[1] |
王涛, 雷锦桂, 陈永快, 等. 海鲜菇渣复合基质对黄瓜生长、果实品质和产量的影响[J]. 热带作物学报, 2019, 40(1): 32-38.
|
|
WANG T, LEI J G, CHEN Y K, et al. Effect of compound substrate of Hypsizygus marmoreus residue on cucumber growth, fruit quality and yield[J]. Chinese Journal of Tropical Crops, 2019, 40(1): 32-38. (in Chinese with English abstract)
|
[2] |
杨华, 杨宗辉, 刘一涵, 等. 黄瓜品质性状遗传育种研究进展[J]. 中国蔬菜, 2023(8): 23-37.
|
|
YANG H, YANG Z H, LIU Y H, et al. Research progress in genetic breeding of cucumber quality traits[J]. China Vegetables, 2023(8): 23-37. (in Chinese with English abstract)
|
[3] |
王斌, 袁晓, 蒋园园, 等. 采后黄瓜冷害及耐冷性调控研究进展[J]. 江苏农业学报, 2023, 39(2): 596-608.
|
|
WANG B, YUAN X, JIANG Y Y, et al. Research advances in chilling injury and the regulation of chilling tolerance of postharvest cucumber fruit[J]. Jiangsu Journal of Agricultural Sciences, 2023, 39(2): 596-608. (in Chinese with English abstract)
|
[4] |
王斌, 朱世江. 阶段降温对冷藏黄瓜耐冷性的诱导作用[J]. 江苏农业学报, 2020, 36(4): 1028-1035.
|
|
WANG B, ZHU S J. Induction of chilling tolerance in cold-stored cucumbers by slowly cooling treatment[J]. Jiangsu Journal of Agricultural Sciences, 2020, 36(4): 1028-1035. (in Chinese with English abstract)
|
[5] |
WANG B, ZHU S J. Pre-storage cold acclimation maintained quality of cold-stored cucumber through differentially and orderly activating ROS scavengers[J]. Postharvest Biology and Technology, 2017, 129: 1-8.
|
[6] |
ZHANG W L, JIANG H T, CAO J K, et al. Advances in biochemical mechanisms and control technologies to treat chilling injury in postharvest fruits and vegetables[J]. Trends in Food Science & Technology, 2021, 113: 355-365.
|
[7] |
BAI L, LIU M H, SUN Y. Overview of food preservation and traceability technology in the smart cold chain system[J]. Foods, 2023, 12(15): 2881.
|
[8] |
LI C, XU M X, CAI X, et al. Jasmonate signaling pathway modulates plant defense, growth, and their trade-offs[J]. International Journal of Molecular Sciences, 2022, 23(7): 3945.
|
[9] |
罗晓萍, 涂米雪, 周宏丹, 等. 茉莉酸信号在植物响应逆境胁迫中的新角色[J]. 云南师范大学学报(自然科学版), 2023, 43(4): 1-8.
|
|
LUO X P, TU M X, ZHOU H D, et al. Novel role of jasmonic acid signaling in plant response to environmental stress[J]. Journal of Yunnan Normal University(Natural Sciences Edition), 2023, 43(4): 1-8. (in Chinese with English abstract)
|
[10] |
李永华, 肖能文, 刘勇波. 植物防御中茉莉酸信号通路抑制与终止的作用机制[J]. 植物保护学报, 2021, 48(3): 563-569.
|
|
LI Y H, XIAO N W, LIU Y B. Mechanisms of repression and termination of jasmonate signaling in plant defense[J]. Journal of Plant Protection, 2021, 48(3): 563-569. (in Chinese with English abstract)
|
[11] |
PAUWELS L, GOOSSENS A. The JAZ proteins: a crucial interface in the jasmonate signaling cascade[J]. The Plant Cell, 2011, 23(9): 3089-3100.
|
[12] |
KAZAN K, MANNERS J M. MYC2: the master in action[J]. Molecular Plant, 2013, 6(3): 686-703.
|
[13] |
BROWSE J, WALLIS J G. Arabidopsis flowers unlocked the mechanism of jasmonate signaling[J]. Plants, 2019, 8(8): 285.
|
[14] |
魏昕, 刘雨恒, 刘宇阳, 等. 植物JAZ蛋白家族研究进展[J]. 植物生理学报, 2021, 57(5): 1039-1046.
|
|
WEI X, LIU Y H, LIU Y Y, et al. Advances of JAZ family in plants[J]. Plant Physiology Journal, 2021, 57(5): 1039-1046. (in Chinese with English abstract)
|
[15] |
RUAN J J, ZHOU Y X, ZHOU M L, et al. Jasmonic acid signaling pathway in plants[J]. International Journal of Molecular Sciences, 2019, 20(10): 2479.
|
[16] |
刘德帅, 冯美, 姚磊, 等. 葡萄VvJAZ9蛋白原核表达与多克隆抗体制备[J]. 核农学报, 2023, 37(6): 1138-1149.
|
|
LIU D S, FENG M, YAO L, et al. Prokaryotic expression and polyclonal antibody preparation of VvJAZ9 protein in Vitis vinifera[J]. Journal of Nuclear Agricultural Sciences, 2023, 37(6): 1138-1149. (in Chinese with English abstract)
|
[17] |
MELOTTO M, MECEY C, NIU Y J, et al. A critical role of two positively charged amino acids in the Jas motif of Arabidopsis JAZ proteins in mediating coronatine-and jasmonoyl isoleucine-dependent interactions with the COI1 F-box protein[J]. The Plant Journal: for Cell and Molecular Biology, 2008, 55(6): 979-988.
