浙江农业学报 ›› 2023, Vol. 35 ›› Issue (6): 1243-1252.DOI: 10.3969/j.issn.1004-1524.2023.06.02
收稿日期:
2022-08-01
出版日期:
2023-06-25
发布日期:
2023-07-04
通讯作者:
*王国骄,E-mail:2001500024@syau.edu.cn
作者简介:
王鑫彤(1999—),男,辽宁喀左人,硕士研究生,研究方向为农业生态学。E-mail:18340583195@163.com
基金资助:
WANG Xintong(), WAN Zuliang, YANG Zhenzhong, WANG Guojiao*(
)
Received:
2022-08-01
Online:
2023-06-25
Published:
2023-07-04
摘要:
为提高土壤肥力、充分利用秸秆资源,探究秸秆秋季湿耙还田对水稻叶片和土壤碳(C)、氮(N)、磷(P)化学计量特征的影响及其与产量的关系,在辽宁省盘锦市采用随机区组设计,设置秸秆不还田(CK)、1年秸秆秋季湿耙还田(S1)和连续2年秸秆秋季湿耙还田(S2)处理,测定不同生育时期水稻叶片和土壤C、N、P含量,并计算其化学计量比。结果表明:S1和S2处理水稻成熟期的土壤有机碳含量分别比CK显著(P<0.05)提高8.71%和28.36%。S1、S2处理各生育时期的土壤全磷含量均显著高于CK,S2处理分蘖期和成熟期的土壤全氮含量显著高于CK。与CK相比,S1处理各生育时期的土壤碳磷比(C∶P)均显著降低,而S2处理仅拔节期的土壤C∶P显著降低。各处理的土壤氮磷比(N∶P)为2.02~2.74,除成熟期外,其余生育时期各处理的土壤N∶P均表现为S1<S2<CK,且各处理间差异显著。水稻叶片的C、N、P含量未受秸秆还田的显著影响,叶片N∶P为8.68~11.50。叶片碳氮比(C∶N)、C∶P与土壤有机碳、全氮呈显著正相关。与CK相比,S2处理显著提高了水稻的理论产量和实测产量。水稻产量与土壤有机碳、全氮、土壤C∶P和土壤C∶N呈极显著(P<0.01)正相关,与水稻叶片的生态化学计量特征无显著相关性。综上,短期连续秸秆秋季湿耙还田有利于提高稻田土壤的养分含量和水稻产量,但相对较低的叶片和土壤N∶P表明试验区域水稻生长受N限制,因此应在秸秆还田的基础上加强氮肥管理以确保水稻的稳产增产。
中图分类号:
王鑫彤, 万祖粱, 杨振中, 王国骄. 秸秆秋季湿耙还田对水稻不同生育时期叶片-土壤生态化学计量特征的影响[J]. 浙江农业学报, 2023, 35(6): 1243-1252.
WANG Xintong, WAN Zuliang, YANG Zhenzhong, WANG Guojiao. Effects of rice straw returning to fields by wet harrow in autumn on leaf-soil ecological stoichiometry of rice at different growth stages[J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1243-1252.
