浙江农业学报 ›› 2024, Vol. 36 ›› Issue (9): 2122-2131.DOI: 10.3969/j.issn.1004-1524.20240174
朱思蓓1,2(
), 聂晶2,3, 张进军4, 李春霖2,3, 张永志2,3, 王平1, 陶益1,*(
), 袁玉伟2,3,*(
)
收稿日期:2024-03-01
出版日期:2024-09-25
发布日期:2024-09-30
作者简介:陶益,E-mail:taoyi1985812@126.com;袁玉伟,E-mail:ywytea@163.com通讯作者:
陶益,E-mail:基金资助:
ZHU Sibei1,2(
), NIE Jing2,3, ZHANG Jinjun4, LI Chunlin2,3, ZHANG Yongzhi2,3, WANG Ping1, TAO Yi1,*(
), YUAN Yuwei2,3,*(
)
Received:2024-03-01
Online:2024-09-25
Published:2024-09-30
摘要:
为利用电感耦合等离子体串联质谱法(ICP-MS/MS)建立同时测定三叶青中Na、Mg、Al、P、S、K、Ca、Fe、Ni、Cu、Zn、Se共12种无机营养元素含量的方法,并探究不同部位(茎叶、块根、须根)的12种元素含量分布,通过ICP-MS/MS中的单杆和串联四级杆模式下的多种反应气体(O2、H2、NH3)形式建立同时分析三叶青中12种营养元素的方法,测定三叶青中不同部位的无机营养元素含量,运用单因素方差分析(ANOVA)比较药材不同部位无机营养元素含量的差异,采用偏最小二乘-判别分析(PLS-DA)构建不同部位的鉴别模型。结果表明,ICP-MS/MS方法的线性、检测限、精密度、重复性和稳定性均良好,实际药材的加样回收率为90.66%~108.50%;不同部位的三叶青无机营养元素含量差异较大,地下部的无机营养元素含量显著高于地上部,Ca、Al、K、Na这4种元素是三叶青3个部位的主要差异元素。本研究通过电感耦合等离子体串联质谱法建立了快速鉴别三叶青不同部位中无机营养元素含量的方法,有效鉴定了块根、须根、茎叶中的无机营养元素含量,三叶青地下部的无机营养元素含量显著高于地上部,研究结果可以为三叶青质量控制、原产地溯源和种质资源的评价提供技术依据。
中图分类号:
朱思蓓, 聂晶, 张进军, 李春霖, 张永志, 王平, 陶益, 袁玉伟. 三叶青不同部位无机营养元素的ICP-MS/MS分析与评价[J]. 浙江农业学报, 2024, 36(9): 2122-2131.
ZHU Sibei, NIE Jing, ZHANG Jinjun, LI Chunlin, ZHANG Yongzhi, WANG Ping, TAO Yi, YUAN Yuwei. ICP-MS/MS analysis and evaluation of inorganic nutrient elements in different parts of Tetrastigma hemsleyanum Diels et Gilg[J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2122-2131.