|
[18] |
范佳利, 朱立勋, 郭志强, 等. 普通小麦JAZ基因家族鉴定及其响应冻害时基因差异表达和DNA变异分析[J]. 植物生理学报, 2022, 58(10): 1873-1889.
|
|
FAN J L, ZHU L X, GUO Z Q, et al. Identification of JAZ gene family and analysis on their differential expression under freezing stress and DNA variation in common wheat[J]. Plant Physiology Journal, 2022, 58(10): 1873-1889. (in Chinese with English abstract)
|
[19] |
ZHANG H Y, LI W J, NIU D X, et al. Tobacco transcription repressors NtJAZ: potential involvement in abiotic stress response and glandular trichome induction[J]. Plant Physiology and Biochemistry, 2019, 141: 388-397.
|
[20] |
CHINI A, BEN-ROMDHANE W, HASSAIRI A, et al. Identification of TIFY/JAZ family genes in Solanum lycopersicum and their regulation in response to abiotic stresses[J]. PLoS One, 2017, 12(6): e0177381.
|
[21] |
袁晓, 杨盼迪, 朱云娜, 等. 黄瓜肌醇半乳糖苷合成酶基因GolS2克隆与表达调控[J]. 山东农业科学, 2023, 55(6): 15-24.
|
|
YUAN X, YANG P D, ZHU Y N, et al. Cloning and expression regulation of cucumber inositol galactinol synthase gene GolS2[J]. Shandong Agricultural Sciences, 2023, 55(6): 15-24. (in Chinese with English abstract)
|
[22] |
CHEN C J, CHEN H, ZHANG Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202.
|
[23] |
WANG B, WU C S, WANG G, et al. Transcriptomic analysis reveals a role of phenylpropanoid pathway in the enhancement of chilling tolerance by pre-storage cold acclimation in cucumber fruit[J]. Scientia Horticulturae, 2021, 288: 110282.
|
[24] |
WANG B, WANG G, SHEN F, et al. A Glycine-rich RNA-binding protein, CsGR-RBP3, is involved in defense responses against cold stress in harvested cucumber (Cucumis sativus L.) fruit[J]. Frontiers in Plant Science, 2018, 9: 540.
|
[25] |
LIU Y F, YANG X X, ZHU S J, et al. Postharvest application of MeJA and NO reduced chilling injury in cucumber (Cucumis sativus) through inhibition of H2O2 accumulation[J]. Postharvest Biology and Technology, 2016, 119: 77-83.
|
[26] |
MANDAOKAR A, THINES B, SHIN B, et al. Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling[J]. The Plant Journal: for Cell and Molecular Biology, 2006, 46(6): 984-1008.
|
[27] |
TAO J J, JIA H M, WU M T, et al. Genome-wide identification and characterization of the TIFY gene family in kiwifruit[J]. BMC Genomics, 2022, 23(1): 179.
|
[28] |
SUN P D, SHI Y N, VALERIO A G O, et al. An updated census of the maize TIFY family[J]. PLoS One, 2021, 16(2): e0247271.
|
[29] |
HEIDARI P, FARAJI S, AHMADIZADEH M, et al. New insights into structure and function of TIFY genes in Zea mays and Solanum lycopersicum: a genome-wide comprehensive analysis[J]. Frontiers in Genetics, 2021, 12: 657970.
|
[30] |
YAN C, FAN M, YANG M, et al. Injury activates Ca2+/calmodulin-dependent phosphorylation of JAV1-JAZ8-WRKY51 complex for jasmonate biosynthesis[J]. Molecular Cell, 2018, 70(1): 136-149.e7.
|
[31] |
王斌, 黄泳谚, 易景怡, 等. 黄瓜GR-RBP3启动子克隆及低温对其活性的诱导[J]. 山东农业科学, 2022, 54(7): 15-23.
|
|
WANG B, HUANG Y Y, YI J Y, et al. Molecular cloning of cucumber GR-RBP3 promoter and induction of low temperature on its activity[J]. Shandong Agricultural Sciences, 2022, 54(7): 15-23. (in Chinese with English abstract)
|
[32] |
SONG M Y, WANG H M, MA H Q, et al. Genome-wide analysis of JAZ family genes expression patterns during fig (Ficus carica L.) fruit development and in response to hormone treatment[J]. BMC Genomics, 2022, 23(1): 170.
|
[33] |
JIA K, YAN C Y, ZHANG J, et al. Genome-wide identification and expression analysis of the JAZ gene family in turnip[J]. Scientific Reports, 2021, 11(1): 21330.
|
[34] |
TIAN H X, QI T C, LI Y, et al. Regulation of the WD-repeat/bHLH/MYB complex by gibberellin and jasmonate[J]. Plant Signaling & Behavior, 2016, 11(8): e1204061.
|
[35] |
CHUNG H S, HOWE G A. A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the JASMONATE ZIM-domain protein JAZ10 in Arabidopsis[J]. The Plant Cell, 2009, 21(1): 131-145.
|