontederia cordata on the growth of Microcystis aeruginosa[J]. Water Science and Technology, 2018, 2017(1): 99-107. |
[28] | SÜTFELD R, PETEREIT F, NAHRSTEDT A. Resorcinol in exudates of Nuphar lutea[J]. Journal of Chemical Ecology, 1996, 22(12): 2221-2231. |
[29] | ZHU X Q, DAO G H, TAO Y, et al. A review on control of harmful algal blooms by plant-derived allelochemicals[J]. Journal of Hazardous Materials, 2021, 401: 123403. |
[30] | 胡利静, 童桂香, 黄光华, 等. 水杨酸对铜绿微囊藻的化感抑制作用[J]. 南方农业学报, 2017, 48(1): 169-173. |
HU L J, TONG G X, HUANG G H, et al. Allelopathy inhibition of salicylic acid on Microcystis aeruginosa[J]. Journal of Southern Agriculture, 2017, 48(1): 169-173. (in Chinese with English abstract) | |
[31] | 郭亚丽, 傅海燕, 黄国和, 等. 阿魏酸和香豆素对铜绿微囊藻的化感作用[J]. 环境科学, 2013, 34(4): 1492-1497. |
GUO Y L, FU H Y, HUANG G H, et al. Allelopathy effects of ferulic acid and coumarin on Microcystis aeruginosa[J]. Environmental Science, 2013, 34(4): 1492-1497. (in Chinese with English abstract) | |
[32] | HUANG H M, XIAO X, GHADOUANI A, et al. Effects of natural flavonoids on photosynthetic activity and cell integrity in Microcystis aeruginosa[J]. Toxins, 2015, 7(1): 66-80. |
[33] | 张庭廷, 郑春艳, 何梅, 等. 脂肪酸类物质的抑藻效应及其构效关系[J]. 中国环境科学, 2009, 29(3): 274-279. |
ZHANG T T, ZHENG C Y, HE M, et al. Inhibition on algae of fatty acids and the structure-effect relationship[J]. China Environmental Science, 2009, 29(3): 274-279. (in Chinese with English abstract) | |
[34] | 胡陈艳, 葛芳杰, 张胜花, 等. 马来眼子菜体内抑藻物质分离及常见脂肪酸抑藻效应[J]. 湖泊科学, 2010, 22(4): 569-576. |
HU C Y, GE F J, ZHANG S H, et al. Isolation of antialgal compounds from Potamogeton malaianus and algal inhibitory effects of common fatty acids[J]. Journal of Lake Sciences, 2010, 22(4): 569-576. (in Chinese with English abstract) | |
[35] | ZUO S P, ZHOU S B, YE L T, et al. Synergistic and antagonistic interactions among five allelochemicals with antialgal effects on bloom-forming Microcystis aeruginosa[J]. Ecological Engineering, 2016, 97: 486-492. |
[36] | MULDERIJ G, VAN DONK E, ROELOFS J G M. Differential sensitivity of green algae to allelopathic substances from Chara[J]. Hydrobiologia, 2003, 491(1/2/3): 261-271. |
[37] | HOOTSMANS M J M, VERMAAT J E. Macrophytes, a key to understanding changes caused by eutrophication in shallow freshwater ecosystems[D]. Wageningen: Wageningen University and Research Center, 1991. |