处理 Treatment | 有机碳 Organic carbon/ (g·kg-1) | 全氮 Total nitrogen/ (g·kg-1) | 全磷 Total phosphorus/ (g·kg-1) | 全钾 Total potassium/ (g·kg-1) | 硝态氮 Nitrate nitrogen/ (mg·kg-1) | 铵态氮 Ammonium nitrogen/ (mg·kg-1) | 有效磷 Available phosphorus/ (mg·kg-1) | 速效钾 Available potassium/ (mg·kg-1) |
---|---|---|---|---|---|---|---|---|
CK | 15.81±0.74 | 1.60±0.04 | 0.65±0.02 | 22.37±0.38 | 14.84±0.61 | 3.14±0.12 | 40.23±1.56 | 283.04±5.16 |
S1 | 15.92±0.14 | 1.60±0.05 | 0.71±0.02 | 22.88±0.43 | 16.40±0.87 | 3.34±0.15 | 39.86±2.06 | 320.26±5.75 |
S2 | 17.05±0.14 | 1.69±0.04 | 0.73±0.03 | 22.94±0.34 | 16.20±0.69 | 3.41±0.21 | 40.93±2.15 | 326.82±2.52 |
表1 供试土壤的基本理化性质
Table 1 Basic physiochemical properties of test soils
处理 Treatment | 有机碳 Organic carbon/ (g·kg-1) | 全氮 Total nitrogen/ (g·kg-1) | 全磷 Total phosphorus/ (g·kg-1) | 全钾 Total potassium/ (g·kg-1) | 硝态氮 Nitrate nitrogen/ (mg·kg-1) | 铵态氮 Ammonium nitrogen/ (mg·kg-1) | 有效磷 Available phosphorus/ (mg·kg-1) | 速效钾 Available potassium/ (mg·kg-1) |
---|---|---|---|---|---|---|---|---|
CK | 15.81±0.74 | 1.60±0.04 | 0.65±0.02 | 22.37±0.38 | 14.84±0.61 | 3.14±0.12 | 40.23±1.56 | 283.04±5.16 |
S1 | 15.92±0.14 | 1.60±0.05 | 0.71±0.02 | 22.88±0.43 | 16.40±0.87 | 3.34±0.15 | 39.86±2.06 | 320.26±5.75 |
S2 | 17.05±0.14 | 1.69±0.04 | 0.73±0.03 | 22.94±0.34 | 16.20±0.69 | 3.41±0.21 | 40.93±2.15 | 326.82±2.52 |
图1 不同处理对土壤有机碳、全氮、全磷含量的影响 柱上无相同大写字母的表示同一时期不同处理间存在显著(P<0.05)差异,无相同小写字母的表示同一处理不同时期间存在显著(P<0.05)差异。下同。
Fig.1 Effects of different treatments on contents of organic carbon, total nitrogen and total phosphorus in soil Bars marked without the same uppercase letters indicate significant (P<0.05) differences within treatments at the same growth stage, while bars marked without the same lowercase letters indicate significant (P<0.05) differences within different stages under the same treatment. The same as below.
生育时期Growth stage | 处理Treatment | C/(g·kg-1) | N/(g·kg-1) | P/(g·kg-1) |
---|---|---|---|---|
分蘖期Tillering | CK | 507.24±25.99 Aa | 46.73±1.78 Aa | 4.27±0.40 Aa |
S1 | 503.00±25.77 Aa | 48.71±1.02 Aa | 4.24±0.29 Aa | |
S2 | 509.68±16.16 Aa | 47.25±1.56 Aa | 4.23±0.16 Aa | |
拔节期Jointing | CK | 524.31±24.70 Aa | 37.08±1.53 Ab | 3.81±0.09 Ab |
S1 | 520.38±26.96 Aa | 39.48±1.85 Ab | 3.79±0.20 Ab | |
S2 | 534.95±25.65 Aa | 39.67±1.02 Ab | 4.04±0.19 Ab | |
抽穗期Heading | CK | 524.89±17.60 Aa | 28.45±1.76 Ac | 2.80±0.12 Ac |