| 元素 Elements | 潜在干扰离子 Potentially interfering ions | 背景等效浓度 Background equivalent concentration/(μg·L-1) | |||||
|---|---|---|---|---|---|---|---|
| SQ模式SQ model | MS/MS模式MS/MS model | ||||||
| No gas | He | HEHe | H2 | O2 | NH3 | ||
| 23Na | 16.255 | 15.850 | 14.985 | 18.220 | 17.335 | 18.280 | |
| 24Mg | 12 | 1.454 | 1.461 | 1.385 | 1.833 | 1.746 | 1.725 |
| 27Al | 1.984 | 1.173 | 1.842 | 3.579 | 4.179 | 3.909 | |
| 31P | 30Si1H+、14N1H16O+、14N17O+、15H16O+、12C19F+ | 24.230 | 6.929 | 2.437 | 67.860 | 0.955 | 3.817 |
| 32S | 16O16O+、16O1H15N+、18O14N+、1H31P+、12C30Ne+、13C19F+ | 4 046 | 2 109 | 849.8 | 2 004 | 4.985 | 4 104 |
| 39K | 38Ar1H+ | 51.010 | 16.800 | 49.760 | 19.410 | 25.260 | 24.580 |
| 44Ca | 12C16 | 21.210 | 18.240 | 19.990 | 19.860 | 19.720 | 26.190 |
| 56Fe | 40Ar16O+、40Ca16O+、37Cl17O+、112Sn2+、40Ar15N1H+、 | 86.090 | 1.341 | 1.357 | 1.223 | 1.593 | 4.499 |
| 38Ar18O+、38Ar17O1H+、37Cl18O1H+ | |||||||
| 58Ni | 58Fe、40Ar18O+、40Ca18O+、42Ca16O+、116Sn2+、 | 0.091 | 0.203 | 0.176 | 0.094 | 0.136 | |
| 40Ar17O1H+、40Ca17O1H+ | 0.471 | ||||||
| 63Cu | 47Ti16O+、46Ca16O1H+、36Ar12C14N1H+、14N12C37Cl+、 | 0.113 | 0.087 | 0.166 | 0.504 | 0.140 | 0.223 |
| 16O12C35Cl+ | |||||||
| 66Zn | 50Ti16O+ | 1.045 | 0.893 | 1.200 | 0.930 | 1.239 | 1.643 |
| 78Se | 78Kr、40Ar38Ar+、38Ar40Ca2+ | 5.520 | 0.130 | 0.015 | 0.012 | 0.016 | 0.026 |
表1 不同分析模式下各元素的背景等效浓度
Table 1 The background equivalent concentration of each element under different analysis models
| 元素 Elements | 潜在干扰离子 Potentially interfering ions | 背景等效浓度 Background equivalent concentration/(μg·L-1) | |||||
|---|---|---|---|---|---|---|---|
| SQ模式SQ model | MS/MS模式MS/MS model | ||||||
| No gas | He | HEHe | H2 | O2 | NH3 | ||
| 23Na | 16.255 | 15.850 | 14.985 | 18.220 | 17.335 | 18.280 | |
| 24Mg | 12 | 1.454 | 1.461 | 1.385 | 1.833 | 1.746 | 1.725 |
| 27Al | 1.984 | 1.173 | 1.842 | 3.579 | 4.179 | 3.909 | |
| 31P | 30Si1H+、14N1H16O+、14N17O+、15H16O+、12C19F+ | 24.230 | 6.929 | 2.437 | 67.860 | 0.955 | 3.817 |
| 32S | 16O16O+、16O1H15N+、18O14N+、1H31P+、12C30Ne+、13C19F+ | 4 046 | 2 109 | 849.8 | 2 004 | 4.985 | 4 104 |
| 39K | 38Ar1H+ | 51.010 | 16.800 | 49.760 | 19.410 | 25.260 | 24.580 |
| 44Ca | 12C16 | 21.210 | 18.240 | 19.990 | 19.860 | 19.720 | 26.190 |
| 56Fe | 40Ar16O+、40Ca16O+、37Cl17O+、112Sn2+、40Ar15N1H+、 | 86.090 | 1.341 | 1.357 | 1.223 | 1.593 | 4.499 |
| 38Ar18O+、38Ar17O1H+、37Cl18O1H+ | |||||||
| 58Ni | 58Fe、40Ar18O+、40Ca18O+、42Ca16O+、116Sn2+、 | 0.091 | 0.203 | 0.176 | 0.094 | 0.136 | |
| 40Ar17O1H+、40Ca17O1H+ | 0.471 | ||||||
| 63Cu | 47Ti16O+、46Ca16O1H+、36Ar12C14N1H+、14N12C37Cl+、 | 0.113 | 0.087 | 0.166 | 0.504 | 0.140 | 0.223 |
