浙江农业学报 ›› 2023, Vol. 35 ›› Issue (3): 590-597.DOI: 10.3969/j.issn.1004-1524.2023.03.12
收稿日期:
2022-05-05
出版日期:
2023-03-25
发布日期:
2023-04-07
通讯作者:
*曹毅,E-mail:762122849@qq.com
作者简介:
崔竣杰(1987—),男,四川巴中人,博士,讲师,研究方向为蔬菜种质创新与遗传育种。E-mail:seedcui@sina.com
基金资助:
CUI Junjie(), LYU Zhen, YANG Tianwen, WANG Jing, HONG Yu, CAO Yi*(
)
Received:
2022-05-05
Online:
2023-03-25
Published:
2023-04-07
摘要:
为探究丝瓜高密度遗传图谱构建、挖掘果长变异遗传位点,以果长差异显著的有棱丝瓜自交系盛优长丝瓜和普通丝瓜自交系苹果丝瓜为亲本,构建包含67个植株的BC1群体,利用全基因组重测序进行bin标记基因分型并构建丝瓜高密度种间遗传图谱。该图谱总共包含9 299个bin标记,分布于14个连锁群上,总遗传距离为2 956.57 cM(约覆盖普通丝瓜80.47%基因组区域),平均遗传距离为0.32 cM。结合该遗传图谱,运用MapQTL 6软件中MQM模型进行丝瓜果长QTL检测,在连锁群Scaf 1的标记scaf1-bin33(19.76 cM)和scaf1-bin359(92.84 cM)之间定位到1个丝瓜果长性状的QTL位点qFL1.1,其LOD值为4.21,贡献率为28.90%,加性效应为6.04。研究结果为基于丝瓜种间遗传图谱的性状遗传挖掘提供理论依据。
中图分类号:
崔竣杰, 吕振, 杨天文, 王静, 洪宇, 曹毅. 丝瓜高密度bin标记遗传图谱构建与果长QTL定位[J]. 浙江农业学报, 2023, 35(3): 590-597.
CUI Junjie, LYU Zhen, YANG Tianwen, WANG Jing, HONG Yu, CAO Yi. Construction of high-density bin marker genetic map and QTL mapping for fruit length in Luffa spp.[J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 590-597.
材料 Sample | 平均值 Mean/cm | 标准差 Standard deviation | 标准误 Standard error of the mean | 正态分布W检验(P) Normal distribution W test (P) | 偏度 Skewness | 峰度 Kurtosis |
---|---|---|---|---|---|---|
盛优长丝瓜Shengyou | 62.70 | 5.06 | 1.69 | 0.20 | -0.44 | -0.09 |
苹果丝瓜Pingguo | 13.63 | 0.76 | 0.25 | 0.98 | -0.06 | -1.88 |
F1 | 41.04 | 2.06 | 0.69 | 0.59 | -0.39 | -0.95 |
BC1 | 19.76 | 5.65 | 0.75 | 0.02 | 0.83 | -0.13 |
表1 丝瓜亲本和群体的果长分布
Table 1 Distribution of fruit length for the parents and population of Luffa spp.
材料 Sample | 平均值 Mean/cm | 标准差 Standard deviation | 标准误 Standard error of the mean | 正态分布W检验(P) Normal distribution W test (P) | 偏度 Skewness | 峰度 Kurtosis |
---|---|---|---|---|---|---|
盛优长丝瓜Shengyou | 62.70 | 5.06 | 1.69 | 0.20 | -0.44 | -0.09 |
苹果丝瓜Pingguo | 13.63 | 0.76 | 0.25 | 0.98 | -0.06 | -1.88 |
F1 | 41.04 | 2.06 | 0.69 | 0.59 | -0.39 | -0.95 |
BC1 | 19.76 | 5.65 | 0.75 | 0.02 | 0.83 | -0.13 |
图1 丝瓜BC1群体果长次数分布图 P1和P2分别表示盛优长丝瓜和苹果丝瓜。
Fig.1 Distribution of fruit length of Luffa spp. in BC1 population P1 and P2 represented Luffa acutangula ‘shengyou’ and Luffa cylindrica ‘pingguo’, respectively.
图2 丝瓜9 494个bin标记图谱 Scaffold1~Scaffold13表示丝瓜的13条染色体,b表示苹果丝瓜基因型,h表示杂合基因型,u表示未知基因型。
Fig.2 Map of 9 494 bin markers in Luffa spp. Scaffold 1-Scaffold13 represented 13 chromosomes of Luffa, b represented ‘Pingguo’ genotype, h represented heterozygous genotype, and u represented unknown genotype.