S1 | 530.01±25.19 Aa | 27.94±1.25 Ac | 2.65±0.08 Ac | |
S2 | 508.13±20.24 Aa | 28.25±1.67 Ac | 2.86±0.12 Ac | |
成熟期Maturity | CK | 529.07±20.92 Aa | 18.79±1.4 Ad | 2.02±0.10 Ad |
S1 | 526.97±21.53 Aa | 16.80±0.85 Bd | 1.95±0.15 Ad | |
S2 | 504.75±23.48 Aa | 17.93±0.41 ABd | 1.96±0.22 Ad |
表2 不同处理对水稻叶片碳、氮、磷含量的影响
Table 2 Effect of different treatments on C, N, P contents of leaves
生育时期Growth stage | 处理Treatment | C/(g·kg-1) | N/(g·kg-1) | P/(g·kg-1) |
---|---|---|---|---|
分蘖期Tillering | CK | 507.24±25.99 Aa | 46.73±1.78 Aa | 4.27±0.40 Aa |
S1 | 503.00±25.77 Aa | 48.71±1.02 Aa | 4.24±0.29 Aa | |
S2 | 509.68±16.16 Aa | 47.25±1.56 Aa | 4.23±0.16 Aa | |
拔节期Jointing | CK | 524.31±24.70 Aa | 37.08±1.53 Ab | 3.81±0.09 Ab |
S1 | 520.38±26.96 Aa | 39.48±1.85 Ab | 3.79±0.20 Ab | |
S2 | 534.95±25.65 Aa | 39.67±1.02 Ab | 4.04±0.19 Ab | |
抽穗期Heading | CK | 524.89±17.60 Aa | 28.45±1.76 Ac | 2.80±0.12 Ac |
S1 | 530.01±25.19 Aa | 27.94±1.25 Ac | 2.65±0.08 Ac | |
S2 | 508.13±20.24 Aa | 28.25±1.67 Ac | 2.86±0.12 Ac | |
成熟期Maturity | CK | 529.07±20.92 Aa | 18.79±1.4 Ad | 2.02±0.10 Ad |
S1 | 526.97±21.53 Aa | 16.80±0.85 Bd | 1.95±0.15 Ad | |
S2 | 504.75±23.48 Aa | 17.93±0.41 ABd | 1.96±0.22 Ad |
生育时期Growth stage | 处理Treatment | 碳氮比C/N ratio | 碳磷比C/P ratio | 氮磷比N/P ratio |
---|---|---|---|---|
分蘖期Tillering | CK | 10.85±0.14 Ad | 119.07±5.05 Ad | 10.98±0.61 Aa |
S1 | 10.32±0.31 Bd | 118.59±1.91 Ad | 11.50±0.54 Aa | |
S2 | 10.79±0.02 Ad | 120.38±0.76 Ad | 11.16±0.06 Aa | |
拔节期Jointing | CK | 14.14±0.08 Ac | 137.59±3.22 Ac | 9.73±0.17 Bbc |
S1 | 13.18±0.07 Bc | 137.20±0.29 Ac | 10.41±0.07 Ab | |
S2 | 13.48±0.30 Bc | 132.46±0.03 Bc | 9.83±0.22 Bb | |
抽穗期Heading | CK | 18.47±0.53 ABb | 187.66±1.79 Bb | 10.16±0.19 ABb |
S1 | 18.97±0.05 Ab | 199.60±3.74 Ab | 10.52±0.17 Ab | |
S2 | 18.00±0.35 Bb | 177.87±0.22 Cb | 9.88±0.18 Bb | |
成熟期Maturity | CK | 28.20±0.75 Ba | 262.09±2.65 Aa | 9.30±0.15 Ac |
S1 | 31.22±0.29 Aa | 271.13±9.53 Aa | 8.68±0.22 Ac | |
S2 | 28.14±0.67 Ba | 258.93±17.27 Aa | 9.21±0.84 Ac |
表3 不同处理对水稻叶片生态化学计量特征的影响
Table 3 Effect of different treatments on ecological stoichiometry of rice leaves
生育时期Growth stage | 处理Treatment | 碳氮比C/N ratio | 碳磷比C/P ratio | 氮磷比N/P ratio |
---|---|---|---|---|
分蘖期Tillering | CK | 10.85±0.14 Ad | 119.07±5.05 Ad | 10.98±0.61 Aa |
S1 | 10.32±0.31 Bd | 118.59±1.91 Ad | 11.50±0.54 Aa | |
S2 | 10.79±0.02 Ad | 120.38±0.76 Ad | 11.16±0.06 Aa | |
