浙江农业学报 ›› 2023, Vol. 35 ›› Issue (6): 1253-1264.DOI: 10.3969/j.issn.1004-1524.2023.06.03
刘光瑞1,2(), 宗渊2, 李云2, 曹东2, 刘宝龙2, 包雪梅1,2,3, 李建民1,*(
)
收稿日期:
2022-07-02
出版日期:
2023-06-25
发布日期:
2023-07-04
通讯作者:
*李建民,E-mail:beyond_3862740@163.com
作者简介:
刘光瑞(1998—),男,贵州毕节人,硕士研究生,主要从事分子植物育种研究。E-mail:liugr1208@163.com
基金资助:
LIU Guangrui1,2(), ZONG Yuan2, LI Yun2, CAO Dong2, LIU Baolong2, BAO Xuemei1,2,3, LI Jianmin1,*(
)
Received:
2022-07-02
Online:
2023-06-25
Published:
2023-07-04
摘要:
为明确AsMYB44调控次生代谢产物生物合成的功能,从当归(Angelica sinensis)中分离克隆得到MYB转录因子AsMYB44,对AsMYB44进行生物信息学分析,利用根癌农杆菌介导的遗传转化体系在Samsun烟草中过表达,并对转基因烟草进行多组学联合分析。结果表明,AsMYB44基因CDS (coding sequence)全长903 bp,编码300个氨基酸,具有完整的SANT、MYB domains结构域。系统发育树结果表明,AsMYB44与拟南芥AtMYB11(AF062863.1)、AtMYB12(AF062864.1)和丹参SmMYB97(KF059561.1)同源性较高。AsMYB44转基因烟草中差异表达基因主要富集在苯丙烷合成代谢途径,其中苯丙氨酸解氨酶基因(PAL)、肉桂酸-4-羟化酶基因(C4H)、4-香豆酸:辅酶A连接酶基因(4CL)、咖啡酸3-O-甲基转移酶基因(COMT)、肉桂醇脱氢酶基因(CAD)等表达量上调。广泛靶向代谢组学结果显示,转基因烟草中酚酸、脂质、黄酮类化合物、生物碱等代谢产物含量变化显著。AsMYB44转录因子可正向调控酚酸的代谢合成,这可以为当归酚酸次生代谢物的生物合成机制提供理论基础。
中图分类号:
刘光瑞, 宗渊, 李云, 曹东, 刘宝龙, 包雪梅, 李建民. 当归转录因子AsMYB44的克隆与功能研究[J]. 浙江农业学报, 2023, 35(6): 1253-1264.
LIU Guangrui, ZONG Yuan, LI Yun, CAO Dong, LIU Baolong, BAO Xuemei, LI Jianmin. Cloning and functional research of MYB transcription factor AsMYB44 from Angelica sinensis[J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1253-1264.
用途 Purpose | 基因名称 Gene name | 正向引物 Forward primer(5’→3’) | 反向引物 Reverse primer(5’→3’) |
---|---|---|---|
实时荧光定量PCR | NtActin | AATGATCGGAATGGAAGCTG | TGGTACCACCACTGAGGACA |
qRT-PCR | NtPAL | ATAGACTTGAGGCATTTGG | GCATCAGTGGGTAGTTAGC |
NtC4H | GAGGCTGAACAGAAGGGAG | TGTGGGACTAAAAGAGGGA | |
Nt4CL | GTTCTCGTCCCTGTTTGAT | GAGGCTTTGGCTTGTTTTA | |
NtF5H | TCCTTCTCTCCAAATCTCG | AACTTATGGCTACGGTCGC | |
NtCOMT | GATGCTTAGGCTACTTGCT | TCATTGACATAGTGGAGTG | |
NtCAD | CAGCGAAAACAGTATGCGT | CAGCGAAAACAGTATGCGT | |
NtCCR | CAGCATCTCCATTTCCCTA | ATCCCTTTCTCCTTCACAA | |
基因克隆Gene cloning | AsMYB44 | acgcGAGCTCATGTCCAGGAGAGATATGGATCG | ctagTCTAGACTAATCGATTTTACTAATCCCCATTC |
表1 引物序列
Table 1 Primer sequences
用途 Purpose | 基因名称 Gene name | 正向引物 Forward primer(5’→3’) | 反向引物 Reverse primer(5’→3’) |
---|---|---|---|
实时荧光定量PCR | NtActin | AATGATCGGAATGGAAGCTG | TGGTACCACCACTGAGGACA |