| 16O12C35Cl+ | |||||||
| 66Zn | 50Ti16O+ | 1.045 | 0.893 | 1.200 | 0.930 | 1.239 | 1.643 |
| 78Se | 78Kr、40Ar38Ar+、38Ar40Ca2+ | 5.520 | 0.130 | 0.015 | 0.012 | 0.016 | 0.026 |
| 元素 Element | 本底浓度 Background concentration/(mg·L-1) | 加标浓度 Standard concentration/ (mg·L-1) | 测定浓度 Determination of concentration/(mg·L-1) | 回收率 Recovery rate/% |
|---|---|---|---|---|
| 23Na | 801.53 | 320.00 | 1 069.72 | 95.38 |
| 24Mg | 7 992.18 | 3 200.00 | 11 797.68 | 105.41 |
| 27Al | 343.40 | 120.00 | 445.70 | 96.18 |
| 31P | 6 716.63 | 2 000.00 | 8 577.16 | 98.40 |
| 32S | 3 269.77 | 1 200.00 | 4 767.90 | 106.67 |
| 39K | 19 586.21 | 8 000.00 | 26 979.31 | 97.80 |
| 44Ca | 15 464.21 | 6 000.00 | 19 782.68 | 108.50 |
| 56Fe | 542.66 | 200.00 | 731.52 | 98.50 |
| 58Ni | 3.74 | 1.00 | 4.30 | 90.66 |
| 63Cu | 9.27 | 4.00 | 13.69 | 103.20 |
| 66Zn | 41.07 | 16.00 | 61.64 | 100.80 |
| 78Se | 0.05 | 0.02 | 0.07 | 101.25 |
表2 三叶青中12种无机营养元素加标回收率
Table 2 Spike recovery rate of 12 inorganic nutrient elements in Tetrastigma hemsleyanum Diels et Gilg
| 元素 Element | 本底浓度 Background concentration/(mg·L-1) | 加标浓度 Standard concentration/ (mg·L-1) | 测定浓度 Determination of concentration/(mg·L-1) | 回收率 Recovery rate/% |
|---|---|---|---|---|
| 23Na | 801.53 | 320.00 | 1 069.72 | 95.38 |
| 24Mg | 7 992.18 | 3 200.00 | 11 797.68 | 105.41 |
| 27Al | 343.40 | 120.00 | 445.70 | 96.18 |
| 31P | 6 716.63 | 2 000.00 | 8 577.16 | 98.40 |
| 32S | 3 269.77 | 1 200.00 | 4 767.90 | 106.67 |
| 39K | 19 586.21 | 8 000.00 | 26 979.31 | 97.80 |
| 44Ca | 15 464.21 | 6 000.00 | 19 782.68 | 108.50 |
| 56Fe | 542.66 | 200.00 | 731.52 | 98.50 |
| 58Ni | 3.74 | 1.00 | 4.30 | 90.66 |
| 63Cu | 9.27 | 4.00 | 13.69 | 103.20 |
| 66Zn | 41.07 | 16.00 | 61.64 | 100.80 |
| 78Se | 0.05 | 0.02 | 0.07 | 101.25 |
| 元素 Elements | 茎叶 Stem and leaf | 块根 Tuberous root | 须根 Fibrous root |
|---|---|---|---|
| 23Na | 2 766.2±1 638.3 a | 259.7±91.2 b | 406.1±33.1 b |
| 24Mg | 4 277.9±1 886.7 a | 2 035.9±527.2 b | 4 313.9±1 500.1 a |
| 27Al | 1 776.8±827.5 b | 1 153.9±640.5 b | 6 738.2±3 219.9 a |
| 31P | 3 587.2±1 069.3 b | 2 269.5±809.1 c | 5 098.7±2 177.2 a |
| 32S | 2 614.9±970.7 b | 1 522.6±304.6 c | 3 971.8±974.3 a |
| 39K | 20 994.4±8 032.2 a | 9 098.9±2 338.7 b | 17 426.9±4 551.4 a |
| 44Ca | 17 087.1±4 953.9 a | 5 635.6±1 866.7 b | 13 256.5±2 629.5 a |
| 56Fe | 430.5±204.7 b | 280.3±143.5 c | 2 331.0±1 613.3 a |
| 58Ni | 1.31±0.4 b | 0.7±0.3 b | 10.5±5.5 a |
| 63Cu | 11.7±3.0 b | 5.8±1.7 b | 52.4±21.5 a |
| 66Zn | 114.4±43.9 b | 110.5±36.7 b | 406.5±115.9 a |
| 78Se* | 133.5±102.3 b | 55.0±32.4 b | 300.0±143.3 a |