拔节期Jointing | CK | 14.14±0.08 Ac | 137.59±3.22 Ac | 9.73±0.17 Bbc |
S1 | 13.18±0.07 Bc | 137.20±0.29 Ac | 10.41±0.07 Ab | |
S2 | 13.48±0.30 Bc | 132.46±0.03 Bc | 9.83±0.22 Bb | |
抽穗期Heading | CK | 18.47±0.53 ABb | 187.66±1.79 Bb | 10.16±0.19 ABb |
S1 | 18.97±0.05 Ab | 199.60±3.74 Ab | 10.52±0.17 Ab | |
S2 | 18.00±0.35 Bb | 177.87±0.22 Cb | 9.88±0.18 Bb | |
成熟期Maturity | CK | 28.20±0.75 Ba | 262.09±2.65 Aa | 9.30±0.15 Ac |
S1 | 31.22±0.29 Aa | 271.13±9.53 Aa | 8.68±0.22 Ac | |
S2 | 28.14±0.67 Ba | 258.93±17.27 Aa | 9.21±0.84 Ac |
处理 Treatment | 穗数 Ear number/ (104 hm-2) | 穗粒数 Number of spikes | 千粒重 Thousand seeds weight/g | 结实率 Seeding rate/% | 理论产量 Theoretical yield/(t·hm-2) | 实测产量 Actual yield/ (t·hm-2) |
---|---|---|---|---|---|---|
CK | 498.14±22.49 A | 123.30±4.48 A | 24.08±0.81 B | 85.05±0.62 B | 12.47±0.15 B | 11.82±0.16 B |
S1 | 500.89±25.24 A | 113.16±1.93 B | 24.97±0.15 A | 88.11±0.53 A | 12.31±0.16 B | 11.58±0.18 B |
S2 | 526.68±20.12 A | 117.72±4.61 AB | 23.90±0.47 B | 87.52±1.72 A | 13.20±0.14 A | 12.52±0.20 A |
表4 不同处理对水稻产量及其构成因素的影响
Table 4 Effects of different treatments on on grain yield and its components
处理 Treatment | 穗数 Ear number/ (104 hm-2) | 穗粒数 Number of spikes | 千粒重 Thousand seeds weight/g | 结实率 Seeding rate/% | 理论产量 Theoretical yield/(t·hm-2) | 实测产量 Actual yield/ (t·hm-2) |
---|---|---|---|---|---|---|
CK | 498.14±22.49 A | 123.30±4.48 A | 24.08±0.81 B | 85.05±0.62 B | 12.47±0.15 B | 11.82±0.16 B |
S1 | 500.89±25.24 A | 113.16±1.93 B | 24.97±0.15 A | 88.11±0.53 A | 12.31±0.16 B | 11.58±0.18 B |
S2 | 526.68±20.12 A | 117.72±4.61 AB | 23.90±0.47 B | 87.52±1.72 A | 13.20±0.14 A | 12.52±0.20 A |
图3 土壤-叶片碳氮磷含量、生态化学计量特征与水稻产量的相关性 C,土壤有机碳;N,土壤全氮;P,土壤全磷;C∶N,土壤碳氮比;C∶P,土壤碳磷比;N∶P,土壤氮磷比;LC,水稻叶片C含量;LN,水稻叶片N含量;LP,水稻叶片P含量;LC∶N,水稻叶片碳氮比;LC∶P,水稻叶片碳磷比;LN∶P,水稻叶片氮磷比;T,理论产量;A,实测产量。“*”“**”分别表示相关性在P<0.05、P<0.01水平下显著。
Fig.3 Correlation within soil-leaf carbon, nitrogen and phosphorus contents, stoichiometric characteristics and rice yield C, Soil organic carbon; N, Soil total nitrogen; P, Soil total phosphorus; C∶N, C/N ratio of soil; C∶P, C/P ratio of soil; N∶P, N/P ratio of soil; LC, C content of rice leaves; LN, N content of rice leaves; LP, P content of rice leaves; LC∶N, C/N ratio of rice leaves; LC∶P, C/P ratio of rice leaves; LN∶P, N/P ratio of rice leaves; T, Theoretical yield; A, Actual yield. “*” “**” represent significant correlations at P<0.05 and P<0.01, respectively.
