浙江农业学报 ›› 2023, Vol. 35 ›› Issue (2): 434-444.DOI: 10.3969/j.issn.1004-1524.2023.02.21
收稿日期:
2022-04-19
出版日期:
2023-02-25
发布日期:
2023-03-14
通讯作者:
张雪松
作者简介:
*张雪松,E-mail: 672508125@qq.com基金资助:
FAN Chuang(), ZHAO Zihao, ZHANG Xuesong(
), YANG Shenbin
Received:
2022-04-19
Online:
2023-02-25
Published:
2023-03-14
Contact:
ZHANG Xuesong
摘要:
为探究基于BP神经网络原理开展作物发育期预测的适用性,利用长江中下游地区一季稻多年常规气象观测和农作物发育期观测资料,开展模拟研究。结果表明,只考虑温度的有效积温模型,各物候期模拟值与观测值相关性较好,相关系数(r)在0.75以上,但模拟的绝对误差较大,移栽、拔节、成熟期模拟的平均绝对误差(MAE)超过5 d。进一步以有效积温模型为基础,分别引入降水量、相对湿度、日照时数,构建温度(T)模型、温度-降水(T-P)模型、温度-相对湿度(T-RH)模型和温度-日照时数(T-S)模型,经过BP神经网络训练后,4种模型在农作物不同发育阶段的模拟评价指标均得到明显改善,并以T-RH模型最优。对中间层节点数和训练次数2项参数进行优化后的T-RH模型,对各发育阶段模拟结果的均方根误差为0.3~1.2 d,MAE小于1 d,r值均超过0.96,且达到极显著(P<0.01)水平。
中图分类号:
樊闯, 赵子皓, 张雪松, 杨沈斌. 基于BP神经网络的一季稻发育期预测模型[J]. 浙江农业学报, 2023, 35(2): 434-444.
FAN Chuang, ZHAO Zihao, ZHANG Xuesong, YANG Shenbin. Prediction model of one season rice development period based on BP neural network[J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 434-444.
物候期 Phenological period | RMSE/d | r | MAE/d |
---|---|---|---|
出苗Emergence | 2.2 | 0.99** | 1.6 |
移栽Transplanting | 8.8 | 0.77** | 6.4 |
拔节Jointing | 6.6 | 0.83** | 5.1 |
抽穗Heading | 5.5 | 0.89** | 4.2 |
成熟Mature | 6.7 | 0.90** | 5.1 |
表1 有效积温模型的评价结果
Table 1 Evaluation result of effective accumulated temperature model
物候期 Phenological period | RMSE/d | r | MAE/d |
---|---|---|---|
出苗Emergence | 2.2 | 0.99** | 1.6 |
移栽Transplanting | 8.8 | 0.77** | 6.4 |
拔节Jointing | 6.6 | 0.83** | 5.1 |
抽穗Heading | 5.5 | 0.89** | 4.2 |
成熟Mature | 6.7 | 0.90** | 5.1 |
图1 T-RH模型在训练集上的拟合效果 a,播种-出苗;b,出苗-移栽;c,移栽-拔节;d,拔节-抽穗;e,抽穗-成熟。图2同。
Fig.1 Fitting effect of T-RH model on training set a, Sowing-emergence; b, Emergence-transplanting; c, Transplanting-jointing; d, Jointing-heading; e, Heading-mature. The same as in Fig.2.
