浙江农业学报 ›› 2024, Vol. 36 ›› Issue (6): 1368-1378.DOI: 10.3969/j.issn.1004-1524.20231311

• 生物系统工程 • 上一篇    下一篇

光温因子驱动的园艺作物叶龄模型模拟精度比较

程陈1,2(), 董朝阳3, 郑生宏4, 周宇博1, 钟宁1, 李文明5, 朱阳春1, 丁枫华1, 冯利平2, 黎贞发3,*()   

  1. 1.丽水学院 生态学院,浙江 丽水 323000
    2.中国农业大学 资源与环境学院,北京 100193
    3.天津市气候中心,天津 300074
    4.丽水市农林科学研究院 茶叶研究所,浙江 丽水 323000
    5.丽水市气象局,浙江 丽水 323050
  • 收稿日期:2023-11-20 出版日期:2024-06-25 发布日期:2024-07-02
  • 作者简介:程陈(1993—),男,安徽合肥人,博士,讲师,从事作物模型与环境调控、专家决策系统开发与应用研究。E-mail:chengsir1993@lsu.edu.cn
  • 通讯作者: *黎贞发,E-mail:lzfaaa@126.com
  • 基金资助:
    浙江省软科学研究计划项目(2022C35063);天津市蔬菜产业技术体系创新团队科研专项(201716);丽水市“百名博士入百家企业人才引领计划”项目(2022002);丽水学院人才启动基金项目(6604CC01Z);浙江省大学生科技创新活动计划(新苗人才计划)项目(2022 R434C021);浙江省大学生科技创新活动计划(新苗人才计划)项目(2023R480014);浙江省大学生科技创新活动计划(新苗人才计划)项目(2023R480021);国家级大学生创新创业训练计划(S202210352001X);国家级大学生创新创业训练计划(S202210352009);国家级大学生创新创业训练计划(S202210352010)

Comparison of simulation accuracy of leaf age models for horticultural crops driven by light and temperature factors

CHENG Chen1,2(), DONG Chaoyang3, ZHENG Shenghong4, ZHOU Yubo1, ZHONG Ning1, LI Wenming5, ZHU Yangchun1, DING Fenghua1, FENG Liping2, LI Zhenfa3,*()   

  1. 1. College of Ecology, Lishui University, Lishui 323000, Zhejiang, China
    2. College of Resources and Environment Sciences, China Agricultural University, Beijing 100193, China
    3. Tianjin Climate Centre, Tianjin 300074, China
    4. Tea Research Institute, Lishui Academy of Agricultural and Forestry Sciences, Lishui 323000, Zhejiang, China
    5. Lishui Meteorological Bureau, Lishui 323050, Zhejiang, China
  • Received:2023-11-20 Online:2024-06-25 Published:2024-07-02

摘要:

为了提高光温因子驱动的园艺作物通用性叶龄模拟模型的模拟精度,以黄瓜、芹菜、菠菜、小香芹、郁金香和茶叶为供试材料,进行了7年(2016—2022年)的分期播种试验,依据作物生长发育与关键气象因子(辐射和温度)的关系,采用4类建模方法(温差法、积温法、生理发育时间法和辐热积法)构建了园艺作物叶龄模拟模型,并以6种方式(平均值、最值均值、中值、逐步回归、BP神经网络和Elman神经网络)和2种集成逻辑(直接和分步)集成模拟结果,最终优化模型模拟精度。结果表明:1)2种集成逻辑下模型模拟精度均较高,且分步集成逻辑优于直接集成逻辑,平均绝对误差(mean absolute error, MAE)差值为0.31 d,平均相对误差(mean relative error, MRE)差值为0.33%,均方根误差(root mean square error, RMSE)差值为0.40 d,归一化均方根误差(normalized root mean square error, NRMSE)差值为0.46%;2)2种集成逻辑下模型最优时间尺度为逐时尺度,最优作物类型为茶叶,最优建模方法为Elman神经网络集成模拟模型。研究结果可为园艺作物智慧生产管理和可视化提供理论依据和技术支撑。

关键词: 园艺作物, 叶龄模型, 逐步回归, 神经网络, 算法集成逻辑

Abstract:

The purpose of this study was to improve the simulation accuracy of a universal leaf age model driven by light-temperature factors for horticultural crops. In order to achieve this, cucumber, celery, spinach, coriander, tulip, and tea were selected as experimental materials and 7 years (2016-2022) staged sowing experiment was conducted. Based on the relationship between crop growth and key weather factors (radiation and temperature), 4 modeling methods (accumulated temperature difference method, accumulated temperature method, physiological development time method, and accumulated product of thermal effectiveness and photosynthetically active radiation method), 6 approaches (mean value, mean of extreme values, median, stepwise regression, BP neural network, and Elman neural network) and 2 integration logics (direct and stepwise) were employed to integrate the simulation results, aiming to optimize the accuracy of the model used to construct the leaf age simulation model for horticultural crops. Results showed that: 1) The models under both integration logics exhibited high simulation accuracy, with the stepwise integration logic performing better than the direct integration logic. The differences in mean absolute error (MAE), mean relative error (MRE), root mean square error (RMSE), and normalized root mean square error (NRMSE) were 0.31 d, 0.33%, 0.40 d, and 0.46% respectively. 2) The optimal time scale for the models under both integration logics was hourly, while tea was the optimal crop type, and the Elman neural network integration simulation model was the optimal modeling method. The findings of this study can provide theoretical basis and technical support for intelligent production management and visualization of horticultural crops.

Key words: horticultural crops, leaf age model, stepwise regression, neural networks, algorithmic integration logic

中图分类号: