浙江农业学报 ›› 2024, Vol. 36 ›› Issue (11): 2617-2626.DOI: 10.3969/j.issn.1004-1524.20231274
收稿日期:2023-11-13
									
				
									
				
									
				
											出版日期:2024-11-25
									
				
											发布日期:2024-11-27
									
			作者简介:刘伟东(1999—),男,江苏扬州人,硕士研究生,研究方向为农业信息化。E-mail:liuweidong@ztt.cn
				
							通讯作者:
					*周素茵,E-mail:zsy197733@163.com
							基金资助:
        
               		LIU Weidonga(
), ZHOU Suyina,*(
), XU Aijuna, YE Junhuab
			  
			
			
			
                
        
    
Received:2023-11-13
									
				
									
				
									
				
											Online:2024-11-25
									
				
											Published:2024-11-27
									
			摘要:
虹膜定位是实现虹膜识别的前提与关键,当前主流虹膜采集设备普遍价格昂贵,且现有虹膜定位算法应用于猪眼虹膜定位时存在精度低、耗时长等问题。本文提出一种基于低成本采集设备的生猪虹膜快速高精度定位算法。首先对猪眼虹膜图像去噪和二值化,再对Canny算法进行改进,用于提取猪眼虹膜图像边缘信息,然后分别使用改进的Hough圆变换和迭代加权最小二乘法定位虹膜内、外边缘,进而完成生猪虹膜定位。对3 100张猪眼虹膜图像进行试验,结果表明,虹膜的正确检测率为96.19%,平均定位时间为342.50 ms。与DAUGMAN、WILDES和单位扇环灰度算法相比,正确检测率分别提升了10.49、8.67、3.61百分点,平均定位时间分别减少了70.90、81.50、98.00 ms。本文方法能在保证生猪虹膜正确检测率的基础上缩短定位时间,有效改善传统虹膜定位算法应用于猪眼虹膜时效果较差的问题,能为后续基于虹膜的生猪身份识别奠定基础。
中图分类号:
刘伟东, 周素茵, 徐爱俊, 叶俊华. 生猪虹膜快速定位算法研究[J]. 浙江农业学报, 2024, 36(11): 2617-2626.
LIU Weidong, ZHOU Suyin, XU Aijun, YE Junhua. Research on fast localization algorithm of pig iris[J]. Acta Agriculturae Zhejiangensis, 2024, 36(11): 2617-2626.
																													图3 预处理结果 A,原图;B,中值滤波去噪;C,形态学开运算;D,形态学闭运算;E,自适应阈值二值化处理。
Fig.3 Pretreatment results A, Original figure; B, Median filter denoising; C, Morphological opening calculation; D, Morphological closed calculation; E, Adaptive threshold binarization process.
																													图5 改进前后Canny算法边缘检测结果对比 A,改进前Canny算法边缘检测结果;B,改进后Canny算法边缘检测结果。
Fig.5 Comparison of edge detection results of Canny algorithm before and after improvement A, Edge detection results of Canny algorithm before improvement; B, Edge detection results of Canny algorithm after improvement.
																													图6 不同算法的定位试验结果 A,DAUGMAN算法定位结果;B,WILDES算法定位结果;C,单位扇环灰度算法定位结果;D,本文算法定位结果。
Fig.6 Localization test results of different algorithms A, DAUGMAN algorithm localization result; B, WILDES algorithm localization result; C, Gray value of unit sector area algorithm localization result; D, The algorithms of this paper localization result.
| 算法 Algorithm  |  正确检测率 Accuracy rate  |  漏检率 Omissive rate  |  误检率 False rate  | 
|---|---|---|---|
| DAUGMAN | 85.70 | 8.39 | 5.91 | 
| WILDES | 87.52 | 7.84 | 4.64 | 
| 单位扇环灰度算法 | 92.58 | 2.23 | 5.19 | 
| Gray value of unit sector area algorithm  |  |||
| 本文算法 | 96.19 | 1.23 | 2.28 | 
| The algorithm in this paper | 
表1 各算法性能对比
Table 1 Performance comparison of algorithms %
| 算法 Algorithm  |  正确检测率 Accuracy rate  |  漏检率 Omissive rate  |  误检率 False rate  | 
|---|---|---|---|
| DAUGMAN | 85.70 | 8.39 | 5.91 | 
| WILDES | 87.52 | 7.84 | 4.64 | 
| 单位扇环灰度算法 | 92.58 | 2.23 | 5.19 | 
| Gray value of unit sector area algorithm  |  |||
| 本文算法 | 96.19 | 1.23 | 2.28 | 