qRT-PCR | NtPAL | ATAGACTTGAGGCATTTGG | GCATCAGTGGGTAGTTAGC |
NtC4H | GAGGCTGAACAGAAGGGAG | TGTGGGACTAAAAGAGGGA | |
Nt4CL | GTTCTCGTCCCTGTTTGAT | GAGGCTTTGGCTTGTTTTA | |
NtF5H | TCCTTCTCTCCAAATCTCG | AACTTATGGCTACGGTCGC | |
NtCOMT | GATGCTTAGGCTACTTGCT | TCATTGACATAGTGGAGTG | |
NtCAD | CAGCGAAAACAGTATGCGT | CAGCGAAAACAGTATGCGT | |
NtCCR | CAGCATCTCCATTTCCCTA | ATCCCTTTCTCCTTCACAA | |
基因克隆Gene cloning | AsMYB44 | acgcGAGCTCATGTCCAGGAGAGATATGGATCG | ctagTCTAGACTAATCGATTTTACTAATCCCCATTC |
图1 AsMYB44基因克隆、结构域分析和系统进化分析 A,AsMYB44基因克隆;M,DL5000 marker;1~3,当归叶片cDNA为模板的PCR产物。B,结构域分析。C,AsMYB44系统进化分析。
Fig.1 Cloning, domain analysis and phylogenetic analysis of AsMYB44 gene A, AsMYB44 gene clone; M, DL5000 marker; 1-3, PCR product of Angelica sinensis leaf cDNA. B, Domain analysis. C, Phylogenetic analysis of AsMYB44.
图2 大肠埃希菌菌落、农杆菌菌液与转基因烟草PCR检测 A,1~10为大肠埃希菌菌落PCR,11为以AsMYB44质粒为模板的PCR,12为阴性对照;B,1~9为农杆菌菌落PCR,10为以AsMYB44质粒为模板的PCR,11为阴性对照;C,1~12为以转基因烟草DNA为模板的PCR,13为以AsMYB44质粒为模板的PCR,14为阴性对照;M,DL5000 marker。
Fig.2 PCR detection of Escherichia coli colony, Agrobacterium liquid and transgenic tobacco A, 1-10 were PCR products of E. coli colonies, 11 was PCR product with AsMYB44 plasmid as template, 12 was negative control; B, 1-9 were PCR products of Agrobacterium colonies, 10 was PCR product with AsMYB44 plasmid as template, 11 was negative control; C, 1-12 were PCR products with transgenic tobacco DNA as templates, 13 was PCR product with AsMYB44 plasmid as template, 14 was negative control; M, DL5000 marker.
图3 差异表达基因统计图、火山图、KEGG富集因子图 A,差异表达基因统计图;B,差异表达基因火山图;C,差异表达基因KEGG富集因子图。
Fig.3 Statistical graph, volcano graph and KEGG enrichment factor graph of differentially expressed genes A, Statistical map of differentially expressed genes; B, Volcano map of differentially expressed genes; C, Map of KEGG enrichment factors of differentially expressed genes.
图4 差异代谢物类别统计、KEGG通路富集和苯丙烷代谢途径多组学分析 A,差异代谢物类别统计;B,差异代谢物KEGG通路富集;C,苯丙烷代谢途径多组学分析。
Fig.4 Statistics of differential metabolite categories, KEGG pathway enrichment and multi-omics analysis of phenylpropane metabolic pathways A, Statistics of differential metabolite categories; B, KEGG pathway enrichment of differential metabolites; C, Multi-omics analysis of phenylpropane metabolic pathways.
