浙江农业学报 ›› 2024, Vol. 36 ›› Issue (9): 2110-2121.DOI: 10.3969/j.issn.1004-1524.20230816
展梦琪(), 苏傲雪, 侯倩, 张皓宇, 姜欣蕊, 徐艳(
)
收稿日期:
2023-06-29
出版日期:
2024-09-25
发布日期:
2024-09-30
作者简介:
徐艳,E-mail:yanxu@qdu.edu.cn通讯作者:
徐艳,E-mail:基金资助:
ZHAN Mengqi(), SU Aoxue, HOU Qian, ZHANG Haoyu, JIANG Xinrui, XU Yan(
)
Received:
2023-06-29
Online:
2024-09-25
Published:
2024-09-30
摘要:
以有机氯代污染物——林丹作为研究对象,研究其在我国典型农作物——水稻(Oryza sativa L.)体内的迁移转化和代谢情况。结果发现,在林丹胁迫条件下,水稻根和地上部的林丹含量与水培溶液中的林丹浓度具有正相关性,表明水稻具有吸收林丹的能力。在不同林丹水培浓度下,水稻根内的林丹累积浓度在第二天均达到峰值,第三天后急剧下降。水稻根系内的林丹可以径向运输至茎叶中,但转运因子仅为0.08~0.13。在亚细胞水平上,水稻根中林丹的含量从高到低依次为细胞器>细胞壁>细胞质,表明细胞器和细胞壁是水稻根部林丹累积的主要部位。代谢组学分析结果表明,林丹胁迫下,脂质类代谢物的变化最显著,有43种上调、42种下调。受林丹胁迫影响,水稻根中的异牡荆苷等代谢物的含量提高,而天冬酰胺等代谢物的含量降低,多条植物代谢通路被改变,其中,鞘脂代谢通路和苯丙氨酸代谢通路受到较大影响。
中图分类号:
展梦琪, 苏傲雪, 侯倩, 张皓宇, 姜欣蕊, 徐艳. 水稻对林丹的吸收累积与代谢组学研究[J]. 浙江农业学报, 2024, 36(9): 2110-2121.
ZHAN Mengqi, SU Aoxue, HOU Qian, ZHANG Haoyu, JIANG Xinrui, XU Yan. Uptake and accumulation of lindane in rice and its metabolomics[J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2110-2121.
图2 不同处理下水稻根部亚细胞水平(A)和茎叶(B)中的林丹含量及根中脂质含量(C)的变化 柱上无相同字母的表示差异显著(P<0.05)。
Fig.2 Changes of lindane content at rice subcellular level in root (A), lindane content in stem and leaf (B), and lipid content in root under treatments Bars marked without the same letters indicate significant difference at P<0.05.
图3 林丹胁迫下的水稻根系差异代谢物分布 FC为差异倍数,即处理组与对照组之比。下同。
Fig.3 Distribution of metabolites in rice root under lindane stress FC, Fold change, which is the ratio of the treatment grout and the control group.The same as below.