| The algorithm in this paper | 
| 算法名称 Algorithm name  |  正确检测率 Correct detection rate/%  |  内边缘平均定位时间 Average localization time for inner edges/ms  |  外边缘平均定位时间 Average localization time for outer edges/ms  | 
|---|---|---|---|
| 最小二乘法The least squares method | 86.29 | 203.91 | 215.83 | 
| Hough圆变换Hough’s circular transform | 88.58 | 210.96 | 217.12 | 
| 本文算法The algorithms in this paper | 96.19 | 168.34 | 174.16 | 
表2 对比试验结果
Table 2 Results of comparative tests
| 算法名称 Algorithm name  |  正确检测率 Correct detection rate/%  |  内边缘平均定位时间 Average localization time for inner edges/ms  |  外边缘平均定位时间 Average localization time for outer edges/ms  | 
|---|---|---|---|
| 最小二乘法The least squares method | 86.29 | 203.91 | 215.83 | 
| Hough圆变换Hough’s circular transform | 88.58 | 210.96 | 217.12 | 
| 本文算法The algorithms in this paper | 96.19 | 168.34 | 174.16 | 
| [1] | 王荣, 高荣华, 李奇峰, 等. 融合注意力机制的开集猪脸识别方法[J]. 农业机械学报, 2023, 54(2): 256-264. | 
| WANG R, GAO R H, LI Q F, et al. Open-set pig face recognition method combining attention mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(2): 256-264. (in Chinese with English abstract) | |
| [2] | 黄志杰, 徐爱俊, 周素茵, 等. 融合重参数化和注意力机制的猪脸关键点检测方法[J]. 农业工程学报, 2023, 39(12): 141-149. | 
| HUANG Z J, XU A J, ZHOU S Y, et al. Key point detection method for pig face fusing reparameterization and attention mechanisms[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(12): 141-149. (in Chinese with English abstract) | |
| [3] | 李斌, 刘东阳, 时国龙, 等. 基于改进YOLOv4模型的群养生猪姿态检测[J]. 浙江农业学报, 2023, 35(1): 215-225. | 
| LI B, LIU D Y, SHI G L, et al. Pig posture detection based on improved YOLOv4 model[J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 215-225. (in Chinese with English abstract) | |
| [4] | HE Z F, TAN T N, SUN Z N, et al. Toward accurate and fast iris segmentation for iris biometrics[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(9): 1670-1684. | 
| [5] | 李星光, 孙哲南, 谭铁牛. 虹膜图像质量评价综述[J]. 中国图象图形学报, 2014, 19(6): 813-824. | 
| LI X G, SUN Z N, TAN T N. Overview of iris image quality-assessment[J]. Journal of Image and Graphics, 2014, 19(6): 813-824. (in Chinese with English abstract) | |
| [6] | 李超, 赵林度. 牛眼虹膜定位算法研究及其在肉食品追溯系统中的应用[J]. 中国安全科学学报, 2011, 21(3): 124-130. | 
| LI C, ZHAO L D. Research on cattle iris localization algorithm and its application in meat food tracking and traceability system[J]. China Safety Science Journal, 2011, 21(3): 124-130. (in Chinese with English abstract) | |
| [7] | 朱立军, 苑玮琦. 基于并查集和边缘检测模板的非理想虹膜定位[J]. 计算机应用研究, 2018, 35(6): 1879-1882. | 
| ZHU L J, YUAN W Q. Non-ideal iris localization method based on union-find-set and edge detection template[J]. Application Research of Computers, 2018, 35(6): 1879-1882. (in Chinese with English abstract) | |
| [8] | 李奇峰, 王文婷, 余礼根, 等. 信息技术在畜禽养殖中的应用进展[J]. 中国农业信息, 2018, 30(2): 15-23. | 
| LI Q F, WANG W T, YU L G, et al. Research review of information technologies for livestock[J]. China Agricultural Informatics, 2018, 30(2): 15-23. (in Chinese with English abstract) | |