[38] | 徐贵华, 关荣发, 叶兴乾, 等. 不同成熟期蜜桔中酚酸的组成与分布[J]. 食品科学, 2008, 29(2): 137-141. |
XU G H, GUAN R F, YE X Q, et al. Composition and distribution of phenolic acids in Satsuma mandarin (Citrus unshiu Marc.) during maturity[J]. Food Science, 2008, 29(2): 137-141. (in Chinese with English abstract) | |
[39] | 胡洪营, 门玉洁, 李锋民. 植物化感作用抑制藻类生长的研究进展[J]. 生态环境, 2006, 15(1): 153-157. |
HU H Y, MEN Y J, LI F M. Research progress on phyto-allelopathic algae control[J]. Ecology and Environment, 2006, 15(1): 153-157. (in Chinese with English abstract) | |
[40] | 王方园, 杨倩, 王娟, 等. 砷和汞对水芹毒性影响及其吸收富集效应[J]. 浙江师范大学学报(自然科学版), 2020, 43(4): 430-437. |
WANG F Y, YANG Q, WANG J, et al. Toxic effects of arsenic and mercury on Oenanthe javanica and their absorption and enrichment effects[J]. Journal of Zhejiang Normal University (Natural Sciences), 2020, 43(4): 430-437. (in Chinese) |
[1] | 刘光瑞, 宗渊, 李云, 曹东, 刘宝龙, 包雪梅, 李建民. 当归转录因子AsMYB44的克隆与功能研究[J]. 浙江农业学报, 2023, 35(6): 1253-1264. |
[2] | 宋碧清, 杨晓东, 郑昀晔, 王国平, 徐盛春, 赵燕, 赵珊珊, 马宇轩, 李素娟. 不同烟草品种烟籽油理化性质及脂肪酸和挥发性成分评价[J]. 浙江农业学报, 2022, 34(6): 1152-1161. |
[3] | 李燕乐, 钟怀荣, 宣宁, 张燕, 陈高, 季祥. 磷酸泛酰巯基乙胺基转移酶基因过量表达对集胞藻PCC6803脂肪酸合成的影响[J]. 浙江农业学报, 2022, 34(6): 1316-1325. |
[4] | 李文略, 骆霞虹, 柳婷婷, 金关荣, 葛亚英, 陈常理, 安霞. 不同类型向日葵籽粒的理化性质[J]. 浙江农业学报, 2022, 34(4): 671-677. |
[5] | 林雨晴, 陆胜民, 周万怡, 邢建荣, 杨颖. 铁皮石斛叶多糖结构及其益生性质初探[J]. 浙江农业学报, 2022, 34(11): 2504-2511. |
[6] | 汤佳宁, 王永侠, 刘金松, 曾新福, 杨彩梅. 中链脂肪酸及其酯对致病菌的抑菌作用[J]. 浙江农业学报, 2021, 33(9): 1611-1616. |
[7] | 路晓媛, 钟怀荣, 夏志洁, 曹月蕾, 陈高, 戴美学. 集胞藻酰基载体蛋白基因过量表达对脂肪酸合成的影响[J]. 浙江农业学报, 2020, 32(7): 1253-1262. |
[8] | 李美霖, 陈宇眺, 洪晓富, 乔宇颖, 王青霞, 陈喜靖, 沈阿林, 喻曼. 不同氮肥管理方式对稻田土壤微生物群落结构的影响[J]. 浙江农业学报, 2020, 32(2): 308-316. |
[9] | 刘永涛, 董靖, 夏京津, 曹翠宇, 胥宁, 杨秋红, 艾晓辉. 不同饲料对稻田养殖克氏原螯虾肌肉质构特性和营养品质的影响[J]. 浙江农业学报, 2019, 31(12): 1996-2004. |
[10] | 胡心意, 傅庆林, 刘琛, 丁能飞, 林义成. 秸秆还田和耕作深度对稻田耕层土壤的影响[J]. 浙江农业学报, 2018, 30(7): 1202-1210. |
[11] | 姜聪1,张青2,姚忠华2,许志刚3,楼兵干1,*. 黑李溃疡病病原菌的分离与鉴定[J]. 浙江农业学报, 2014, 26(4): 971-. |
[12] | 李春慧;孟晓琴;刘博涛;陈国顺;吴润;蒲万霞;*. 活化卵白蛋白对断奶仔猪结肠内SCFA的影响[J]. , 2014, 26(2): 0-297302. |
[13] | 王兵;竺利红;赵宇华;王欣;孙东昌;*. 基因工程菌发酵秸秆水解液产生物柴油[J]. , 2014, 26(2): 0-403409. |
[14] | 徐幼平;蔡新忠;祝小祥;*. 水旱作物轮作田块土壤中微生物群落结构的PLFA法比较分析[J]. , 2013, 25(5): 0-1061. |
[15] | 杨田甜;杜海荣;陈刚;*;邓鹏;甄伟伟 . 植物化感作用的研究现状及其在农业生产中的应用[J]. , 2012, 24(2): 0-348. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||