图4 林丹胁迫下水稻根系差异代谢物的桑基图 Flavonoids,黄酮类化合物;Organonitrogen compounds,有机氮化合物;Isoflavonoids,异黄酮类化合物;Carboxylic acids and derivatives,羧酸及其衍生物;Fatty Acyls,脂肪酰基;Peptidomimetics,肽模拟物;Carbohydrates and carbohydrate conjugates,碳水化合物和碳水化合物结合物;Indoles and derivatives,吲哚及其衍生物;Prenol lipids,异戊二烯脂质;Phenylpropanoic acids,苯基丙酸;Steroids and steroid derivatives,类固醇和类固醇衍生物;Diazines,二氮杂苯;Purine nucleosides,嘌呤核苷;Endogenous metabolites,内源性代谢物;Azacyclic compounds,氮杂环状化合物;Flavonoid glycosides,黄酮苷;Amines,胺;Isoflavonoid O-glycosides,异黄酮O-糖苷;Flavones,黄酮; Amino acids, peptides, and analogues,氨基酸、肽和类似物;Fatty acids and conjugates,脂肪酸和缀合物;Hybrid peptides,杂交肽;Tricarboxylic acids and derivatives,三羧酸及其衍生物;Glycosyl compounds,糖基化合物;Indoles,吲哚;Eicosanoids,类花生酸类化合物;Diterpenoids,二萜;Sesquiterpenoids,倍半萜类化合物;Androstane steroids,雄甾烷类固醇;Pyrimidines and pyrimidine derivatives,嘧啶及其衍生物;Lineolic acids and derivatives,线性酸及其偶联物;Alcohols and polyols,醇类和多元醇;NULL,未分类。
Fig.4 Sangi diagram of differential metabolites in rice root under lindane stress
图5 林丹胁迫下水稻体内丰度上调(A)和下调(B)效果显著的前10种代谢物 Isovitexin,异牡荆苷;Orientin,荭草苷;Astragalin,黄芪苷;Luteolin 7-glucoside,木犀草苷;Sphinganine,二氢鞘氨醇;Isobutyl 4-hydroxybenzoate,尼泊金异丁酯;Genistin,染料木苷;Spermine,精胺;Apigenin,芹菜素;Leucylproline,亮氨酰脯氨酸;L-Asparagine,天冬酰胺;Adenosine,腺苷;Azelaic acid,壬二酸;51-45-6,组胺;Diethanolamine,二乙醇胺;Jasmonic acid,茉莉酸;Diosgenin,皂素;Vidarabine,阿糖腺苷;2-Chloro-L-phenylalanine,2-氯-L-苯丙氨酸;5-Dehydroadenosine,嘌呤核苷类似物。
Fig.5 The top ten metabolites with significant up-regulation (A) and down-regulation (B) of abundance in rice root under lindane stress
图6 林丹胁迫下水稻代谢通路的变化 Sphingolipid metabolism,鞘脂代谢;Phenylalanine metabolism,苯丙氨酸代谢;beta-Alanine metabolism,β-丙氨酸代谢;Glyoxylate and dicarboxylate metabolism,乙醛酸和二羧酸代谢;TCA cycle,TCA循环;Pantothenate and CoA biosynthesis,泛酸和辅酶A生物合成;Alanine aspartate and glutamate metabolism,丙氨酸天冬氨酸与谷氨酸代谢;Histidine metabolism,组氨酸代谢;Butanoate metabolism,丁醇代谢;Arginine biosynthesis,精氨酸生物合成;Taurine and hypotaurine metabolism,牛磺酸与低牛磺酸代谢;Vitamin B6 metabolism,维生素B6代谢;Pyrimidine metabolism,嘧啶代谢;Palmitoyl-CoA,棕榈酰辅酶A;3-Dehydrosphinganine,3-脱氢鞘氨醇;Sphinganine,鞘氨醇;Dihydroceramide,二氢神经酰胺;N-Acylsphingosine,N-酰基鞘氨醇;Psychosine,鞘氨醇半乳糖苷;Sphingosine 1-phosphate,1-磷酸鞘氨醇;Ethanolamine phosphate,乙醇胺磷酸酯。 每一个圆圈代表一种代谢通路,圆圈越大,相关性越强,颜色越红,受影响程度越大。
Fig.6 Changes of rice metabolic pathway under lindane stress Each circle represents a metabolic pathway, and the larger the circle, the stronger the correlation, and the redder the color, the bigger influence.