图5 AsMYB44转基因烟草苯丙烷代谢途径部分关键基因的相对表达量 *代表P ≤0.05,**代表P ≤0. 01,***代表P ≤0.001,****代表P ≤0.000 1。
Fig.5 Relative expression levels of some key genes in the phenylpropane metabolism pathway of AsMYB44 transgenic tobacco *represented P ≤0.05, **represented P ≤0.01, ***represented P ≤0.001, ****represented P ≤0.000 1.
[1] | 李曦, 张丽宏, 王晓晓, 等. 当归化学成分及药理作用研究进展[J]. 中药材, 2013, 36(6): 1023-1028. |
LI X, ZHANG L H, WANG X X, et al. Research progress on chemical constituents and pharmacological effects of Angelica sinensis[J]. Journal of Chinese Medicinal Materials, 2013, 36(6): 1023-1028. (in Chinese) | |
[2] | 黄伟晖, 宋纯清. 当归的化学和药理学研究进展[J]. 中国中药杂志, 2001, 26(3): 147-151. |
HUANG W H, SONG C Q. Research progress in chemistry and pharmacology of Angelica sinensis[J]. China Journal of Chinese Materia Medica, 2001, 26(3): 147-151. (in Chinese) | |
[3] | 马艳春, 吴文轩, 胡建辉, 等. 当归的化学成分及药理作用研究进展[J]. 中医药学报, 2022, 50(1): 111-114. |
MA Y C, WU W X, HU J H, et al. Research progress on chemical constituents and pharmacological effects of Angelica sinensis[J]. Acta Chinese Medicine and Pharmacology, 2022, 50(1): 111-114. (in Chinese with English abstract) | |
[4] | 魏明刚, 张玲, 倪莉, 等. 加味当归补血汤对阿霉素肾病大鼠肾脏足细胞保护机制的研究[J]. 中国中西医结合杂志, 2012, 32(8): 1077-1082. |
WEI M G, ZHANG L, NI L, et al. Protection mechanisms of modified Danggui Buxue Decoction for podocytes in adriamycin-induced nephropathy rats[J]. Chinese Journal of Integrated Traditional and Western Medicine, 2012, 32(8): 1077-1082. (in Chinese with English abstract) | |
[5] | 孙玉敏, 宋福成, 吴晓光. 当归补血汤抑制荷瘤小鼠肿瘤生长的作用[J]. 现代生物医学进展, 2006, 6(9): 31-32. |
SUN Y M, SONG F C, WU X G. The inhibiting effect of Danggui Buxue Tang on tumor’s growth of tumor-bearing mice[J]. Progress in Modern Biomedicine, 2006, 6(9): 31-32. (in Chinese with English abstract) | |
[6] | 邢利鹏. 三种均一分子量当归多糖的制备、结构鉴定及体外抗肿瘤活性研究[D]. 武汉: 华中科技大学, 2013. |
XING L P. Study on structure identification and anti-tumor activity in vitro of three uniform molecular weight-Angelica polysaccharides[D]. Wuhan: Huazhong University of Science and Technology, 2013. (in Chinese with English abstract) | |
[7] | 叶依依, 刘胜, 郭宝凤, 等. 蛇床子素配伍补骨脂素对人乳腺癌高骨转移细胞增殖及侵袭的影响[J]. 中华中医药学刊, 2013, 31(1): 36-40. |
YE Y Y, LIU S, GUO B F, et al. Effect of osthole combined with psoralen on MDA-MB-231BO cell proliferation and invasion[J]. Chinese Archives of Traditional Chinese Medicine, 2013, 31(1): 36-40. (in Chinese with English abstract) | |
[8] | 骆亚莉, 李应东, 刘永琦, 等. 当归有效成分对冷应激小鼠抗氧化功能影响[J]. 中国公共卫生, 2014, 30(5): 607-609. |
LUO Y L, LI Y D, LIU Y Q, et al. Effects of active fraction of Angelica sinensis on antioxidant function in cool stress mice[J]. Chinese Journal of Public Health, 2014, 30(5): 607-609. (in Chinese with English abstract) | |