表3 三叶青不同部位的无机营养元素含量(n=10)
Table 3 Contents of inorganic nutrient elements in different parts of Tetrastigma hemsleyanum Diels et Gilg (n=10)
| 元素 Elements | 茎叶 Stem and leaf | 块根 Tuberous root | 须根 Fibrous root |
|---|---|---|---|
| 23Na | 2 766.2±1 638.3 a | 259.7±91.2 b | 406.1±33.1 b |
| 24Mg | 4 277.9±1 886.7 a | 2 035.9±527.2 b | 4 313.9±1 500.1 a |
| 27Al | 1 776.8±827.5 b | 1 153.9±640.5 b | 6 738.2±3 219.9 a |
| 31P | 3 587.2±1 069.3 b | 2 269.5±809.1 c | 5 098.7±2 177.2 a |
| 32S | 2 614.9±970.7 b | 1 522.6±304.6 c | 3 971.8±974.3 a |
| 39K | 20 994.4±8 032.2 a | 9 098.9±2 338.7 b | 17 426.9±4 551.4 a |
| 44Ca | 17 087.1±4 953.9 a | 5 635.6±1 866.7 b | 13 256.5±2 629.5 a |
| 56Fe | 430.5±204.7 b | 280.3±143.5 c | 2 331.0±1 613.3 a |
| 58Ni | 1.31±0.4 b | 0.7±0.3 b | 10.5±5.5 a |
| 63Cu | 11.7±3.0 b | 5.8±1.7 b | 52.4±21.5 a |
| 66Zn | 114.4±43.9 b | 110.5±36.7 b | 406.5±115.9 a |
| 78Se* | 133.5±102.3 b | 55.0±32.4 b | 300.0±143.3 a |
| 数据集 Data set | 部位 Part | 数量 Number | 测试结果Test result | 判别准确率 Discriminant accuracy/% | 总体准确率 Overall accuracy/% | ||
|---|---|---|---|---|---|---|---|
| 茎叶 Stem and leaf | 块根 Tuberous root | 须根 Fibrous root | |||||
| 训练集 | 茎叶Stem and leaf | 8 | 7 | 1 | 0 | 87.5 | 91.67 |
| Training set | 块根Tuberous root | 8 | 0 | 8 | 0 | 100 | |
| 须根Fibrous root | 8 | 1 | 0 | 7 | 87.5 | ||
| 验证集 | 茎叶Stem and leaf | 2 | 2 | 0 | 0 | 100 | 100 |
| Validation set | 块根Tuberous root | 2 | 0 | 2 | 0 | 100 | |
| 须根Fibrous root | 2 | 0 | 0 | 2 | 100 | ||
表4 三叶青茎叶、块根、须根PLS-DA模型判别分析结果
Table 4 PLS-DA discriminant analysis results of stem and leaf, tuberou root and fibrous root of Tetrastigma hemsleyanum Diels et Gilg
| 数据集 Data set | 部位 Part | 数量 Number | 测试结果Test result | 判别准确率 Discriminant accuracy/% | 总体准确率 Overall accuracy/% | ||
|---|---|---|---|---|---|---|---|
| 茎叶 Stem and leaf | 块根 Tuberous root | 须根 Fibrous root | |||||
| 训练集 | 茎叶Stem and leaf | 8 | 7 | 1 | 0 | 87.5 | 91.67 |
| Training set | 块根Tuberous root | 8 | 0 | 8 | 0 | 100 | |
| 须根Fibrous root | 8 | 1 | 0 | 7 | 87.5 | ||
| 验证集 | 茎叶Stem and leaf | 2 | 2 | 0 | 0 | 100 | 100 |
| Validation set | 块根Tuberous root | 2 | 0 | 2 | 0 | 100 | |
| 须根Fibrous root | 2 | 0 | 0 | 2 | 100 | ||
图2 三叶青茎叶、块根、须根三部位PLS-DA模型得分图
Fig.2 PLS-DA model score diagram of stem and leaf, tuberous root and fibrous root of Tetrastigma hemsleyanum Diels et Gilg
图3 三叶青茎叶、块根、须根的PLS-DA模型置换检验图(n=200) R2为模型解释率,Q2为模型预测能力。
Fig.3 Permutation test plot of PLS-DA model for stem and leaf, tuberous root and fibrous root of Tetrastigma hemsleyanum Diels et Gilg (n=200) R2 was the model interpretation rate, Q2 was the model prediction ability.