连锁群 Linkage groups | 标记数量 Number of markers | 连锁群长度 Linkage group length/cM | 平均遗传距离 Average distance/cM | 覆盖基因组大小 Genome coverage/Mb | 重组率(cM/Mb) Recombination rate (cM/Mb) |
---|---|---|---|---|---|
Scaf 1 | 948 | 318.34 | 0.34 | 56.71 | 5.61 |
Scaf 2 | 1 365 | 310.58 | 0.23 | 51.04 | 6.08 |
Scaf 3 | 1 097 | 283.53 | 0.26 | 49.46 | 5.73 |
Scaf 4 | 417 | 98.44 | 0.24 | 48.32 | 2.04 |
Scaf 5 | 700 | 258.13 | 0.37 | 48.36 | 5.34 |
Scaf 6 | 509 | 333.61 | 0.66 | 48.61 | 6.86 |
Scaf 7 | 1 035 | 248.23 | 0.24 | 48.37 | 5.13 |
Scaf 8 | 771 | 291.90 | 0.38 | 45.43 | 6.43 |
Scaf 9 | 127 | 35.70 | 0.28 | 4.81 | 7.42 |
Scaf 10-1 | 130 | 25.98 | 0.20 | 4.62 | 5.62 |
Scaf 10-2 | 153 | 21.25 | 0.14 | 4.11 | 5.17 |
Scaf 11 | 729 | 275.49 | 0.38 | 44.99 | 6.12 |
Scaf 12 | 538 | 242.54 | 0.45 | 41.69 | 5.82 |
Scaf 13 | 780 | 212.85 | 0.27 | 41.82 | 5.09 |
总数Total | 9 299 | 2 956.57 | 0.32 | 538.33 | 5.49 |
表2 bin标记在丝瓜连锁图谱上的分布
Table 2 Distribution of bin markers on the linkage map of Luffa spp.
连锁群 Linkage groups | 标记数量 Number of markers | 连锁群长度 Linkage group length/cM | 平均遗传距离 Average distance/cM | 覆盖基因组大小 Genome coverage/Mb | 重组率(cM/Mb) Recombination rate (cM/Mb) |
---|---|---|---|---|---|
Scaf 1 | 948 | 318.34 | 0.34 | 56.71 | 5.61 |
Scaf 2 | 1 365 | 310.58 | 0.23 | 51.04 | 6.08 |
Scaf 3 | 1 097 | 283.53 | 0.26 | 49.46 | 5.73 |
Scaf 4 | 417 | 98.44 | 0.24 | 48.32 | 2.04 |
Scaf 5 | 700 | 258.13 | 0.37 | 48.36 | 5.34 |
Scaf 6 | 509 | 333.61 | 0.66 | 48.61 | 6.86 |
Scaf 7 | 1 035 | 248.23 | 0.24 | 48.37 | 5.13 |
Scaf 8 | 771 | 291.90 | 0.38 | 45.43 | 6.43 |
Scaf 9 | 127 | 35.70 | 0.28 | 4.81 | 7.42 |
Scaf 10-1 | 130 | 25.98 | 0.20 | 4.62 | 5.62 |
Scaf 10-2 | 153 | 21.25 | 0.14 | 4.11 | 5.17 |
Scaf 11 | 729 | 275.49 | 0.38 | 44.99 | 6.12 |
Scaf 12 | 538 | 242.54 | 0.45 | 41.69 | 5.82 |
Scaf 13 | 780 | 212.85 | 0.27 | 41.82 | 5.09 |
总数Total | 9 299 | 2 956.57 | 0.32 | 538.33 | 5.49 |
[1] | 李佳欣, 冯玉. 丝瓜不同部位药理作用研究进展[J]. 食品工业科技, 2021, 42(10): 355-361. |
LI J X, FENG Y. Research progress on pharmacological action of different parts of Luffa cylindrica(L.) Roem.[J]. Science and Technology of Food Industry, 2021, 42(10): 355-361. (in Chinese with English abstract) | |
[2] |
FILIPOWICZ N, SCHAEFER H, RENNER S S. Revisiting Luffa(Cucurbitaceae) 25 years after C. heiser: species boundaries and application of names tested with plastid and nuclear DNA sequences[J]. Systematic Botany, 2014, 39(1): 205-215.
DOI URL |
[3] |
PRAKASH K, PANDEY A, RADHAMANI J, et al. Morphological variability in cultivated and wild species of Luffa(Cucurbitaceae) from India[J]. Genetic Resources and Crop Evolution, 2013, 60(8): 2319-2329.