评价指标 Evaluation indicator | 发育阶段 Developmental stage | T模型 T model | T-P模型 T-P model | T-S模型 T-S model | T-RH模型 T-RH model | ||||
---|---|---|---|---|---|---|---|---|---|
训练集 Training set | 测试集 Test set | 训练集 Training set | 测试集 Test set | 训练集 Training set | 测试集 Test set | 训练集 Training set | 测试集 Test set | ||
RMSE/d | 播种-出苗 | 0.6 | 0.7 | 0.6 | 0.7 | 0.6 | 0.6 | 0.3 | 0.3 |
Sowing-emergence | |||||||||
出苗-移栽 | 2.5 | 1.8 | 2.3 | 2.1 | 2.2 | 1.8 | 1.1 | 1.2 | |
Emergence-transplanting | |||||||||
移栽-拔节 | 2.1 | 2.4 | 2.0 | 2.2 | 1.9 | 2.1 | 0.9 | 1.2 | |
Transplanting-jointing | |||||||||
拔节-抽穗 | 1.7 | 1.5 | 1.6 | 1.3 | 1.5 | 1.3 | 0.6 | 0.7 | |
Jointing-heading | |||||||||
抽穗-成熟 | 1.9 | 1.6 | 1.7 | 1.4 | 1.7 | 1.9 | 0.9 | 0.8 | |
Heading-mature | |||||||||
r | 播种-出苗 | 0.93** | 0.89** | 0.94** | 0.90** | 0.94** | 0.91** | 0.96** | 0.98** |
Sowing-emergence | |||||||||
出苗-移栽 | 0.91** | 0.96** | 0.93** | 0.95** | 0.93** | 0.96** | 0.97** | 0.99** | |
Emergence-transplanting | |||||||||
移栽-拔节 | 0.86** | 0.92** | 0.88** | 0.93** | 0.89** | 0.95** | 0.98** | 0.97** | |
Transplanting-jointing | |||||||||
拔节-抽穗 | 0.92** | 0.95** | 0.94** | 0.96** | 0.94** | 0.97** | 0.96** | 0.99** | |
Jointing-heading | |||||||||
抽穗-成熟 | 0.95** | 0.96** | 0.97** | 0.97** | 0.96** | 0.95** | 0.98** | 0.98** | |
Heading-mature | |||||||||
MAE/d | 播种-出苗 | 0.5 | 0.6 | 0.5 | 0.5 | 0.4 | 0.4 | 0.2 | 0.3 |
Sowing-emergence | |||||||||
出苗-移栽 | 1.9 | 1.6 | 1.8 | 1.9 | 1.7 | 1.5 | 0.8 | 1.1 | |
Emergence-transplanting | |||||||||
移栽-拔节 | 1.6 | 2.0 | 1.5 | 1.9 | 1.4 | 1.7 | 0.7 | 1.1 | |
Transplanting-jointing | |||||||||
拔节-抽穗 | 1.4 | 1.2 | 1.2 | 1.0 | 1.2 | 1.0 | 0.5 | 0.7 | |
Jointing-heading | |||||||||
抽穗-成熟 | 1.5 | 1.3 | 1.3 | 0.9 | 1.3 | 1.5 | 0.7 | 0.6 | |
Heading-mature |
表2 BP神经网络在训练集和测试集上的模型评价结果
Table 2 Evaluation result of BP neural network model on training set and test set
评价指标 Evaluation indicator | 发育阶段 Developmental stage | T模型 T model | T-P模型 T-P model | T-S模型 T-S model | T-RH模型 T-RH model | ||||
---|---|---|---|---|---|---|---|---|---|
训练集 Training set | 测试集 Test set | 训练集 Training set | 测试集 Test set | 训练集 Training set | 测试集 Test set | 训练集 Training set | 测试集 Test set | ||
RMSE/d | 播种-出苗 | 0.6 | 0.7 | 0.6 | 0.7 | 0.6 | 0.6 | 0.3 | 0.3 |
Sowing-emergence | |||||||||
出苗-移栽 | 2.5 | 1.8 | 2.3 | 2.1 | 2.2 | 1.8 | 1.1 | 1.2 | |
Emergence-transplanting | |||||||||
移栽-拔节 | 2.1 | 2.4 | 2.0 | 2.2 | 1.9 | 2.1 | 0.9 | 1.2 | |
Transplanting-jointing | |||||||||
拔节-抽穗 | 1.7 | 1.5 | 1.6 | 1.3 | 1.5 | 1.3 | 0.6 | 0.7 | |
Jointing-heading | |||||||||