图4 三叶青茎叶、块根、须根中无机营养元素的VIP
Fig.4 Variable importance in the projection (VIP) of inorganic nutrient elements in stem and leaf, tuberous root and fibrous root of Tetrastigma hemsleyanum Diels et Gilg
| [1] | HU W Y, ZHENG Y J, XIA P G, et al. The research progresses and future prospects of Tetrastigma hemsleyanum Diels et Gilg: a valuable Chinese herbal medicine[J]. Journal of Ethnopharmacology, 2021, 271: 113836. |
| [2] |
VAN DAAL M T, FOLKERTS G, GARSSEN J, et al. Pharmacological modulation of immune responses by nutritional components[J]. Pharmacological Reviews, 2021, 73(4): 198-232.
DOI PMID |
| [3] | 洪森荣, 刘雯莉, 宋冰雁, 等. 怀玉山产三叶青叶绿体基因组特征及其系统进化关系[J]. 中草药, 2023, 54(16): 5358-5371. |
| HONG S R, LIU W L, SONG B Y, et al. Phylogenetic relationship and characterization of chloroplast genome of Tetrastigma hemsleyanum from Huaiyu Mountain[J]. Chinese Traditional and Herbal Drugs, 2023, 54(16): 5358-5371. (in Chinese with English abstract) | |
| [4] | 王辉. 西藏青稞主要矿质元素分析及其积累规律研究[D]. 林芝: 西藏农牧学院, 2023. |
| WANG H. Analysis and accumulation law of main mineral elements in Tibetan highland barley[D]. Linzhi: Xizang Agricultural and Animal Husbandry University, 2023. (in Chinese with English abstract) | |
| [5] | 汪传宝, 陈静文, 王可, 等. 仿野生种植三叶青不同部位总黄酮分析及其抗炎、抗氧化能力比较[J]. 食品工业科技, 2024, 45(6): 321-329. |
| WANG C B, CHEN J W, WANG K, et al. Analysis of total flavonoids in different parts of wild planting Tetrastigma hemsleyanum Diels et Gilg and comparison of their anti-inflammatory and antioxidant capacity[J]. Science and Technology of Food Industry, 2024, 45(6): 321-329. (in Chinese with English abstract) | |
| [6] | 阮明颖, 田妍基. 三叶青中微量元素的分析比较[J]. 当代化工研究, 2021(16): 29-31. |
| RUAN M Y, TIAN Y J. Analysis and comparison of trace elements in Tetrastigma hemsleyanum Diels et gilg[J]. Modern Chemical Research, 2021(16): 29-31. (in Chinese with English abstract) | |
| [7] | 王慧玉, 刘帅英, 周淼英, 等. 不同产地三叶青中重金属和有机氯类农药残留的分析[J]. 中草药, 2020, 51(19): 5048-5052. |
| WANG H Y, LIU S Y, ZHOU M Y, et al. Determination of heavy metals and organochlorine pesticides in Tetrastigma hemsleyanum from different place[J]. Chinese Traditional and Herbal Drugs, 2020, 51(19): 5048-5052. (in Chinese with English abstract) | |
| [8] | 欧金梅, 王瑞, 程庆兵, 等. ICP-MS法测定不同产地乌梅无机元素含量[J]. 中草药, 2020, 51(2): 482-489. |
| OU J M, WANG R, CHENG Q B, et al. Simultaneous determination of inorganic elements in Mume Fructus from different regions by ICP-MS[J]. Chinese Traditional and Herbal Drugs, 2020, 51(2): 482-489. (in Chinese with English abstract) | |
| [9] | TRIMMEL S, MEISEL T C, LANCASTER S T, et al. Determination of 48 elements in 7 plant CRMs by ICP-MS/MS with a focus on technology-critical elements[J]. Analytical and Bioanalytical Chemistry, 2023, 415(6): 1159-1172. |