DOI URL |
[4] | 周庆友. 丝瓜主要农艺性状的遗传分析及种皮颜色基因定位[D]. 南昌: 江西农业大学, 2013. |
ZHOU Q Y. Genetic analysis of main agronomic traits and gene localization of seed coat color in Luffa spp[D]. Nanchang: Jiangxi Agricultural University, 2013. (in Chinese with English abstract) | |
[5] |
CUI J J, CHENG J W, WANG G P, et al. QTL analysis of three flower-related traits based on an interspecific genetic map of Luffa[J]. Euphytica, 2015, 202(1): 45-54.
DOI URL |
[6] |
WU H B, HE X L, GONG H, et al. Genetic linkage map construction and QTL analysis of two interspecific reproductive isolation traits in sponge gourd[J]. Frontiers in Plant Science, 2016, 7: 980.
DOI PMID |
[7] | 吴宗斌. 丝瓜果实苦味分子标记研究[D]. 广州: 华南农业大学, 2017. |
WU Z B. Development of molecular markers for fruit bitter in Luffa[D]. Guangzhou: South China Agricultural University, 2017. (in Chinese with English abstract) | |
[8] | 秦永强. 丝瓜果实苦味基因的定位研究[D]. 广州: 华南农业大学, 2018. |
QIN Y Q. Mapping genes for fruit bitterness in Luffa[D]. Guangzhou: South China Agricultural University, 2018. (in Chinese with English abstract) | |
[9] |
LOU L N, SU X J, LIU X H, et al. Construction of a high-density genetic linkage map and identification of gene controlling resistance to cucumber mosaic virus in Luffa cylindrica(L.) Roem. based on specific length amplified fragment sequencing[J]. Molecular Biology Reports, 2020, 47(8): 5831-5841.
DOI |
[10] |
WU H B, ZHAO G J, GONG H, et al. A high-quality sponge gourd (Luffa cylindrica) genome[J]. Horticulture Research, 2020, 7: 128.
DOI |
[11] |
POOTAKHAM W, SONTHIROD C, NAKTANG C, et al. De novo assemblies of Luffa acutangula and Luffa cylindrica genomes reveal an expansion associated with substantial accumulation of transposable elements[J]. Molecular Ecology Resources, 2021, 21(1): 212-225.
DOI URL |
[12] |
ZHANG T, REN X Y, ZHANG Z, et al. Long-read sequencing and de novo assembly of the Luffa cylindrica(L.) Roem. genome[J]. Molecular Ecology Resources, 2020, 20(2): 511-519.
DOI URL |
[13] | 高军, 徐海, 苏小俊, 等. 普通丝瓜果长遗传规律分析[J]. 江苏农业科学, 2007, 35(5): 123-125. |
GAO J, XU H, SU X J, et al. Analysis of genetic law of common silk melon and fruit length[J]. Jiangsu Agricultural Sciences, 2007, 35(5): 123-125. (in Chinese) | |
[14] | 崔竣杰, 程蛟文, 谭澍, 等. 丝瓜果长及果柄长的遗传规律分析[J]. 广东农业科学, 2014, 41(8): 52-56. |
CUI J J, CHENG J W, TAN S, et al. Genetic analysis of fruit length and fruit stalk length in Luffa[J]. Guangdong Agricultural Sciences, 2014, 41(8): 52-56. (in Chinese with English abstract) | |
[15] |
MURRAY M G, THOMPSON W F. Rapid isolation of high molecular weight plant DNA[J]. Nucleic Acids Research, 1980, 8(19): 4321-4326.
DOI PMID |
[16] |
HUANG X H, FENG Q, QIAN Q, et al. High-throughput genotyping by whole-genome resequencing[J]. Genome Research, 2009, 19(6): 1068-1076.
DOI PMID |
[17] |
MCCOUCH S R. Gene nomenclature system for rice[J]. Rice, 2008, 1(1): 72-84.
DOI URL |
[18] | 崔竣杰, 宋建文, 汪国平, 等. 丝瓜种质资源亲缘关系的SRAP分析[J]. 植物遗传资源学报, 2012, 13(6): 1061-1066. |
CUI J J, SONG J W, WANG G P, et al. Genetic diversity analysis of germplasm resources of towel gourd based on SRAP markers[J]. Journal of Plant Genetic Resources, 2012, 13(6): 1061-1066. (in Chinese with English abstract) | |
[19] | 朱海生, 叶新如, 陈敏氡, 等. 丝瓜种质资源的SRAP分析[J]. 分子植物育种, 2016, 14(8): 2217-2223. |
ZHU H S, YE X R, CHEN M D, et al. Analysis of genetic diversity in loofah by SRAP markers[J]. Molecular Plant Breeding, 2016, 14(8): 2217-2223. (in Chinese with English abstract) | |
[20] |
XIE W B, FENG Q, YU H H, et al. Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(23): 10578-10583.