[1] | 曹臻, 李军, 邴海健, 等. 我国北方地区森林土壤中有机氯农药的含量特征和空间分布研究[J]. 广东化工, 2022, 49(19): 137-141. |
CAO Z, LI J, BING H J, et al. Content characteristics and spatial distribution of organochlorine pesticides in forest soils in Northern China[J]. Guangdong Chemical Industry, 2022, 49(19): 137-141. (in Chinese with English abstract) | |
[2] | 秦丽萍. 西双版纳蔬菜地土壤有机氯农药残留现状及农业绿色发展评价[J]. 热带农业科学, 2022, 42(10): 57-62. |
QIN L P. Organochlorine pesticide residues in vegetable soil and evaluation of agricultural green development in Xishuangbanna[J]. Chinese Journal of Tropical Agriculture, 2022, 42(10): 57-62. (in Chinese with English abstract) | |
[3] | 郭子武. 笋用竹林地有机农药污染土壤微生物修复机理研究[D]. 北京: 中国林业科学研究院, 2008. |
GUO Z W. Study on bioremediation of organ-pesticides polluted soil of bamboo forest for shoot[D]. Beijing: Chinese Academy of Forestry, 2008. (in Chinese with English abstract) | |
[4] | 翁昕. 负载型Pd催化剂对氯代有机污染物的液相催化加氢脱氯研究[D]. 南京: 南京大学, 2020. |
WENG X. Catalytic hydrodechlorination of chlorinated organic pollutants over supported Pd catalysts[D]. Nanjing: Nanjing University, 2020. (in Chinese with English abstract) | |
[5] | 李君敬, 种雨彤, 唐李文, 等. 电催化还原脱氯法处理氯代有机废水研究进展[J]. 给水排水, 2021, 57(12): 158-167. |
LI J J, CHONG Y T, TANG L W, et al. Review of electrocatalytic hydrodechlorination method for treatment of chlorinated organic wastewater[J]. Water & Wastewater Engineering, 2021, 57(12): 158-167. (in Chinese with English abstract) | |
[6] | 黄琎. 负载纳米零价铁同时去除废水中重金属与氯代有机污染物[D]. 绍兴: 绍兴文理学院, 2019. |
HUANG J. Simultaneous removeal of heavy metal and chlorinated organic pollutants in wastewater by supported nanoscale zero-valent iron[D]. Shaoxing: Shaoxing University, 2019. (in Chinese with English abstract) | |
[7] | 李燕妮. Pd基催化剂对水中氯代有机污染物的加氢脱氯研究[D]. 上海: 东华大学, 2017. |
LI Y N. Study on hydrogenation and dechlorination of chlorinated organic pollutants in water by Pd-based catalysts[D]. Shanghai: Donghua University, 2017. (in Chinese with English abstract) | |
[8] | 崔健, 都基众, 马宏伟, 等. 沈阳市城郊表层土壤有机污染评价[J]. 生态学报, 2012, 32(24): 7874-7882. |
CUI J, DU J Z, MA H W, et al. Assessment of organic pollution for surface soil in Shenyang suburbs[J]. Acta Ecologica Sinica, 2012, 32(24): 7874-7882. (in Chinese with English abstract) | |
[9] | YANG K X, KONG Y J, HUANG L Z, et al. Catalytic elimination of chlorinated organic pollutants by emerging single-atom catalysts[J]. Chemical Engineering Journal, 2022, 450: 138467. |
[10] | 王玉红. 紫花苜蓿(Medicago sativa)对有机氯农药DDT污染土壤的修复研究[D]. 南京: 南京林业大学, 2006. |
WANG Y H. Remediation of DDTs contaminated soil by Medicago sativa[D]. Nanjing: Nanjing Forestry University, 2006. (in Chinese with English abstract) | |
[11] | 赵起越, 夏夜, 邹本东. 土壤中有机氯农药的前处理方法[J]. 分析试验室, 2022, 41(10): 1234-1240. |
ZHAO Q Y, XIA Y, ZOU B D. Pretreatment of organochlorine pesticides in soil[J]. Chinese Journal of Analysis Laboratory, 2022, 41(10): 1234-1240. (in Chinese with English abstract) | |
[12] | 朱乐东. 生物酶作用下典型有机氯代污染物的降解和代谢活化机理研究[D]. 济南: 山东大学, 2021. |
ZHU L D. Study on degradation and metabolism activation mechanism of typical organochlorinated pollutants under the action of biological enzymes[D]. Jinan: Shandong University, 2021. (in Chinese with English abstract) | |
[13] | 傅婉秋, 谢星光, 戴传超, 等. 植物-微生物联合对环境有机污染物降解的研究进展[J]. 微生物学通报, 2017, 44(4): 929-939. |
FU W Q, XIE X G, DAI C C, et al. Progress in the degradation of environmental organic pollutants by plant-microorganism combination[J]. Microbiology China, 2017, 44(4): 929-939. (in Chinese with English abstract) | |
[14] | 刘贝贝, 陈歆, 陈淼, 等. 根系分泌物在土壤有机污染物降解中的作用[J]. 热带农业科学, 2013, 33(10): 47-52. |
LIU B B, CHEN X, CHEN M, et al. Role of root exudates in the degradation of organic pollutants in soils[J]. Chinese Journal of Tropical Agriculture, 2013, 33(10): 47-52. (in Chinese with English abstract) | |
[15] | 张福金. 老化HCH-DDT污染土壤的作物自修复及其机理研究[D]. 呼和浩特: 内蒙古大学, 2013. |
ZHANG F J. Study on the process of crops self-remediation and its phytoremediation mechanism in soils contaminated by ageing HCH/DDT[D]. Hohhot: Inner Mongolia University, 2013. (in Chinese with English abstract) | |
[16] |
MATTINA M J, IANNUCCI-BERGER W, DYKAS L. Chlordane uptake and its translocation in food crops[J]. Journal of Agricultural and Food Chemistry, 2000, 48(5): 1909-1915.