抽穗-成熟 | 1.9 | 1.6 | 1.7 | 1.4 | 1.7 | 1.9 | 0.9 | 0.8 | |
Heading-mature | |||||||||
r | 播种-出苗 | 0.93** | 0.89** | 0.94** | 0.90** | 0.94** | 0.91** | 0.96** | 0.98** |
Sowing-emergence | |||||||||
出苗-移栽 | 0.91** | 0.96** | 0.93** | 0.95** | 0.93** | 0.96** | 0.97** | 0.99** | |
Emergence-transplanting | |||||||||
移栽-拔节 | 0.86** | 0.92** | 0.88** | 0.93** | 0.89** | 0.95** | 0.98** | 0.97** | |
Transplanting-jointing | |||||||||
拔节-抽穗 | 0.92** | 0.95** | 0.94** | 0.96** | 0.94** | 0.97** | 0.96** | 0.99** | |
Jointing-heading | |||||||||
抽穗-成熟 | 0.95** | 0.96** | 0.97** | 0.97** | 0.96** | 0.95** | 0.98** | 0.98** | |
Heading-mature | |||||||||
MAE/d | 播种-出苗 | 0.5 | 0.6 | 0.5 | 0.5 | 0.4 | 0.4 | 0.2 | 0.3 |
Sowing-emergence | |||||||||
出苗-移栽 | 1.9 | 1.6 | 1.8 | 1.9 | 1.7 | 1.5 | 0.8 | 1.1 | |
Emergence-transplanting | |||||||||
移栽-拔节 | 1.6 | 2.0 | 1.5 | 1.9 | 1.4 | 1.7 | 0.7 | 1.1 | |
Transplanting-jointing | |||||||||
拔节-抽穗 | 1.4 | 1.2 | 1.2 | 1.0 | 1.2 | 1.0 | 0.5 | 0.7 | |
Jointing-heading | |||||||||
抽穗-成熟 | 1.5 | 1.3 | 1.3 | 0.9 | 1.3 | 1.5 | 0.7 | 0.6 | |
Heading-mature |
图3 不同中间层节点数的模型评价结果 a、b,移栽-拔节;c、d,拔节-抽穗;e、f,抽穗-成熟。a、c、e,训练集;b、d、f,测试集。图4同。
Fig.3 Evaluation result of models with different number of nodes in middle layers a, b, Transplanting-jointing; c, d, Jointing-heading; e, f, Heading-mature. a, c, e, Training set; b, d, f, Test set.The same as in Fig.4.
发育阶段 Development stage | 实际平均 天数 Actual average days/d | RMSE/d | r | MAE/d |
---|---|---|---|---|
播种-出苗 | 6 | 0.3 | 0.97** | 0.2 |
Sowing-emergence | ||||
出苗-移栽 | 33 | 1.2 | 0.99** | 0.9 |
Emergence-transplanting | ||||
移栽-拔节 | 43 | 1.2 | 0.98** | 0.9 |
Transplanting-jointing | ||||
拔节-抽穗 | 28 | 0.7 | 0.99** | 0.5 |
Jointing-heading | ||||
抽穗-成熟 | 37 | 0.8 | 0.99** | 0.6 |
Heading-mature |
表3 经过参数优化的T-RH模型在测试集上的评价结果
Table 3 Evaluation result of T-RH model on test set after parameter optimization
发育阶段 Development stage | 实际平均 天数 Actual average days/d | RMSE/d | r | MAE/d |
---|---|---|---|---|
播种-出苗 | 6 | 0.3 | 0.97** | 0.2 |
Sowing-emergence | ||||
出苗-移栽 | 33 | 1.2 | 0.99** | 0.9 |
Emergence-transplanting | ||||
移栽-拔节 | 43 | 1.2 | 0.98** | 0.9 |
Transplanting-jointing | ||||
拔节-抽穗 | 28 | 0.7 | 0.99** | 0.5 |
Jointing-heading | ||||
抽穗-成熟 | 37 | 0.8 | 0.99** | 0.6 |
Heading-mature |
[1] | 高益波, 景元书, 刘明璐, 等. 抽穗扬花期低温强度对水稻生长发育的影响与模拟[J]. 江苏农业科学, 2018, 46(5): 53-57. |
GAO Y B, JING Y S, LIU M L, et al. Influence and simulation of cold damage degree on rice growth during heading and flowering stage[J]. Jiangsu Agricultural Sciences, 2018, 46(5): 53-57. (in Chinese) | |