| [9] | 杨亮, 熊本海, 王辉, 等. 家畜饲喂机器人研究进展与发展展望[J]. 智慧农业(中英文), 2022, 4(2): 86-98. | 
| YANG L, XIONG B H, WANG H, et al. Research progress and outlook of livestock feeding robot[J]. Smart Agriculture, 2022, 4(2): 86-98. (in Chinese with English abstract) | |
| [10] | 赵春江. 农业知识智能服务技术综述[J]. 智慧农业(中英文), 2023, 5(2): 126-148. | 
| ZHAO C J. Agricultural knowledge intelligent service technology: a review[J]. Smart Agriculture, 2023, 5(2): 126-148. (in Chinese with English abstract) | |
| [11] | 张哲, 王楚端, 王立贤, 等. 计算机视觉技术在猪眼肌肌内脂肪含量测定中的应用[J]. 猪业科学, 2006, 23(2): 24-25. | 
| ZHANG Z, WANG C D, WANG L X, et al. Application of computer vision technology in the determination of intramuscular fat content of pig eye muscle[J]. Swine Industry Science, 2006, 23(2): 24-25. (in Chinese) | |
| [12] | 冷碧滨, 吉雪强, 曾颢, 等. 中国大规模生猪养殖技术效率研究[J]. 浙江农业学报, 2018, 30(6): 1082-1088. | 
| LENG B B, JI X Q, ZENG H, et al. Study on technical efficiency of large-scale pig breeding in China[J]. Acta Agriculturae Zhejiangensis, 2018, 30(6): 1082-1088. (in Chinese with English abstract) | |
| [13] | 陈涛, 曾勇庆, 陈伟. 智能化设备在规模化猪场中的应用[J]. 中国猪业, 2020, 15(2): 89-92. | 
| CHEN T, ZENG Y Q, CHEN W. Application of intelligent equipment in large-scale pig farms[J]. China Swine Industry, 2020, 15(2): 89-92. (in Chinese) | |
| [14] | 刘同海, 滕光辉, 付为森, 等. 基于机器视觉的猪体体尺测点提取算法与应用[J]. 农业工程学报, 2013, 29(2): 161-168. | 
| LIU T H, TENG G H, FU W S, et al. Extraction algorithms and applications of pig body size measurement points based on computer vision[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(2): 161-168. (in Chinese with English abstract) | |
| [15] | 李卓, 杜晓冬, 毛涛涛, 等. 基于深度图像的猪体尺检测系统[J]. 农业机械学报, 2016, 47(3): 311-318. | 
| LI Z, DU X D, MAO T T, et al. Pig dimension detection system based on depth image[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3): 311-318. (in Chinese with English abstract) | |
| [16] | 刘增金. 基于质量安全的中国猪肉可追溯体系运行机制研究: 以北京市为例[D]. 北京: 中国农业大学, 2015. | 
| LIU Z J. Study on operating mechanism of pork traceability system in China based on food safety[D]. Beijing: China Agricultural University, 2015. (in Chinese with English abstract) | |
| [17] | DAUGMAN J G. High confidence visual recognition of persons by a test of statistical independence[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(11): 1148-1161. | 
| [18] | DAUGMAN J. The importance of being random: statistical principles of iris recognition[J]. Pattern Recognition, 2003, 36(2): 279-291. | 
| [19] | DAUGMAN J. New methods in iris recognition[J]. IEEE Transactions on Systems, Man, and Cybernetics Part B, Cybernetics, 2007, 37(5): 1167-1175. | 
| [20] | WILDES R P, ASMUTH J C, GREEN G L, et al. A system for automated iris recognition[C]// Proceedings of 1994 IEEE Workshop on Applications of Computer Vision. Sarasota, FL, USA. IEEE Comput. Soc. Press, 1994: 121-128. | 