DOI PMID |
[17] | HUELSTER A, MUELLER J F, MARSCHNER H. Soil-plant transfer of polychlorinated dibenzo-p-dioxins and dibenzofurans to vegetables of the cucumber family (Cucurbitaceae)[J]. Environmental Science & Technology, 1994, 28(6): 1110-1115. |
[18] | WHITE J C, PARRISH Z D, ISLEYEN M, et al. Uptake of weathered p, p’-DDE by plant species effective at accumulating soil elements[J]. Microchemical Journal, 2005, 81(1): 148-155. |
[19] | MIGLIORANZA K S B, AIZPÚN DE MORENO J E, MORENO V J, et al. Fate of organochlorine pesticides in soils and terrestrial biota of “Los Padres” pond watershed, Argentina[J]. Environmental Pollution, 1999, 105(1): 91-99. |
[20] | BURKEN J G. Uptake and metabolism of organic compounds: green-liver model[M]//MCCUTCHEON S C, SCHNOOR J L. Phytoremediation: transformation and control of contaminants. New York: John Wiley & Sons, Inc. 2003: 59-84. |
[21] | BEATH J M. Consider phyto remediation for waste site cleanup[J]. Chemical Engineering Progress, 2000, 96(7):61-69. |
[22] | HAHAM H, OREN A, CHEFETZ B. Insight into the role of dissolved organic matter in sorption of sulfapyridine by semiarid soils[J]. Environmental Science & Technology, 2012, 46(21): 11870-11877. |
[23] | 王志刚, 徐晓燕. 有机污染土壤植物修复机理的研究现状[J]. 环境科学与技术, 2006, 29(2): 106-108. |
WANG Z G, XU X Y. Mechanism of phytoremediation for organic contaminated soil[J]. Environmental Science & Technology, 2006, 29(2): 106-108. (in Chinese with English abstract) | |
[24] | 刘细祥. 六氯苯在植物中分布及吸收积累机理研究[D]. 武汉: 华中科技大学, 2008. |
LIU X X. Studies on distribution, uptake and accumulation progress of hexachlorobenzene in plants[D]. Wuhan: Huazhong University of Science and Technology, 2008. (in Chinese with English abstract) | |
[25] | 万大娟, 贾晓珊, 陈娴. 多氯代有机污染物胁迫下植物某些根系分泌物的变化[J]. 中山大学学报(自然科学版), 2007, 46(1): 110-113. |
WAN D J, JIA X S, CHEN X. Effects of PCOPs on some root exudates of plants[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2007, 46(1): 110-113. (in Chinese with English abstract) | |
[26] | 李昊聪. 戊唑醇胁迫下水稻植株的代谢响应及其对稻米品质影响[D]. 镇江: 江苏大学, 2022. |
LI H C. Metabolic response of rice plants under tebuconazole stress and its effect on rice quality[D]. Zhenjiang: Jiangsu University, 2022. (in Chinese with English abstract) | |
[27] | PHILLIPS L A, GERMIDA J J, FARRELL R E, et al. Hydrocarbon degradation potential and activity of endophytic bacteria associated with prairie plants[J]. Soil Biology and Biochemistry, 2008, 40(12): 3054-3064. |
[28] | ZHAO L J, XIE J F, ZHANG H, et al. Changes in metabolites in maize seedlings under chlorsulfuron and cadmium stress[J]. The Journal of Agricultural Science, 2016, 154(5): 890-913. |