[2] | 邱新法, 王喆, 曾燕, 等. 1960—2013年中国≥10 ℃积温时空变化特征及其主导因素分析[J]. 江苏农业科学, 2017, 45(2): 220-225. |
QIU X F, WANG Z, ZENG Y, et al. Spatial-temporal variation of accumulated temperature ≥10 ℃ in China during 1960-2013 and its leading factors[J]. Jiangsu Agricultural Sciences, 2017, 45(2): 220-225. (in Chinese) | |
[3] | MCMASTER G. Growing degree-days: one equation, two interpretations[J]. Agricultural and Forest Meteorology, 1997, 87(4): 291-300. |
[4] | 郑大玮, 孙忠富. 关于积温一词及其度量单位科学性问题的讨论[J]. 中国农业气象, 2010, 31(2): 165-169. |
ZHENG D W, SUN Z F. Discussion on scientificalness problem of accumulated temperature and its unit[J]. Chinese Journal of Agrometeorology, 2010, 31(2): 165-169. (in Chinese with English abstract) | |
[5] | MCMASTER G S, LECAIN D R, MORGAN J A, et al. Elevated CO2 increases wheat CER, leaf and tiller development, and shoot and root growth[J]. Journal of Agronomy and Crop Science, 1999, 183(2): 119-128. |
[6] | 冯利平, 高亮之, 金之庆, 等. 小麦发育期动态模拟模型的研究[J]. 作物学报, 1997, 23(4): 418-424. |
FENG L P, GAO L Z, JIN Z Q, et al. Studies on the simulation model for wheat phenology[J]. Acta Agronomica Sinica, 1997, 23(4): 418-424. (in Chinese with English abstract) | |
[7] | 方兴义. 基于EPIC模型的农业旱灾风险模糊评估方法[J]. 灾害学, 2020, 35(3): 55-58. |
FANG X Y. Fuzzy evaluation method of agricultural drought risk based on EPIC model[J]. Journal of Catastrophology, 2020, 35(3): 55-58. (in Chinese with English abstract) | |
[8] | 王学春, 王红妮, 黄晶, 等. 基于EPIC模型的四川丘陵区黑麦草生长过程及其土壤水分动态变化模拟[J]. 草业学报, 2017, 26(9): 1-13. |
WANG X C, WANG H N, HUANG J, et al. Simulation of soil moisture dynamics and ryegrass growth in the hilly region of Sichuan Province using the environmental policy integrated climate model[J]. Acta Prataculturae Sinica, 2017, 26(9): 1-13. (in Chinese with English abstract) | |
[9] | 李毅, 张思远, 刘庆祝, 等. 基于DSSAT-CERES-Wheat的黄土高原西部春小麦干旱影响研究[J]. 农业机械学报, 2022, 53(6):338-348. |
LI Y, ZHANG S Y, LIU Q Z, et al. Effects of droughts and meteorology on spring wheat in western loess plateau based on DSSAT-CERES-Wheat model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(6):338-348. (in Chinese with English abstract) | |
[10] | KINIRY J R, SANDERSON M A, WILLIAMS J R, et al. Simulating alamo switchgrass with the ALMANAC model[J]. Agronomy Journal, 1996, 88(4): 602-606. |
[11] | 殷新佑. 对预测作物发育的积温法的评价[J]. 作物学报, 1999, 25(4): 474-482. |
YIN X Y. A critical appraisal of thermal time approach for predicting crop development[J]. Acta Agronomica Sinica, 1999, 25(4): 474-482. (in Chinese with English abstract) | |
[12] | 贾慧芬. 作物发育期有效积温累积速度预报方法的研究[J]. 沈阳农业大学学报, 1992, 23(S1): 84-87. |