[1] | CHAI R S, HUANG J, LUO L C, et al. Distribution of rice straw phosphorus resources in China and its utilization potential under straw return[J]. Chinese Journal of Eco-Agriculture, 2021, 29(6): 1095-1104. |
[2] | 李亚鑫, 张娟霞, 刘伟刚, 等. 玉米秸秆还田配施氮肥对冬小麦产量和土壤硝态氮的影响[J]. 西北农林科技大学学报(自然科学版), 2018, 46(7): 38-44. |
LI Y X, ZHANG J X, LIU W G, et al. Effects of maize straw return with nitrogen fertilizer on winter wheat yield and nitrate nitrogen[J]. Journal of Northwest A & F University(Natural Science Edition), 2018, 46(7): 38-44. (in Chinese with English abstract) | |
[3] | 王忍, 黄璜, 伍佳, 等. 稻草还田对土壤养分及水稻生物量和产量的影响[J]. 作物研究, 2020, 34(1): 8-15. |
WANG R, HUANG H, WU J, et al. Effects of rice straw returning on soil nutrients, rice biomass and yield[J]. Crop Research, 2020, 34(1): 8-15. (in Chinese with English abstract) | |
[4] | 成臣, 汪建军, 程慧煌, 等. 秸秆还田与耕作方式对双季稻产量及土壤肥力质量的影响[J]. 土壤学报, 2018, 55(1): 247-257. |
CHENG C, WANG J J, CHENG H H, et al. Effects of straw returning and tillage system on crop yield and soil fertility quality in paddy field under double-cropping-rice system[J]. Acta Pedologica Sinica, 2018, 55(1): 247-257. (in Chinese with English abstract) | |
[5] | 栾天浩, 刘云强, 高阳, 等. 不同秸秆还田方式对玉米产量及土壤理化性质的影响[J]. 东北农业科学, 2020, 45(6): 64-67. |
LUAN T H, LIU Y Q, GAO Y, et al. Effects of different straw returning methods on maize yield and soil physical and chemical properties[J]. Journal of Northeast Agricultural Sciences, 2020, 45(6): 64-67. (in Chinese with English abstract) | |
[6] | 唐海明, 肖小平, 汤文光, 等. 冬季覆盖作物秸秆还田对水稻植株养分积累与转运的影响[J]. 中国农业科技导报, 2018, 20(8): 63-73. |
TANG H M, XIAO X P, TANG W G, et al. Effects of covering paddy field by crop straw in winter on nutrition accumulation and translocation of rice plant[J]. Journal of Agricultural Science and Technology, 2018, 20(8): 63-73. (in Chinese with English abstract) | |
[7] | 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8): 3937-3947. |
WANG S Q, YU G R. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements[J]. Acta Ecologica Sinica, 2008, 28(8): 3937-3947. (in Chinese with English abstract) | |
[8] | DU C J, GAO Y H. Grazing exclusion alters ecological stoichiometry of plant and soil in degraded alpine grassland[J]. Agriculture, Ecosystems & Environment, 2021, 308: 107256. |
[9] | 田地, 严正兵, 方精云. 植物生态化学计量特征及其主要假说[J]. 植物生态学报, 2021, 45(7): 682-713. |
TIAN D, YAN Z B, FANG J Y. Review on characteristics and main hypotheses of plant ecological stoichiometry[J]. Chinese Journal of Plant Ecology, 2021, 45(7): 682-713. (in Chinese with English abstract) | |