[29] | NAVARRO-REIG M, JAUMOT J, PIÑA B, et al. Metabolomic analysis of the effects of cadmium and copper treatment in Oryza sativa L. using untargeted liquid chromatography coupled to high resolution mass spectrometry and all-ion fragmentation[J]. Metallomics: Integrated Biometal Science, 2017, 9(6): 660-675. |
[30] | ZHANG H L, LU L, ZHAO X P, et al. Metabolomics reveals the “invisible” responses of spinach plants exposed to CeO2 nanoparticles[J]. Environmental Science & Technology, 2019, 53(10): 6007-6017. |
[31] | 谭冬飞. 全氟烷基酸农用水中分布及对大豆叶片代谢效应[D]. 沈阳: 沈阳农业大学, 2018. |
TAN D F. The distribution of perfluorocompound water in agriculture and its effect on metabolism of soybean leaves[D]. Shenyang: Shenyang Agricultural University, 2018. (in Chinese with English abstract) | |
[32] |
KUMAR R, BOHRA A, PANDEY A K, et al. Metabolomics for plant improvement: status and prospects[J]. Frontiers in Plant Science, 2017, 8: 1302.
DOI PMID |
[33] | 赵明丽. 低氮胁迫下野大豆(Glycine soja Sieb. et Zucc.)幼苗叶片生理特性及代谢组学研究[D]. 长春: 东北师范大学, 2020. |
ZHAO M L. Physiological characteristics and metabolomics reveal the tolerance mechanism to low nitrogen in Glycine soja Sieb. et Zucc. seedling leaves[D]. Changchun: Northeast Normal University, 2020. (in Chinese with English abstract) | |
[34] | 李小青. 化学农药对青菜及其根际微环境的影响机制研究[D]. 桂林: 桂林理工大学, 2021. |
LI X Q. Effect of chemical pesticides on plant tissues and rhizospheric environment[D]. Guilin: Guilin University of Technology, 2021. (in Chinese with English abstract) | |
[35] | 华欣. 林丹对秀丽隐杆线虫的毒性效应及作用机制研究[D]. 兰州: 兰州交通大学, 2020. |
HUA X. Toxicological effects and mechanism of pesticide lindane on nematode caenorhabditis elegans[D]. Lanzhou: Lanzhou Jiatong University, 2020. (in Chinese with English abstract) | |
[36] | HUANG S D, TAN L, ZHU H, et al. Root damages induced by extended phytotoxic effects of cadmium pre-exposure against subsequent lindane uptake in rice seedlings[J]. Environmental and Experimental Botany, 2021, 189: 104553. |
[37] | HUANG S D, SHENG G D. Lindane uptake and translocation by rice seedlings (Oryza sativa L.) under different culture patterns and triggered biomass re-allocation[J]. Chemosphere, 2021, 262: 127831. |
[38] | 张生盛. 氮源对斜生栅藻生长及脂质积累影响[D]. 南宁: 广西大学, 2021. |
ZHANG S S. Effects of nitrogen sources on growth and lipid accumulation of Scenedesmus obliquus[D]. Nanning: Guangxi University, 2021. (in Chinese with English abstract) | |
[39] | 孙彩丽. 卷枝毛霉利用外源油积累脂质的机制研究[D]. 淄博: 山东理工大学, 2021. |
SUN C L. Study on the mechanism of lipid accumulation by exogenous oil in Mucor circinelloides[D]. Zibo: Shandong University of Technology, 2021. (in Chinese with English abstract) | |
[40] |
VASILEV N, BOCCARD J, LANG G, et al. Structured plant metabolomics for the simultaneous exploration of multiple factors[J]. Scientific Reports, 2016, 6: 37390.