| [21] | WILDES R P, ASMUTH J C, GREEN G L, et al. A machine-vision system for iris recognition[J]. Machine Vision and Applications, 1996, 9(1): 1-8. | 
| [22] | 王琪, 张铁, 张晓梦, 等. 基于SIFT和SDM的虹膜定位方法[J]. 东北大学学报(自然科学版), 2017, 38(2): 180-184. | 
| WANG Q, ZHANG T, ZHANG X M, et al. Iris localization method based on SIFT and SDM[J]. Journal of Northeastern University(Natural Science), 2017, 38(2): 180-184. (in Chinese with English abstract) | |
| [23] | 刘帅, 刘元宁, 朱晓冬, 等. 基于分块搜索的虹膜定位算法[J]. 计算机工程与应用, 2018, 54(18): 212-217. | 
| LIU S, LIU Y N, ZHU X D, et al. Iris location algorithm based on partitioning search[J]. Computer Engineering and Applications, 2018, 54(18): 212-217. (in Chinese with English abstract) | |
| [24] | 孙正, 陈兆学, 李晓萌. 基于单位扇环灰度的虹膜定位算法[J]. 光学技术, 2019, 45(2): 228-233. | 
| SUN Z, CHEN Z X, LI X M. Iris location algorithm based on method of gray value of unit sector area[J]. Optical Technique, 2019, 45(2): 228-233. (in Chinese with English abstract) | |
| [25] | SUZAKI M, YAMAKITA O, HORIKAWA S I, et al. A horse identification system using biometrics[J]. Systems and Computers in Japan, 2001, 32(14): 12-23. | 
| [26] | LU Y, HE X F, WEN Y, et al. A new cow identification system based on iris analysis and recognition[J]. International Journal of Biometrics, 2014, 6(1): 18. | 
| [27] | 盛大玮, 何孝富, 吕岳. 基于最小二乘原理的牛眼虹膜分割方法[J]. 中国图象图形学报, 2009, 14(10): 2132-2136. | 
| SHENG D W, HE X F, LU Y. A cattle iris segmentation method based on least square principle[J]. Journal of Image and Graphics, 2009, 14(10): 2132-2136. (in Chinese with English abstract) | |
| [28] | 孔强, 赵林度. 虹膜识别在肉类食品安全追溯系统中的应用及关键技术研究[J]. 中国安全科学学报, 2009, 19(3): 155-160. | 
| KONG Q, ZHAO L D. Research on the application of iris recognition in meat-food supply chain management[J]. China Safety Science Journal(CSSJ), 2009, 19(3): 155-160. (in Chinese with English abstract) | |
| [29] | 夏胜吾. 林麝虹膜识别关键技术研究[D]. 成都: 电子科技大学, 2015. | 
| XIA S W. The research on key technique of iris recognition on Moschus berezovskii[D]. Chengdu: University of Electronic Science and Technology of China, 2015. (in Chinese with English abstract) | |
| [30] | IBRAHIM M T, KHAN T M, KHAN S A, et al. Iris localization using local histogram and other image statistics[J]. Optics and Lasers in Engineering, 2012, 50(5): 645-654. | 
| [1] | 刘苇, 陶建平. 畜禽禁养区政策何以影响中国生猪市场稳定?[J]. 浙江农业学报, 2023, 35(5): 1195-1210. | 
| [2] | 李斌, 刘东阳, 时国龙, 慕京生, 徐浩然, 辜丽川, 焦俊. 基于改进YOLOv4模型的群养生猪姿态检测[J]. 浙江农业学报, 2023, 35(1): 215-225. | 
| [3] | 李小刚, 熊涛. 中国规模生猪养殖效率测度及其补贴政策效益评价研究[J]. 浙江农业学报, 2019, 31(7): 1184-1192. | 
| [4] | 冷碧滨, 吉雪强, 曾颢, 涂国平. 中国大规模生猪养殖技术效率研究[J]. 浙江农业学报, 2018, 30(6): 1082-1088. | 
| [5] | 付莲莲, 翁贞林, 张雅燕. 江西省生猪价格波动的成因及其预警分析——基于灰色关联和LS-SVM模型[J]. 浙江农业学报, 2016, 28(9): 1624-1630. | 
| [6] | 王德鑫1,黄珂2,郑炎成1,*,李谷成1. 中国规模生猪养殖效率测度及其区域差异性研究——基于DEAMalmquist指数方法[J]. 浙江农业学报, 2016, 28(7): 1262-. | 
| [7] | 黄莉莉;朱奇彪;米松华. 浙江省生猪产业带头人知识更新需求实证研究[J]. , 2013, 25(3): 0-678. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||