[10] | 林少颖, 赖清志, 刘旭阳, 等. 秸秆及配施生物炭对福州茉莉园土壤碳、氮、磷、铁含量及其生态化学计量学特征影响[J]. 环境科学学报, 2021, 41(9): 3777-3791. |
LIN S Y, LAI Q Z, LIU X Y, et al. Effects of straw and biochar on soil carbon, nitrogen, phosphorus and iron contents and ecological stoichiometric characteristics of jasmine garden in Fuzhou[J]. Acta Scientiae Circumstantiae, 2021, 41(9): 3777-3791. (in Chinese with English abstract) | |
[11] | 彭亚敏, 武均, 蔡立群, 等. 免耕及秸秆覆盖对春小麦-土壤碳氮磷生态化学计量特征的影响[J]. 生态学杂志, 2021, 40(4): 1062-1072. |
PENG Y M, WU J, CAI L Q, et al. Effects of no-tillage and straw mulching on carbon, nitrogen, and phosphorus ecological stoichiometry in spring wheat and soil[J]. Chinese Journal of Ecology, 2021, 40(4): 1062-1072. (in Chinese with English abstract) | |
[12] | 盘礼东, 李瑞, 张玉珊, 等. 西南喀斯特区坡耕地秸秆覆盖对土壤生态化学计量特征及产量的影响[J]. 生态学报, 2022, 42(11): 4428-4438. |
PAN L D, LI R, ZHANG Y S, et al. Effects of straw mulching on soil ecological stoichiometry characteristics and yield on sloping farmland in Karst area, Southwestern China[J]. Acta Ecologica Sinica, 2022, 42(11): 4428-4438. (in Chinese with English abstract) | |
[13] | 孟祥宇, 冉成, 刘宝龙, 等. 秸秆还田配施氮肥对东北黑土稻区土壤养分及水稻产量的影响[J]. 作物杂志, 2021(3): 167-172. |
MENG X Y, RAN C, LIU B L, et al. Effects of straw returning to field and nitrogen application on soil nutrients and rice yield in black soil areas of northeast China[J]. Crops, 2021(3): 167-172. (in Chinese with English abstract) | |
[14] | 卞景阳, 刘琳帅, 孙兴荣, 等. 施氮对寒地粳稻还田秸秆腐解及养分释放的影响[J]. 黑龙江八一农垦大学学报, 2019, 31(5): 22-28. |
BIAN J Y, LIU L S, SUN X R, et al. Effect of nitrogen application on straw decomposition and nutrient release of japonica rice in cold region[J]. Journal of Heilongjiang Bayi Agricultural University, 2019, 31(5): 22-28. (in Chinese with English abstract) | |
[15] | SARDANS J, ALONSO R, JANSSENS I A, et al. Foliar and soil concentrations and stoichiometry of nitrogen and phosphorous across European Pinus sylvestris forests: relationships with climate, N deposition and tree growth[J]. Functional Ecology, 2016, 30(5): 676-689. |
[16] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
[17] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
[18] | 张聪, 慕平, 尚建明. 长期持续秸秆还田对土壤理化特性、酶活性和产量性状的影响[J]. 水土保持研究, 2018, 25(1): 92-98. |
ZHANG C, MU P, SHANG J M. Effects of continuous returning corn straw on soil chemical properties, enzyme activities and yield trait[J]. Research of Soil and Water Conservation, 2018, 25(1): 92-98. (in Chinese with English abstract) | |
[19] | 金强, 安婉丽, 刘旭阳, 等. 模拟酸雨对福州沿江稻田水稻叶片碳氮磷含量及其生态化学计量学特征的影响[J]. 生态学报, 2020, 40(9): 3085-3095. |