| [10] | MCCURDY E, YAMANAKA M. Key steps in method development for inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS)[J]. Spectroscopy, 2022: 42-45. |
| [11] | 王昭颖, 陈雄飞, 徐彦, 等. ICP-MS/MS测定镍基高温合金中痕量金、汞和硒的质谱干扰消除[J/OL]. 分析试验室, 2023: 1-10. (2023-11-10)[2024-02-28]. https://kns.cnki.net/kcms/detail/11.2017.TF.20231109.1449.018.html. |
| WANG Z Y, CHEN X F, XU Y, et al. Interference removal of mass spectrometry for the determination of trace gold, mercury and selenium in nickel-based superalloy by ICP-MS/MS[J/OL]. Chinese Journal of Analysis Laboratory, 2023: 1-10. (2023-11-10) [2024-02-28]. https://kns.cnki.net/kcms/detail/11.2017.TF.20231109.1449.018.html. (in Chinese with English abstract) | |
| [12] | 洪光辉, 王晴晴, 崔喜平, 等. ICP-MS分析中的干扰及其消除研究进展[J]. 实验科学与技术, 2021, 19(3): 14-21. |
| HONG G H, WANG Q Q, CUI X P, et al. The development progress of interference and elimination with ICP-MS[J]. Experiment Science and Technology, 2021, 19(3): 14-21. (in Chinese with English abstract) | |
| [13] | BOLEA-FERNANDEZ E, RUA-IBARZ A, RESANO M, et al. To shift, or not to shift: adequate selection of an internal standard in mass-shift approaches using tandem ICP-mass spectrometry (ICP-MS/MS)[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(6): 1135-1149. |
| [14] | 许萍, 柴爽爽, 陈铭学, 等. 电感耦合等离子体串联质谱法(ICP-MS/MS)混合模式同时测定土壤中7种重金属元素[J]. 中国无机分析化学, 2023, 13(6): 543-548. |
| XU P, CHAI S S, CHEN M X, et al. Simultaneous determination of seven heavy metal elements in soil samples by ICP-MS/MS with mixed mode[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(6): 543-548. (in Chinese with English abstract) | |
| [15] | 张清海, 刘红, 罗爱芹, 等. 贵州剑河钩藤不同药用部位十五种元素特征分析[J]. 北方园艺, 2016(16): 156-159. |
| ZHANG Q H, LIU H, LUO A Q, et al. Analysis of 15 elements in different parts of uncariarhynchophylla collected from Jianhe County in Guizhou[J]. Northern Horticulture, 2016(16): 156-159. (in Chinese with English abstract) | |
| [16] | 孙琦, 丁亮, 张卓娜, 等. 直接稀释-KED碰撞模式-电感耦合等离子体质谱(ICP-MS)法测定人体全血、尿液中38种元素[J]. 中国无机分析化学, 2023, 13(10): 1154-1164. |
| SUN Q, DING L, ZHANG Z N, et al. Determination of 38 elements in human whole blood and urine by KED collision mode-inductively coupled plasma mass spectrometry (ICP-MS) with direct dilution[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(10): 1154-1164. (in Chinese with English abstract) | |
| [17] | 于宏洋, 王萌, 汪冰, 等. 碰撞/反应池电感耦合等离子体质谱(ICP-MS)法测定血液中16种元素[J]. 中国无机分析化学, 2024, 14(1): 131-138. |
| YU H Y, WANG M, WANG B, et al. Determination of 16 elements in blood samples by inductively coupled plasma mass spectrometry (ICP-MS) with collision/reaction cell[J]. Chinese Journal of Inorganic Analytical Chemistry, 2024, 14(1): 131-138. (in Chinese with English abstract) | |
| [18] | 张晨, 彭志兵, 罗艳玲. 超级微波消解-ICP-MS法同时测定谷物及其制品中27种微量元素[J]. 粮食科技与经济, 2022, 47(5): 79-86. |