DOI PMID |
[21] |
赵凌, 张勇, 魏晓东, 等. 利用高密度Bin图谱定位水稻抽穗期剑叶叶绿素含量QTL[J]. 中国农业科学, 2022, 55(5): 825-836.
DOI |
ZHAO L, ZHANG Y, WEI X D, et al. Mapping of QTLs for chlorophyll content in flag leaves of rice on high-density Bin map[J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836. (in Chinese with English abstract)
DOI |
|
[22] | 赖国荣, 张静, 刘函, 等. 基于GBS构建玉米高密度遗传图谱及营养品质性状QTL定位[J]. 农业生物技术学报, 2017, 25(9): 1400-1410. |
LAI G R, ZHANG J, LIU H, et al. Construction of high density genetic map via GBS technology and QTL mapping for nutritional quality traits in maize (Zea mays)[J]. Journal of Agricultural Biotechnology, 2017, 25(9): 1400-1410. (in Chinese with English abstract) | |
[23] |
曹永策, 李曙光, 张新草, 等. 夏大豆重组自交系群体遗传图谱构建及开花期QTL分析[J]. 中国农业科学, 2020, 53(4): 683-694.
DOI |
CAO Y C, LI S G, ZHANG X C, et al. Construction of genetic map and mapping QTL for flowering time in a summer planting soybean recombinant inbred line population[J]. Scientia Agricultura Sinica, 2020, 53(4): 683-694. (in Chinese with English abstract)
DOI |
|
[24] |
ZHOU Q, MIAO H, LI S, et al. A sequencing-based linkage map of cucumber[J]. Molecular Plant, 2015, 8(6): 961-963.
DOI PMID |
[25] |
ZHAO J Y, JIANG L, CHE G, et al. A functional allele of CsFUL1 regulates fruit length through repressing CsSUP and inhibiting auxin transport in cucumber[J]. The Plant Cell, 2019, 31(6): 1289-1307.
DOI URL |
[26] |
PAN Y P, LIANG X J, GAO M L, et al. Round fruit shape in WI7239 cucumber is controlled by two interacting quantitative trait loci with one putatively encoding a tomato SUN homolog[J]. Theoretical and Applied Genetics, 2017, 130(3): 573-586.
DOI |
[27] |
XIN T X, ZHANG Z, LI S, et al. Genetic regulation of ethylene dosage for cucumber fruit elongation[J]. The Plant Cell, 2019, 31(5): 1063-1076.
DOI PMID |
[28] |
DOU J L, ZHAO S J, LU X Q, et al. Genetic mapping reveals a candidate gene (ClFS 1) for fruit shape in watermelon (Citrullus lanatus L.)[J]. Theoretical and Applied Genetics, 2018, 131(4): 947-958.
DOI URL |
[29] |
FERNANDEZ-SILVA I, MORENO E, ESSAFI A, et al. Shaping melons: agronomic and genetic characterization of QTLs that modify melon fruit morphology[J]. Theoretical and Applied Genetics, 2010, 121(5): 931-940.
DOI URL |
[30] |
范文林, 王贤磊, 李群, 等. 甜瓜果长基因fl与性别表达基因a的遗传分析及定位[J]. 新疆农业科学, 2018, 55(10): 1765-1774.
DOI |
FAN W L, WANG X L, LI Q, et al. Genetic analysis and primary localization of fruit length gene fl and sex expression gene a in melon (Cucumis melo L.)[J]. Xinjiang Agricultural Sciences, 2018, 55(10): 1765-1774. (in Chinese with English abstract) |
[1] | 陆景伟, 陈国康, 周娜, 魏捷, 胡燕, 郑阳, 陶伟林. 六个丝瓜品种对南方根结线虫的抗性[J]. 浙江农业学报, 2022, 34(5): 959-965. |
[2] | 郭勤卫, 张婷, 刘慧琴, 章心惠, 李朝森, 项小敏, 赵东风, 万红建. 应用ISSR分子标记评价我国丝瓜种质资源遗传多样性[J]. 浙江农业学报, 2020, 32(4): 616-623. |
[3] | 张可鑫, 戴冬洋, 王浩男, 蔚明月, 盛云燕. 甜瓜种子相关性状遗传规律与QTL分析[J]. 浙江农业学报, 2018, 30(9): 1496-1503. |
[4] | 黄吉祥;汪义龙;倪西源;任丽平;曹明富;赵坚义;* . 甘蓝型油菜DH群体10个主要农艺性状的遗传分析[J]. , 2009, 21(05): 0-423. |
[5] | 俞丹宏;柴伟国 . SC27微生物土壤增肥剂在温室瓠瓜、丝瓜上的应用效果[J]. , 2003, 15(4): 0-262. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||