JIN Q, AN W L, LIU X Y, et al. Effects of simulated acid rain on carbon, nitrogen, phosphorus contents and the ecological stoichiometry of rice leaves in Fuzhou rice fields along the river[J]. Acta Ecologica Sinica, 2020, 40(9): 3085-3095. (in Chinese with English abstract) | |
[20] | 刘迪, 邓强, 时新荣, 等. 黄土高原刺槐人工林根际和非根际土壤磷酸酶活性对模拟降水变化的响应[J]. 水土保持研究, 2020, 27(1): 95-103. |
LIU D, DENG Q, SHI X R, et al. Responses of phosphatase activity in rhizosphere and non-rhizosphere soils to simulated precipitation changes in planted Robinia pseudoacacia forest on the Loess Plateau[J]. Research of Soil and Water Conservation, 2020, 27(1): 95-103. (in Chinese with English abstract) | |
[21] | TESSIER J T, RAYNAL D J. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation[J]. Journal of Applied Ecology, 2003, 40(3): 523-534. |
[22] | 陈小雪, 李红丽, 董智, 等. 滨海盐碱地土壤化学计量特征与群落物种多样性及其相关关系[J]. 水土保持研究, 2020, 27(6): 37-45. |
CHEN X X, LI H L, DONG Z, et al. Characteristics of soil stoichiometry and species diversity of community and their coupling relationship in coastal saline-alkali land[J]. Research of Soil and Water Conservation, 2020, 27(6): 37-45. (in Chinese with English abstract) | |
[23] | 唐美玲, 肖谋良, 袁红朝, 等. CO2倍增条件下不同生育期水稻碳氮磷含量及其计量比特征[J]. 环境科学, 2018, 39(12): 5708-5716. |
TANG M L, XIAO M L, YUAN H Z, et al. Effect of CO2 doubling and different plant growth stages on rice carbon, nitrogen, and phosphorus and their stoichiometric ratios[J]. Environmental Science, 2018, 39(12): 5708-5716. (in Chinese with English abstract) | |
[24] | 武红艳, 王岩, 赵天宏, 等. 臭氧浓度升高条件下秸秆还田对大豆叶片生态化学计量特征的影响[J]. 土壤通报, 2019, 50(2): 355-364. |
WU H Y, WANG Y, ZHAO T H, et al. Effects of straw returning on the ecological stoichiometry of soybean leaves under elevated ozone concentration[J]. Chinese Journal of Soil Science, 2019, 50(2): 355-364. (in Chinese with English abstract) | |
[25] | 李婷, 邓强, 袁志友, 等. 黄土高原纬度梯度上的植物与土壤碳、氮、磷化学计量学特征[J]. 环境科学, 2015, 36(8): 2988-2996. |
LI T, DENG Q, YUAN Z Y, et al. Latitudinal changes in plant stoichiometric and soil C, N, P stoichiometry in Loess Plateau[J]. Environmental Science, 2015, 36(8): 2988-2996. (in Chinese with English abstract) | |
[26] | 冯斌, 杨晓霞, 刘文亭, 等. 不同放牧方式对高寒草地功能群生态化学计量特征的影响[J]. 草地学报, 2022, 30(5): 1063-1070. |
FENG B, YANG X X, LIU W T, et al. Effects of different livestock assembly on the stoichiometry of alpine grassland functional groups[J]. Acta Agrestia Sinica, 2022, 30(5): 1063-1070. (in Chinese with English abstract) | |
[27] | 陈云, 李玉强, 王旭洋, 等. 中国典型生态脆弱区生态化学计量学研究进展[J]. 生态学报, 2021, 41(10): 4213-4225. |