JIA H F. Forecasting the development period of rice crop according to the accumulation speed of effective temperature[J]. Journal of Shenyang Agricultural University, 1992, 23(S1): 84-87. (in Chinese with English abstract) | |
[13] | 李昊宇, 王建林, 郑昌玲, 等. 气候适宜度在华北冬小麦发育期预报中的应用[J]. 气象, 2012, 38(12): 1554-1559. |
LI H Y, WANG J L, ZHENG C L, et al. The development period prediction of winter wheat based on climatic suitability in North China[J]. Meteorological Monthly, 2012, 38(12): 1554-1559. (in Chinese with English abstract) | |
[14] | LI T, ANGELES O, et al. MARCAIDA M Ⅲ, From ORYZA2000 to ORYZA(v3): an improved simulation model for rice in drought and nitrogen-deficient environments[J]. Agricultural and Forest Meteorology, 2017, 237/238: 246-256. |
[15] | VAN OORT P A J, ZHANG T Y, DE VRIES M E, et al. Correlation between temperature and phenology prediction error in rice (Oryza sativa L.)[J]. Agricultural and Forest Meteorology, 2011, 151(12): 1545-1555. |
[16] | 乌玲瑛, 徐奂, 蔡喨喨, 等. 基于机器学习的水稻发育期预测模型构建[J]. 扬州大学学报(农业与生命科学版), 2012, 33(3): 44-50. |
WU L Y, XU H, CAI L L, et al. A predicting model based on machine learning for rice development[J]. Journal of Yangzhou University (Agricultural and Life Science Edition), 2012, 33(3): 44-50. (in Chinese with English abstract) | |
[17] | 梁帆, 杨莉莉, 崔世钢, 等. 基于神经网络的油菜成熟度等级视觉检测方法[J]. 江苏农业科学, 2015, 43(8): 403-405. |
LIANG F, YANG L L, CUI S G, et al. Visual detection method of rapeseed maturity grade based on neural network[J]. Jiangsu Agricultural Sciences, 2015, 43(8): 403-405. (in Chinese) | |
[18] | 张久权, 张凌霄, 张明华, 等. 应用神经网络和统计模型预测大豆生长发育阶段[J]. 作物学报, 2009, 35(2): 341-347. |
ZHANG J Q, ZHANG L X, ZHANG M H, et al. Prediction of soybean growth and development stages using artificial neural network and statistical models[J]. Acta Agronomica Sinica, 2009, 35(2): 341-347. (in Chinese with English abstract) | |
[19] | ELIZONDO D A, MCCLENDON R W, HOOGENBOOM G. Neural network models for predicting flowering and physiological maturity of soybean[J]. Transactions of the ASAE, 1994, 37(3): 981-988. |
[20] | 唐建军, 王映龙, 彭莹琼, 等. BP神经网络在水稻病虫害诊断中的应用研究[J]. 安徽农业科学, 2010, 38(1): 199-200. |
TANG J J, WANG Y L, PENG Y Q, et al. Application study on BP neural network in the diagnosis of rice diseases and pests[J]. Journal of Anhui Agricultural Sciences, 2010, 38(1): 199-200. (in Chinese with English abstract) | |
[21] | 高丹, 迟道才, 王铁良. 基于MATLAB神经网络的水稻需水量的预报模型[J]. 沈阳农业大学学报, 2005, 36(5): 599-602. |
GAO D, CHI D C, WANG T L. Predictive model of water requirement of paddy base on MATLAB neural network[J]. Journal of Shenyang Agricultural University, 2005, 36(5): 599-602. (in Chinese with English abstract) | |