[9] | 王志新, 张志立, 李哲诚, 等. 当归补血汤加味抗肝炎肝纤维化临床研究[J]. 亚太传统医药, 2014, 10(23): 101-103. |
WANG Z X, ZHANG Z L, LI Z C, et al. Clinical study on modified Danggui Buxue Decoction against hepatitis and liver fibrosis[J]. Asia-Pacific Traditional Medicine, 2014, 10(23): 101-103. (in Chinese) | |
[10] | 宫文霞, 周玉枝, 李肖, 等. 当归抗抑郁化学成分及药理作用研究进展[J]. 中草药, 2016, 47(21): 3905-3911. |
GONG W X, ZHOU Y Z, LI X, et al. Research progress in antidepressive active ingredients and pharmacological effects of Angelicae Sinensis Radix[J]. Chinese Traditional and Herbal Drugs, 2016, 47(21): 3905-3911. (in Chinese with English abstract) | |
[11] | 廖铭能, 于立坚, 张永平, 等. 阿魏酸钠诱导分化的PC12细胞裂解液的无细胞滤液的抗抑郁样效果[J]. 中国细胞生物学学报, 2011, 33(6): 608-621. |
LIAO M N, YU L J, ZHANG Y P, et al. Antidepressant-like effect of cell-free filtrate of sodium ferulate-induced and differentioned PC12 cell lysates[J]. Chinese Journal of Cell Biology, 2011, 33(6): 608-621. (in Chinese with English abstract) | |
[12] | 牛莉, 于泓苓. 中药当归的化学成分分析与药理作用研究[J]. 中西医结合心血管病电子杂志, 2018, 6(21): 90. |
NIU L, YU H L. Chemical constituents and pharmacological effects of Angelica sinensis[J]. Cardiovascular Disease Journal of Integrated Traditional Chinese and Western Medicine, 2018, 6(21): 90. (in Chinese) | |
[13] | 毛宇, 徐芳, 邹云, 等. 当归多糖对造血功能的影响及其机制的研究[J]. 食品研究与开发, 2015, 36(8): 122-126. |
MAO Y, XU F, ZOU Y, et al. Research on the effect and mechanism of Angelica sinensis polysaccharide on hematopoietic function[J]. Food Research and Development, 2015, 36(8): 122-126. (in Chinese with English abstract) | |
[14] | 张梦思, 邹婷, 叶渊文, 等. 当归多糖对衰老模型大鼠脾脏结构与功能的影响[J]. 解剖学报, 2015, 46(2): 257-264. |
ZHANG M S, ZOU T, YE Y W, et al. Effects of Angelica sinensis polysaccharide on the spleen structure and function of aging rats[J]. Acta Anatomica Sinica, 2015, 46(2): 257-264. (in Chinese with English abstract) | |
[15] | 王瑞琼, 吴国泰, 任远, 等. 当归挥发油对兔离体胃肠平滑肌张力的影响[J]. 甘肃中医学院学报, 2010, 27(1): 12-14. |
WANG R Q, WU G T, REN Y, et al. Effects of angelica essential oil on the tension of extracorporeal gastrointestinal smooth muscle of rabbits[J]. Journal of Gansu College of Traditional Chinese Medicine, 2010, 27(1): 12-14. (in Chinese with English abstract) | |
[16] | ZHANG Y, LI Q A, FENG Y M, et al. Simultaneous determination of eight chemical components in Angelicae sinensis Radix and its herbal products by QAMS[J]. Journal of Analytical Methods in Chemistry, 2021, 2021: 1-7. |
[17] | KAWABATA K, YAMAMOTO T, HARA A, et al. Modifying effects of ferulic acid on azoxymethane-induced colon carcinogenesis in F344 rats[J]. Cancer Letters, 2000, 157(1): 15-21. |