CHEN Y, LI Y Q, WANG X Y, et al. Advances in ecological stoichiometry in typically and ecologically vulnerable regions of China[J]. Acta Ecologica Sinica, 2021, 41(10): 4213-4225. (in Chinese with English abstract) | |
[28] | KOERSELMAN W, MEULEMAN A F M. The vegetation N∶P ratio: a new tool to detect the nature of nutrient limitation[J]. The Journal of Applied Ecology, 1996, 33(6): 1441. |
[29] | 盖霞普, 刘宏斌, 杨波, 等. 不同施肥年限下作物产量及土壤碳氮库容对增施有机物料的响应[J]. 中国农业科学, 2019, 52(4): 676-689. |
GAI X P, LIU H B, YANG B, et al. Responses of crop yields, soil carbon and nitrogen stocks to additional application of organic materials in different fertilization years[J]. Scientia Agricultura Sinica, 2019, 52(4): 676-689. (in Chinese with English abstract) | |
[30] | 吴科生, 车宗贤, 包兴国, 等. 河西绿洲灌区灌漠土长期秸秆还田土壤肥力和作物产量特征分析[J]. 草业学报, 2021, 30(12): 59-70. |
WU K S, CHE Z X, BAO X G, et al. Analysis of soil fertility and crop yield characteristics following long-term straw return to the field in a Hexi Oasis irrigated area[J]. Acta Prataculturae Sinica, 2021, 30(12): 59-70. (in Chinese with English abstract) |
[1] | 张雪楠, 王乐乐, 钮铭轩, 詹妮, 任浩杰, 徐浩聪, 杨昆, 武立权, 柯健, 尤翠翠, 何海兵. 基于叶片反射光谱和叶绿素荧光估测水稻叶片含水量[J]. 浙江农业学报, 2023, 35(6): 1265-1277. |
[2] | 铁建中, 刘亚昱, 高雪琴, 徐之奇, 胡琳莉, 郁继华. 种养废弃物堆肥对日光温室西葫芦养分利用和土壤性质的影响[J]. 浙江农业学报, 2023, 35(6): 1427-1439. |
[3] | 吴传美, 何季, 吴文珊, 蔡俊, 向仰州. 间作对刺梨园土壤团聚体化学计量特征和养分贡献率的影响[J]. 浙江农业学报, 2023, 35(5): 1132-1143. |
[4] | 张超正, 张旭鹏, 陈丹玲. 劳动力老龄化、耕地细碎化必然导致水稻生产成本增加吗?——基于鄂东南地区的微观调查[J]. 浙江农业学报, 2023, 35(5): 1211-1222. |
[5] | 夏小东, 张晓波, 施勇烽, 许如根. 水稻致死突变体基因克隆与分子机制研究进展[J]. 浙江农业学报, 2023, 35(5): 1223-1234. |
[6] | 蒋莹莹, 张华, 雷志伟, 徐恒, 张恒, 朱英. 茉莉酸信号关键转录因子OsMYC2影响水稻愈伤诱导和分化的功能初探[J]. 浙江农业学报, 2023, 35(5): 973-982. |
[7] | 张斌, 冯晓庆, 郑芊, 陈稳, 滕杰. 抑制OsPUT5基因表达降低水稻低温抗性[J]. 浙江农业学报, 2023, 35(4): 780-788. |
[8] | 鲁帅, 罗晓刚, 刘全伟, 张屹, 孟洋昊, 李洁, 张景来. 有机无机复混肥对小麦生长、土壤养分和重金属含量的影响[J]. 浙江农业学报, 2023, 35(4): 922-930. |
[9] | 朱诗君, 王丽丽, 金树权, 周金波, 汪峰, 卢晓红. 不同土壤消毒方式对土壤真菌多样性和群落结构的影响[J]. 浙江农业学报, 2023, 35(3): 639-646. |
[10] | 袁太艳, 严正娟, 黄成东, 张志业, 王辛龙. 聚磷酸铵在紫色土壤中的吸附-解吸特征[J]. 浙江农业学报, 2023, 35(2): 403-416. |
[11] | 伍少福, 倪元君, 詹丽钏, 彭璐, 吴英杰. 不同土壤调理剂对镉汞复合污染稻田安全生产和稻米铁锌含量的影响[J]. 浙江农业学报, 2023, 35(2): 417-424. |
[12] | 樊闯, 赵子皓, 张雪松, 杨沈斌. 基于BP神经网络的一季稻发育期预测模型[J]. 浙江农业学报, 2023, 35(2): 434-444. |
[13] | 尤翠翠, 贺一哲, 徐鹏, 黄亚茹, 王辉, 何海兵, 柯健, 武立权. 高温胁迫对水稻生长发育的伤害效应及其防御对策[J]. 浙江农业学报, 2023, 35(1): 10-22. |
[14] | 杨胜竹, 李响, 李朝文, 陈海念, 刘丽, 陆引罡, 曹卓洋. 贵州省烟草青枯病害区根际土壤养分及酶活性特征分析[J]. 浙江农业学报, 2023, 35(1): 146-155. |
[15] | 王薇薇, 梅燚, 吴永成, 万红建, 陈长军, 郑青松, 郑佳秋. 玉米芯生物炭对辣椒连作土壤性质和辣椒生长的影响[J]. 浙江农业学报, 2023, 35(1): 156-163. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||