| ZHANG C, PENG Z B, LUO Y L. Determination of 27 microelements in grain and grain products super microwave digestion coupled with inductively coupled plasma mass spectrometry[J]. Food Science and Technology and Economy, 2022, 47(5): 79-86. (in Chinese with English abstract) | |
| [19] | 郭红巧, 胡净宇, 侯艳霞, 等. 电感耦合等离子体串联质谱法测定高温合金中痕量磷和硫[J]. 冶金分析, 2021, 41(11): 1-7. |
| GUO H Q, HU J Y, HOU Y X, et al. Determination of trace phosphorus and sulfur in superalloys by inductively coupled plasma tandem mass spectrometry[J]. Metallurgical Analysis, 2021, 41(11): 1-7. (in Chinese with English abstract) | |
| [20] | 闫峻, 谢胜凯, 刘瑞萍, 等. 基于微量元素分析技术的植物菘蓝和马蓝不同部位营养元素分布及富集作用[J]. 世界核地质科学, 2020, 37(3): 215-218. |
| YAN J, XIE S K, LIU R P, et al. Distribution and enrichment of nutrients in the different parts of Isatis indigotica and Baphicacabnthus cusia(nees) Bremek based on trace element analysis[J]. World Nuclear Geoscience, 2020, 37(3): 215-218. (in Chinese with English abstract) | |
| [21] | 徐帆. 三叶青质量差异及生物活性物质基础研究[D]. 浙江: 浙江理工大学, 2022. |
| XU F. Study on the quality differences of Tetrastigma hemsleyanum and its biologically active material basis[D]. Zhejiang: Zhejiang Sci-Tech University, 2022. (in Chinese with English abstract) | |
| [22] | 任小娜, 吴鹏. ICP-MS法测定中药龙骨中7种元素的含量[J]. 福建分析测试, 2023, 32(1): 34-38. |
| REN X N, WU P. Determination of 7 elements in keel by ICP-MS[J]. Fujian Analysis & Testing, 2023, 32(1): 34-38. (in Chinese with English abstract) | |
| [23] | 戚鹏飞, 张彩霞, 张晓萍, 等. 微波消解-ICP-MS同时测定中药海藻及其混伪品中20种重金属及微量元素[J]. 中国现代应用药学, 2020, 37(20): 2481-2486. |
| QI P F, ZHANG C X, ZHANG X P, et al. Simultaneous determination of 20 heavy metals and trace elements in Sargassum pallidum and Sargassum fusiforme and its adulterants by microwave digestion-ICP-MS[J]. Chinese Journal of Modern Applied Pharmacy, 2020, 37(20): 2481-2486. (in Chinese with English abstract) | |
| [24] | 张贺, 徐园园, 王明慧, 等. 中药炮制“炭药止血”理论的现代研究进展[J]. 世界科学技术-中医药现代化, 2023, 25(4): 1502-1510. |
| ZHANG H, XU Y Y, WANG M H, et al. Modern research progress on the theory of “carbonic herbs for hemostasis” in Chinese materia medica[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2023, 25(4): 1502-1510. (in Chinese with English abstract) |
| [1] | 洪森荣, 向琼钰, 谢颖, 熊晨露, 徐晨慧, 徐璐珂, 陈荣华, 蔡红. 怀玉山三叶青烟草病毒增殖蛋白1基因克隆、亚细胞定位和组织表达分析[J]. 浙江农业学报, 2022, 34(6): 1193-1204. |
| [2] | 李戌清, 严建立, 阮松林. 三叶青炭疽病病原菌的鉴定与生物学特性[J]. 浙江农业学报, 2020, 32(11): 2009-2019. |
| [3] | 尹明华, 占学林, 徐文慧, 谢妮妮, 蔡红, 陈荣华. 三叶青种质资源遗传多样性的随机扩增多态性DNA分析[J]. 浙江农业学报, 2018, 30(11): 1839-1848. |
| [4] | 朱向荣1,2,李高阳1,2,单杨1,2,*. 近红外、中红外光谱技术在无机元素分析检测中的应用[J]. 浙江农业学报, 2015, 27(9): 1677-. |
| [5] | 钱丽华1,戴丹丽2,姜慧燕1,林蔚红3. 濒危药用植物三叶青研究进展[J]. 浙江农业学报, 2015, 27(7): 1301-. |
| [6] | 朱波1,2,华金渭1,*,程文亮1,吉庆勇1,吴剑锋3,齐川3. 不同种源三叶青农艺性状比较[J]. 浙江农业学报, 2015, 27(10): 1752-. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||