[18] | TANAKA T, KOJIMA T, KAWAMORI T, et al. Inhibition of 4-nitroquinoline-1-oxide-induced rat tongue carcinogenesis by the naturally occurring plant phenolics caffeic, ellagic, chlorogenic and ferulic acids[J]. Carcinogenesis, 1993, 14(7): 1321-1325. |
[19] | 葛雅南, 顾婷, 刘俊岑, 等. 逍遥散中三种类植物雌激素对MCF-7细胞增殖的影响[J]. 黑龙江科技信息, 2016(5): 141-142. |
GE Y N, GU T, LIU J C, et al. Effects of three kinds of phytoestrogens in Xiaoyao Powder on the proliferation of MCF-7 cells[J]. Heilongjiang Science and Technology Information, 2016(5): 141-142. (in Chinese) | |
[20] | CHOI J H, PARK J K, KIM K M, et al. In vitro and in vivo antithrombotic and cytotoxicity effects of ferulic acid[J]. Journal of Biochemical and Molecular Toxicology, 2018, 32(1): e22004. |
[21] | 徐俊雄, 覃建兵, 王岩岩, 等. 虎杖MYB转录因子PcMYB1的表达特性和功能研究[J]. 中草药, 2020, 51(3): 726-732. |
XU J X, QIN J B, WANG Y Y, et al. Expression and function analysis of transcription factor PcMYB1 from Polygonum cuspidatum[J]. Chinese Traditional and Herbal Drugs, 2020, 51(3): 726-732. (in Chinese with English abstract) | |
[22] | 段乐鹏, 谢丽琼, 马艺沔, 等. 转录因子对药用植物次生代谢的调控作用[J]. 中药材, 2021, 44(4): 1002-1007. |
DUAN L P, XIE L Q, MA Y M, et al. Regulation of transcription factors on secondary metabolism of medicinal plants[J]. Journal of Chinese Medicinal Materials, 2021, 44(4): 1002-1007. (in Chinese) | |
[23] | 邱文怡, 王诗雨, 李晓芳, 等. MYB转录因子参与植物非生物胁迫响应与植物激素应答的研究进展[J]. 浙江农业学报, 2020, 32(7): 1317-1328. |
QIU W Y, WANG S Y, LI X F, et al. Functions of plant MYB transcription factors in response to abiotic stress and plant hormones[J]. Acta Agriculturae Zhejiangensis, 2020, 32(7): 1317-1328. (in Chinese with English abstract) | |
[24] | 冯琛, 王玲, 汤浩茹, 等. 草莓MYB类转录因子FaMYB5基因的克隆与表达分析[J]. 浙江农业学报, 2016, 28(8): 1351-1359. |
FENG C, WANG L, TANG H R, et al. Cloning and expression analysis of MYB transcription factor FaMYB5 gene from strawberry[J]. Acta Agriculturae Zhejiangensis, 2016, 28(8): 1351-1359. (in Chinese with English abstract) | |
[25] | 刘忠丽, 丛悦玺, 苟维超, 等. MYB类转录因子在植物细胞生长发育中的作用及其应用[J]. 浙江农业学报, 2012, 24(1): 174-179. |
LIU Z L, CONG Y X, GOU W C, et al. The role and application of MYB-type transcription factors in the plant growth and development[J]. Acta Agriculturae Zhejiangensis, 2012, 24(1): 174-179. (in Chinese with English abstract) | |
[26] | 李君霞, 王春义, 丁宇涛, 等. MYB转录因子在植物耐盐基因工程中的应用进展[J]. 浙江农业学报, 2020, 32(10): 1910-1920. |
LI J X, WANG C Y, DING Y T, et al. Progress on application of MYB transcription factor in plant salt tolerance genetic engineering[J]. Acta Agriculturae Zhejiangensis, 2020, 32(10): 1910-1920. (in Chinese with English abstract) | |