[22] | 郑重, 马富裕, 李江全, 等. 基于BP神经网络的农田蒸散量预报模型[J]. 水利学报, 2008, 39(2): 230-234. |
ZHENG Z, MA F Y, LI J Q, et al. Forecast model for field evaportranspiration based on BP ANN[J]. Journal of Hydraulic Engineering, 2008, 39(2): 230-234. (in Chinese with English abstract) | |
[23] | 李珊, 马丽丽, 贺超兴, 等. 温室栽培基质耗水量与环境因子相关性的研究[J]. 中国农学通报, 2011, 27(8): 144-149. |
LI S, MA L L, HE C X, et al. Simulation study between water evaporation of cultivation substrate and environmental factor of greenhouse[J]. Chinese Agricultural Science Bulletin, 2011, 27(8): 144-149. (in Chinese with English abstract) | |
[24] | 陈明. MATLAB神经网络原理与实例精解[M]. 北京: 清华大学出版社, 2013: 156-191. |
[25] | 张德丰, 赵红. MATLAB神经网络应用设计[M]. 北京: 机械工业出版社, 2009: 83-91. |
[26] | 江梦圆. 干旱胁迫对冬小麦生长的影响机理及模拟研究[D]. 南京: 南京信息工程大学, 2020. |
JIANG M Y. The study of influencing mechanism of drought stress on winter wheat growth and its model simulation[D]. Nanjing: Nanjing University of Information Science & Technology, 2020. (in Chinese with English abstract) | |
[27] | 王钧, 李广, 聂志刚, 等. 陇中黄土高原区旱地春小麦产量对干旱胁迫响应的模拟研究[J]. 干旱区地理, 2021, 44(2): 494-506. |
WANG J, LI G, NIE Z G, et al. Simulation study of response of spring wheat yield to drought stress in the Loess Plateau of central Gansu[J]. Arid Land Geography, 2021, 44(2): 494-506. (in Chinese with English abstract) | |
[28] | 王婧瑄, 郭建平, 李蕊. 春玉米积温稳定性及在发育期预报中的应用[J]. 应用气象学报, 2019, 30(5): 577-585. |
WANG J X, GUO J P, LI R. Accumulated temperature stability of spring maize and its application to growth period forecast[J]. Journal of Applied Meteorological Science, 2019, 30(5): 577-585. (in Chinese with English abstract) | |
[29] | 高亮之, 金之庆, 李林. 中国不同类型水稻生育期的气象生态模式及其应用[J]. 农业气象, 1982, 3(2): 1-8. |
GAO L Z, JIN Z Q, LI L. Meteorological ecological models of different rice growth stages in China and their application[J]. Chinese Journal of Agrometeorology, 1982, 3(2): 1-8. (in Chinese) | |
[30] | 冯秀藻, 陶炳炎. 农业气象学原理[M]. 北京: 气象出版社, 1991: 95-116. |
[31] | RITCHIE J T, ALOCILJA E C, SINGH U, et a1. IBSNAT and the CERES Model[M]// IRRI. Weather and rice. Manila: IRRI, 1987: 271-281. |
[32] | BOUMAN B A M, KROPFF M J, TUONG T P, et al. ORYZA2000: modeling lowland rice[R]. Los Baňos, Philippines: IRRI, 2001: 235. |
[33] | GAO L Z, JIN Z Q, HUANG Y, et al. Rice clock model: a computer model to simulate rice development[J]. Agricultural and Forest Meteorology, 1992, 60(1/2): 1-16. |
[34] | 孟亚利, 曹卫星, 周治国, 等. 基于生长过程的水稻阶段发育与物候期模拟模型[J]. 中国农业科学, 2003, 36(11): 1362-1367. |