DOI PMID |
[41] |
ZELENA E, DUNN W B, BROADHURST D, et al. Development of a robust and repeatable UPLC-MS method for the long-term metabolomic study of human serum[J]. Analytical Chemistry, 2009, 81(4): 1357-1364.
DOI PMID |
[42] |
WANT E J, MASSON P, MICHOPOULOS F, et al. Global metabolic profiling of animal and human tissues via UPLC-MS[J]. Nature Protocols, 2013, 8(1): 17-32.
DOI PMID |
[43] | 张俪倢. 水稻对典型有机磷酸酯的吸收、迁移及转化研究[D]. 大连: 大连理工大学, 2021. |
ZHANG L J. Uptake, translocation, and biotransformation of organophosphate esters in rice (Oryza Sativa L.)[D]. Dalian: Dalian University of Technology, 2021. (in Chinese with English abstract) | |
[44] | 陈冬升. 多环芳烃在植物体内的亚细胞分配[D]. 南京: 南京农业大学, 2009. |
CHEN D S. Subcellular distribution of polycyclic aromatic hydrocarbons in plants[D]. Nanjing: Nanjing Agricultural University, 2009. (in Chinese with English abstract) | |
[45] | 陈冬升, 凌婉婷, 张翼, 等. 几种植物根亚细胞中菲的分配[J]. 环境科学, 2010, 31(5): 1339-1344. |
CHEN D S, LING W T, ZHANG Y, et al. Subcellular distribution of phenanthrene in plant root tissues[J]. Environmental Science, 2010, 31(5): 1339-1344. (in Chinese with English abstract) | |
[46] | 胡蓓蓓. 有机磷酸酯(OPEs)在土壤-植物系统中的吸收、转运和迁移行为研究[D]. 广州: 中国科学院广州地球化学研究所, 2021. |
HU B B. Studies on the uptake, transformation and migration of organophosphorus esters (OPEs) in the soil-plant systems[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2021. (in Chinese with English abstract) | |
[47] | 鞠超. 小麦植株对七种农药的吸收、转运及其机制[D]. 杭州: 浙江大学, 2020. |
JU C. Uptake, translocation of seven pesticides by wheat plant and their mechanisms[D]. Hangzhou: Zhejiang University, 2020. (in Chinese with English abstract) | |
[48] | 沈小明, 王梅农, 代静玉. 不同浓度条件下玉米吸收菲的水培实验研究[J]. 农业环境科学学报, 2006, 25(5): 1148-1152. |
SHEN X M, WANG M N, DAI J Y. Uptake of phenanthrene by maize from hydroponic solutions with different concentrations[J]. Journal of Agro-Environment Science, 2006, 25(5): 1148-1152. (in Chinese with English abstract) | |
[49] | COLLINS C, FRYER M, GROSSO A. Plant uptake of non ionic organic chemicals[J]. Environmental Science & Technology, 2006, 40(1): 45-52. |
[50] | 赵刘清. 三唑类手性杀菌剂氟环唑和戊唑醇对蔬菜代谢组和脂质组的立体选择性影响[D]. 北京: 中国农业科学院, 2021. |
ZHAO L Q. Stereoselective effect of chiral triazole fungicides epoxiconazole and tebuconazole on the metabolism and lipid metabolism of vegetables[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. (in Chinese with English abstract) | |
[51] | 鲁士民. 黄酮类化合物在植物生理中的效应[J]. 植物生理学通讯, 1981, 17(2): 17-20. |
LU S M. Effects of flavonoids on plant physiology[J]. Plant Physiology Communications, 1981, 17(2): 17-20. (in Chinese) | |
[52] | 庄林武. 芹菜叶黄酮类化合物分离纯化及其结构鉴定[D]. 扬州: 扬州大学, 2016. |
ZHUANG L W. Isolation, purification and structural identification of flavonoids from celery leaves[D]. Yangzhou: Yangzhou University, 2016. (in Chinese with English abstract) | |
[53] |
LIU Z H, LIU Y X, PU Z E, et al. Regulation, evolution, and functionality of flavonoids in cereal crops[J]. Biotechnology Letters, 2013, 35(11): 1765-1780.