[27] | 杨迪, 张凯旋, 赵辉, 等. 苦荞转录因子FtNAC11的克隆及其功能分析[J]. 植物遗传资源学报, 2021, 22(5): 1430-1441. |
YANG D, ZHANG K X, ZHAO H, et al. Molecular cloning and functional analysis of FtNAC11 from Tartary buckwheat(Fagopyrum tataricum(L.) gaertn.)[J]. Journal of Plant Genetic Resources, 2021, 22(5): 1430-1441. (in Chinese with English abstract) | |
[28] | 康珍, 杨迪, 郝彦蓉, 等. 苦荞转录因子FtMYB41的克隆及功能分析[J]. 植物遗传资源学报, 2022, 23(3): 895-905. |
KANG Z, YANG D, HAO Y R, et al. Molecular cloning and functional analysis of transcription factor FtMYB41 in Tartary buckwheat (Fagopyrum tataricum)[J]. Journal of Plant Genetic Resources, 2022, 23(3): 895-905. (in Chinese with English abstract) | |
[29] | 牛义岭, 姜秀明, 许向阳. 植物转录因子MYB基因家族的研究进展[J]. 分子植物育种, 2016, 14(8): 2050-2059. |
NIU Y L, JIANG X M, XU X Y. Reaserch advances on transcription factor MYB gene family in plant[J]. Molecular Plant Breeding, 2016, 14(8): 2050-2059. (in Chinese with English abstract) | |
[30] | 王霜, 雒晓鹏, 姚英俊, 等. 苦荞R2R3-MYB转录因子调控原花青素生物合成的研究[J]. 西北植物学报, 2019, 39(11): 1911-1918. |
WANG S, LUO X P, YAO Y J, et al. Characterization of an R2R3-MYB transcription factor involved in the synthesis of proanthocyanidins from Tartary buckwheat[J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(11): 1911-1918. (in Chinese with English abstract) | |
[31] | LUO X P, LI S J, YAO P F, et al. The jasmonate-ZIM domain protein FtJAZ2 interacts with the R2R3-MYB transcription factor FtMYB3 to affect anthocyanin biosynthesis in Tartary buckwheat[J]. Turkish Journal of Biology, 2017, 41: 526-534. |
[32] | BAO X, ZONG Y, HU N, et al. Functional R2R3-MYB transcription factor NsMYB1, regulating anthocyanin biosynthesis, was relative to the fruit color differentiation in Nitraria sibirica Pall[J]. BMC Plant Biology, 2022, 22(1): 186-198. |
[33] | 陈江, 唐小慧, 任超翔, 等. 调控红花类黄酮合成MYB转录因子基因克隆及表达分析[J]. 中草药, 2017, 48(21): 4523-4529. |
CHEN J, TANG X H, REN C X, et al. Cloning and expression analysis of MYB transcription factor gene involved in regulation of flavonoids biosynthesis in Carthamus tinctorius[J]. Chinese Traditional and Herbal Drugs, 2017, 48(21): 4523-4529. (in Chinese with English abstract) | |
[34] | HORSCH R B, FRY J, HOFFMANN N, et al. Leaf disc transformation[M]// Plant Molecular Biology Manual. Dordrecht: Springer Netherlands, 1989: 63-71. |
[35] | LI Y, CHEN M, WANG S L, et al. AtMYB11 regulates caffeoylquinic acid and flavonol synthesis in tomato and tobacco[J]. Plant Cell, Tissue and Organ Culture(PCTOC), 2015, 122(2): 309-319. |
[36] | PANDEY A, MISRA P, TRIVEDI P K. Constitutive expression of Arabidopsis MYB transcription factor, AtMYB11, in tobacco modulates flavonoid biosynthesis in favor of flavonol accumulation[J]. Plant Cell Reports, 2015, 34(9): 1515-1528. |