MENG Y L, CAO W X, ZHOU Z G, et al. A process-based model for simulating phasic development and phenology in rice[J]. Scientia Agricultura Sinica, 2003, 36(11): 1362-1367. (in Chinese with English abstract) | |
[35] | 康西言, 董航宇, 姚树然. 基于气象因子的冬小麦发育期预报模型[J]. 中国农业气象, 2015, 36(4): 465-471. |
KANG X Y, DONG H Y, YAO S R. Prediction model of winter wheat development stages based on meteorological factors[J]. Chinese Journal of Agrometeorology, 2015, 36(4): 465-471. (in Chinese with English abstract) | |
[36] | 熊伟, 林而达, 杨婕, 等. 作物模型区域应用两种参数校准方法的比较[J]. 生态学报, 2008, 28(5): 2140-2147. |
XIONG W, LIN E D, YANG J, et al. Comparion of two calibration approaches for regional simulation of crop model[J]. Acta Ecologica Sinica, 2008, 28(5): 2140-2147. (in Chinese with English abstract) | |
[37] | 熊伟. 站点CERES-Rice模型区域应用效果和误差来源[J]. 生态学报, 2009, 29(4): 2003-2009. |
XIONG W. The performance of regional simulation of CERES-Rice model and its uncertainties[J]. Acta Ecologica Sinica, 2009, 29(4): 2003-2009. (in Chinese with English abstract) |
[1] | 尤翠翠, 贺一哲, 徐鹏, 黄亚茹, 王辉, 何海兵, 柯健, 武立权. 高温胁迫对水稻生长发育的伤害效应及其防御对策[J]. 浙江农业学报, 2023, 35(1): 10-22. |
[2] | 杨胜玲, 黄兴成, 李渝, 刘彦伶, 张雅蓉, 张艳, 张文安, 蒋太明. 长期有机无机肥配施对水稻生长、干物质积累及产量的影响[J]. 浙江农业学报, 2022, 34(9): 1815-1825. |
[3] | 王晨, 张敏, 王振旗, 钱晓雍, 徐昶, 倪远之, 李金文, 沈根祥. 长期施用猪粪稻田的重金属迁移规律与累积风险[J]. 浙江农业学报, 2022, 34(9): 1985-1994. |
[4] | 黄东慧, 钟鹏, 王建丽, 胡云龙, 王志刚. 环境条件对Bacillus altitudinis LZP02生物膜形成的影响[J]. 浙江农业学报, 2022, 34(7): 1466-1473. |
[5] | 娄飞, 付天岭, 代良羽, 周凯, 林大松, 何腾兵. 不同土壤调理剂对黔中地区水稻Cd积累转运和产量的影响[J]. 浙江农业学报, 2022, 34(7): 1493-1501. |
[6] | 董袁袁, 徐恒, 张华, 张恒, 王伏林, 顾娜娜, 朱英. 水稻种子成熟后期高湿环境下种子休眠相关基因的表达[J]. 浙江农业学报, 2022, 34(6): 1103-1113. |
[7] | 邰粤鹰, 何腾兵, 陈小然, 张旺, 黄啸云, 刘鸿雁, 高珍冉. 叶面喷施阻控剂对常淹水稻田水稻吸收转运镉的影响[J]. 浙江农业学报, 2022, 34(6): 1248-1257. |
[8] | 朱铭, 刘琛, 林义成, 郭彬, 李华, 傅庆林. 不同调理剂组合对浙江红壤土壤肥力、微生物群落多样性和水稻产量的影响[J]. 浙江农业学报, 2022, 34(6): 1258-1267. |
[9] | 叶迎, 赵考诚, 马军, 祝轲, 庄恒扬. 播期和施氮量组合对水稻南粳9108产量和氮素利用的影响[J]. 浙江农业学报, 2022, 34(5): 879-886. |
[10] | 林智文, 张鹏, 吴天昊, 单颖, 邹刚华, 赵凤亮, 郑桂萍. 秸秆直接还田与炭化还田对热带土壤-水稻系统氨挥发的影响[J]. 浙江农业学报, 2022, 34(12): 2689-2699. |
[11] | 高雪萍, 张予涵, 张梦玲, 廖文梅. 互联网信息技术使用对农业生产率的影响分析——以江西省水稻种植户为例[J]. 浙江农业学报, 2022, 34(12): 2809-2822. |
[12] | 廖平强, 陈国奇, 刘光明, 蒋岩, 赵灿, 王维领, 霍中洋. 不同密度异型莎草和水苋菜对水稻产量及稻米加工、外观品质的影响[J]. 浙江农业学报, 2022, 34(11): 2348-2357. |
[13] | 张金萍, 陈照明, 王强, 马军伟, 俞巧钢, 叶静, 马进川, 孙万春. 缓释肥占基肥比例对单季晚稻分蘖和氮素吸收利用的影响[J]. 浙江农业学报, 2022, 34(10): 2259-2267. |
[14] | 王灿, 付天岭, 龚思同, 娄飞, 周凯, 代良羽, 刘静, 林大松, 何腾兵. 叶面阻控剂对黔中喀斯特地区水稻Cd富集特征的影响[J]. 浙江农业学报, 2021, 33(9): 1710-1719. |
[15] | 张惠云, 秦丽杰, 贾利. 吉林省水稻生产的碳足迹与水足迹时空变化特征[J]. 浙江农业学报, 2021, 33(6): 974-983. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||