DOI PMID |
[54] | 刘润华, 江文波, 余迪求. 植物鞘脂的结构、代谢途径及其功能[J]. 植物学报, 2009, 44(5): 619-628. |
LIU R H, JIANG W B, YU D Q. Structure, metabolic pathway and function of sphingolipids in plants[J]. Chinese Bulletin of Botany, 2009, 44(5): 619-628. (in Chinese with English abstract) | |
[55] | 钟宛儒, 金君, 辛树权. 多胺提升植物抗逆境能力研究[J]. 长春师范大学学报, 2022, 41(10): 113-118. |
ZHONG W R, JIN J, XIN S Q. Research on polyamines improving plant resilience to stress[J]. Journal of Changchun Normal University, 2022, 41(10): 113-118. (in Chinese with English abstract) | |
[56] | 汤章城. 逆境条件下植物脯氨酸的累积及其可能的意义[J]. 植物生理学通讯, 1984, 20(1): 15-21. |
TANG Z C. Accumulation of proline in plants under adversity and its possible significance[J]. Plant Physiology Communications, 1984, 20(1): 15-21. (in Chinese) | |
[57] | 秦如意. 天冬酰胺合成酶OsASN1对水稻生长发育和代谢的影响[D]. 南京: 南京农业大学, 2020. |
QIN R Y. Effects of asparagine synthase OsASN1 on development and metabolism of rice[D]. Nanjing: Nanjing Agricultural University, 2020. (in Chinese with English abstract) | |
[58] | KOZHEVNIKOVA A D, SEREGIN I V, ERLIKH N T, et al. Histidine-mediated xylem loading of zinc is a species-wide character in Noccaea caerulescens[J]. The New Phytologist, 2014, 203(2): 508-519. |
[59] | 王翔, 汤承浩, 谭荣, 等. 酰胺类化合物的合成及农药生物活性研究进展[J]. 精细化工中间体, 2016, 46(6): 7-14. |
WANG X, TANG C H, TAN R, et al. Recent advances in the study on synthesis and pesticide activity of amide derivatives[J]. Fine Chemical Intermediates, 2016, 46(6): 7-14. (in Chinese with English abstract) | |
[60] | 王浩, 张松杰, 李航, 等. 植物壬二酸的研究进展[J]. 植物生理学报, 2022, 58(3): 483-491. |
WANG H, ZHANG S J, LI H, et al. Research progress of azelaic acid in plants[J]. Plant Physiology Journal, 2022, 58(3): 483-491. (in Chinese with English abstract) | |
[61] |
HOWE G A, JANDER G. Plant immunity to insect herbivores[J]. Annual Review of Plant Biology, 2008, 59: 41-66.
PMID |
[62] | 秦晶晶, 孙春玉, 张美萍, 等. 植物UDP-糖基转移酶分类、功能以及进化[J]. 基因组学与应用生物学, 2018, 37(1): 440-450. |
QIN J J, SUN C Y, ZHANG M P, et al. Classification, function and evolution of plant UDP-glycosyltransferase[J]. Genomics and Applied Biology, 2018, 37(1): 440-450. (in Chinese with English abstract) | |
[63] | 何方成. 含磺胺取代嘌呤核苷类衍生物的设计合成和抗植物病毒活性及其作用机制研究[D]. 贵阳: 贵州大学, 2019. |
HE F C. Design and synthesis of sulphonamine-containing substituted purine nucleosides derivatives and study on their anti-plant virus activity and mechanism of action[D]. Guiyang: Guizhou University, 2019. (in Chinese with English abstract) | |
[64] |
MAHDAVI V, FARIMANI M M, FATHI F, et al. A targeted metabolomics approach toward understanding metabolic variations in rice under pesticide stress[J]. Analytical Biochemistry, 2015, 478: 65-72.