[37] | LUO J E, BUTELLI E, HILL L, et al. AtMYB12 regulates caffeoyl quinic acid and flavonol synthesis in tomato: expression in fruit results in very high levels of both types of polyphenol[J]. The Plant Journal, 2008, 56(2): 316-326. |
[38] | LI L, WANG D H, ZHOU L, et al. JA-responsive transcription factor SmMYB97 promotes phenolic acid and tanshinone accumulation in Salvia miltiorrhiza[J]. Journal of Agricultural and Food Chemistry, 2020, 68(50): 14850-14862. |
[39] | BAI Y C, LI C L, ZHANG J W, et al. Characterization of two Tartary buckwheat R2R3-MYB transcription factors and their regulation of proanthocyanidin biosynthesis[J]. Physiologia Plantarum, 2014, 152(3): 431-440. |
[40] | ZHANG K X, LOGACHEVA M D, MENG Y, et al. Jasmonate-responsive MYB factors spatially repress rutin biosynthesis in Fagopyrum tataricum[J]. Journal of Experimental Botany, 2018, 69(8): 1955-1966. |
[41] | 伍小方, 高国应, 左倩, 等. FtMYB1转录因子调控苦荞毛状根黄酮醇合成的机理研究[J]. 植物遗传资源学报, 2020, 21(5): 1270-1278. |
WU X F, GAO G Y, ZUO Q, et al. Deciphering the functional basis of FtMYB1 transcription factor in flavonol biosynthesis of Tartary buckwheat hairy root[J]. Journal of Plant Genetic Resources, 2020, 21(5): 1270-1278. (in Chinese with English abstract) | |
[42] | PANDEY A, MISRA P, CHANDRASHEKAR K, et al. Development of AtMYB12-expressing transgenic tobacco callus culture for production of rutin with biopesticidal potential[J]. Plant Cell Reports, 2012, 31(10): 1867-1876. |
[43] | PANDEY A, MISRA P, KHAN M P, et al. Co-expression of Arabidopsis transcription factor, AtMYB12, and soybean isoflavone synthase, GmIFS1, genes in tobacco leads to enhanced biosynthesis of isoflavones and flavonols resulting in osteoprotective activity[J]. Plant Biotechnology Journal, 2014, 12(1): 69-80. |
[44] | MISRA P, PANDEY A, TIWARI M, et al. Modulation of transcriptome and metabolome of tobacco by Arabidopsis transcription factor, AtMYB12, leads to insect resistance[J]. Plant Physiology, 2010, 152(4): 2258-2268. |
[45] | DONG N Q, LIN H X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions[J]. Journal of Integrative Plant Biology, 2021, 63(1): 180-209. |
[46] | HAO G P, JIANG X Y, FENG L, et al. Cloning, molecular characterization and functional analysis of a putative R2R3-MYB transcription factor of the phenolic acid biosynthetic pathway in S. miltiorrhiza Bge. f. alba[J]. Plant Cell, Tissue and Organ Culture(PCTOC), 2016, 124(1): 151-168. |
[47] | YANG R, WANG S S, ZOU H L, et al. R2R3-MYB transcription factor SmMYB52 positively regulates biosynthesis of salvianolic acid B and inhibits root growth in Salvia miltiorrhiza[J]. International Journal of Molecular Sciences, 2021, 22(17): 9538. |
[48] | ZHOU W, SHI M, DENG C P, et al. The methyl jasmonate-responsive transcription factor SmMYB1 promotes phenolic acid biosynthesis in Salvia miltiorrhiza[J]. Horticulture Research, 2021, 8: 10. |
[49] | ZHANG S C, MA P D, YANG D F, et al. Cloning and characterization of a putative R2R3 MYB transcriptional repressor of the rosmarinic acid biosynthetic pathway from Salvia miltiorrhiza[J]. PLoS One, 2013, 8(9): e73259. |
[50] | LI S S, WU Y C, KUANG J, et al. SmMYB111 is a key factor to phenolic acid biosynthesis and interacts with both SmTTG1 and SmbHLH51 in Salvia miltiorrhiza[J]. Journal of Agricultural and Food Chemistry, 2018, 66(30): 8069-8078. |
[51] | DING K, PEI T L, BAI Z Q, et al. SmMYB 36, a novel R2R3-MYB transcription factor, enhances tanshinone accumulation and decreases phenolic acid content in Salvia miltiorrhiza hairy roots[J]. Scientific Reports, 2017, 7: 5104. |
[1] | 姚彦林, 马骊, 刘丽君, 蒲媛媛, 李学才, 王旺田, 方彦, 孙万仓, 武军艳. 白菜型油菜开花调控基因BrFT的生物信息学特性和表达分析[J]. 浙江农业学报, 2023, 35(5): 992-1000. |
[2] | 燕存尧, 贾凯, 闫会转, 高杰. 芜菁BrrLOX7基因克隆、表达及生物信息学分析[J]. 浙江农业学报, 2023, 35(4): 831-840. |
[3] | 郭春倩, 田洁. 大蒜己糖激酶基因AsHXK2的克隆及其参与根际促生菌缓解干旱胁迫的表达分析[J]. 浙江农业学报, 2022, 34(9): 1925-1934. |
[4] | 刘凯, 谢楠, 郭炜, 马恒甲. 三角鲂MHCⅠα基因全长cDNA克隆与生物信息学分析[J]. 浙江农业学报, 2022, 34(6): 1162-1174. |
[5] | 洪森荣, 向琼钰, 谢颖, 熊晨露, 徐晨慧, 徐璐珂, 陈荣华, 蔡红. 怀玉山三叶青烟草病毒增殖蛋白1基因克隆、亚细胞定位和组织表达分析[J]. 浙江农业学报, 2022, 34(6): 1193-1204. |
[6] | 樊有存, 张红岩, 杨旭升, 韩芊, 刘玉皎, 武学霞. 蚕豆耐盐相关基因VfHKT1;1的克隆、生物信息学分析及表达特性[J]. 浙江农业学报, 2022, 34(4): 756-765. |
[7] | 杨卫军, 董艳蕾, 吴秋芳, 张美玲, 韩丽滨, 张元臣. 棉蚜ATP合成酶基因AgoATPb的克隆与表达[J]. 浙江农业学报, 2022, 34(2): 329-336. |
[8] | 唐国亮, 张玉宝, 王若愚, 王亚军, 赵霞, 苏学思, 金卫杰. 魔芋花叶病毒衣壳蛋白的原核表达和多克隆抗体制备[J]. 浙江农业学报, 2022, 34(11): 2471-2481. |
[9] | 何佳琦, 翟莹, 张军, 邱爽, 李铭杨, 赵艳, 张梅娟, 马天意. 大豆转录因子GmDof1.5的克隆与非生物胁迫诱导表达[J]. 浙江农业学报, 2021, 33(1): 1-7. |
[10] | 王伟科, 宋吉玲, 陆娜, 袁卫东, 闫静, 陈观平. 秀珍菇原基形成相关基因PpFBD1的克隆与表达研究[J]. 浙江农业学报, 2020, 32(1): 93-97. |
[11] | 许青松, 赵佳, 魏运民, 韩蓉蓉, 刘卢生, 蒋曹德, 玉永雄. 紫花苜蓿MsOXO基因的克隆及表达分析[J]. 浙江农业学报, 2019, 31(1): 11-19. |
[12] | 杨舟, 吕可, 吕珊, 王俊杰, 张荻. 百子莲2个ARF基因与2个Aux/IAA基因的全长克隆与序列分析[J]. 浙江农业学报, 2019, 31(1): 86-97. |
[13] | 唐晓, 邓孟胜, 邹雪, 李立芹, 祝渊智, 王西瑶. 马铃薯StDWF1基因克隆及表达分析[J]. 浙江农业学报, 2018, 30(6): 909-917. |
[14] | 薛生玲, 江敏, 常嘉琪, 刘洋, 魏淋, 周建坤, 张芬, 孙勃. 芥蓝1-脱氧-D-木酮糖-5-磷酸合成酶基因BaDXS1的克隆及原核表达[J]. 浙江农业学报, 2018, 30(5): 771-777. |
[15] | 梁敏华, 杨震峰, 苏新国, 宋春波. 桃果实八氢番茄红素合成酶基因的克隆与表达分析[J]. 浙江农业学报, 2018, 30(3): 399-405. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 623
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 440
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||