DOI PMID |
[65] | 李贺欢. 鞘脂代谢调控油菜生长和抗非生物逆境研究[D]. 武汉: 华中农业大学, 2018. |
LI H H. Regulation of growth and abiotic stress tolerance by sphingolipid metabolism in Brassica napus L.[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese with English abstract) | |
[66] | GUO Q Q, HE Z Y, LIU X W, et al. High-throughput non-targeted metabolomics study of the effects of perfluorooctane sulfonate (PFOS) on the metabolic characteristics of A. thaliana leaves[J]. Science of the Total Environment, 2020, 710: 135542. |
[1] | 吴浩峰, 林朝阳, 沈志成. 耐草甘膦和啶嘧磺隆的转基因水稻研究[J]. 浙江农业学报, 2024, 36(9): 1957-1968. |
[2] | 邵亚旭, 刘涛, 王事成, 晏磊. 秸秆-有机肥育秧基质的配比筛选与成型工艺[J]. 浙江农业学报, 2024, 36(8): 1856-1866. |
[3] | 董爱琴, 陈院华, 杨涛, 徐昌旭, 程丽群, 谢杰. 紫云英和石灰配施对水稻镉吸收的影响[J]. 浙江农业学报, 2024, 36(3): 600-612. |
[4] | 郑涵, 丁文金, 何招亮, 侯凡, 戴彬凤, 钟列权, 张海鹏, 杨勇. 穗分化期高温对水稻生长发育的影响及缓解措施研究进展[J]. 浙江农业学报, 2024, 36(2): 470-480. |
[5] | 杨西帆, 郭彬, 裘高扬, 刘俊丽, 童文彬, 杨海峻, 祝伟东, 毛聪妍. 不同钝化产品对水稻生产中镉、铅、砷的钝化效果[J]. 浙江农业学报, 2024, 36(1): 1-8. |
[6] | 罗英杰, 崔维军, 王忠华, 吴月燕, 林宏友, 周洁, 严成其, 王栩鸣. 水稻泛素连接酶D3与抗病相关蛋白VOZ2的互作分析[J]. 浙江农业学报, 2024, 36(1): 9-17. |
[7] | 张思雨, 林朝阳, 叶雨轩, 沈志成. 转cry1Ab-vip3Af2和cp4-epsps基因的抗虫耐除草剂水稻的研究[J]. 浙江农业学报, 2023, 35(8): 1823-1833. |
[8] | 杨坤, 侯冠军, 赵秀侠, 方婷, 王利军. 水生动植物协同净化系统对鳜鱼养殖池塘水质与经济效益的影响[J]. 浙江农业学报, 2023, 35(7): 1709-1719. |
[9] | 王鑫彤, 万祖粱, 杨振中, 王国骄. 秸秆秋季湿耙还田对水稻不同生育时期叶片-土壤生态化学计量特征的影响[J]. 浙江农业学报, 2023, 35(6): 1243-1252. |
[10] | 张雪楠, 王乐乐, 钮铭轩, 詹妮, 任浩杰, 徐浩聪, 杨昆, 武立权, 柯健, 尤翠翠, 何海兵. 基于叶片反射光谱和叶绿素荧光估测水稻叶片含水量[J]. 浙江农业学报, 2023, 35(6): 1265-1277. |
[11] | 柴冠群, 周玮, 梁红, 范菲菲, 朱大雁, 范成五. 叶面喷施锌肥和柠檬酸对辣椒产量、品质与Cd吸收转运的影响[J]. 浙江农业学报, 2023, 35(5): 1069-1079. |
[12] | 张超正, 张旭鹏, 陈丹玲. 劳动力老龄化、耕地细碎化必然导致水稻生产成本增加吗?——基于鄂东南地区的微观调查[J]. 浙江农业学报, 2023, 35(5): 1211-1222. |
[13] | 夏小东, 张晓波, 施勇烽, 许如根. 水稻致死突变体基因克隆与分子机制研究进展[J]. 浙江农业学报, 2023, 35(5): 1223-1234. |
[14] | 蒋莹莹, 张华, 雷志伟, 徐恒, 张恒, 朱英. 茉莉酸信号关键转录因子OsMYC2影响水稻愈伤诱导和分化的功能初探[J]. 浙江农业学报, 2023, 35(5): 973-982. |
[15] | 张斌, 冯晓庆, 郑芊, 陈稳, 滕杰. 抑制OsPUT5基因表达降低水稻低温抗性[J]. 浙江农业学报, 2023, 35(4): 780-788. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||