浙江农业学报 ›› 2023, Vol. 35 ›› Issue (6): 1265-1277.DOI: 10.3969/j.issn.1004-1524.2023.06.04
张雪楠1(), 王乐乐1, 钮铭轩1, 詹妮1, 任浩杰2, 徐浩聪1, 杨昆1, 武立权1,3, 柯健1, 尤翠翠1, 何海兵1,*(
)
收稿日期:
2022-07-15
出版日期:
2023-06-25
发布日期:
2023-07-04
通讯作者:
*何海兵,E-mail:hhb_agr@ahau.edu.cn
作者简介:
张雪楠(1998—),女,河南周口人,硕士研究生,主要从事农作物光谱模型研究。E-mail:2869231417@qq.com
基金资助:
ZHANG Xuenan1(), WANG Lele1, NIU Mingxuan1, ZHAN Ni1, REN Haojie2, XU Haocong1, YANG Kun1, WU Liquan1,3, KE Jian1, YOU Cuicui1, HE Haibing1,*(
)
Received:
2022-07-15
Online:
2023-06-25
Published:
2023-07-04
摘要:
水稻冠层叶片含水量(leaf water content,LWC)快速无损监测对指导稻田精准灌溉和提高水稻水分利用效率具有重要意义。试验设置3个不同水分处理(传统淹灌、轻度干湿交替-15 kPa、重度干湿交替-30 kPa),于水分敏感期(抽穗-灌浆期)动态监测顶1叶(L1)、顶2叶(L2)和顶3叶(L3)的光谱数据和叶绿素荧光参数,通过全光谱波段筛选出水分敏感波段,建立新型植被指数,结合叶绿素荧光参数,以期建立基于叶位组合的水稻冠层LWC精准监测模型。结果表明:水稻叶片水分敏感波段在近红外波段(1 000~1 400 nm),所构建新型植被指数NDSII(1114,1387)较传统植被指数能更好地监测LWC;通过筛选与LWC有高相关性的荧光参数,基于实际光量子产量Y(Ⅱ)和植被指数NDSII(1114,1387)的耦合监测模型较单一植被指数NDSII(1114,1387)模型精度提高71.807%~83.976%。与单叶相比,L2和L3叶位组合的Y(Ⅱ)和植被指数NDSII(1114,1387)耦合模型对水稻冠层LWC监测精度相较L2、L3分别显著(P<0.05)提高11.641%和23.029%。由此表明,基于叶位组合的叶片反射光谱与叶绿素荧光耦合可有效监测水稻冠层LWC,为光学仪器监测水稻LWC提供理论基础,并对未来利用反射光谱与荧光参数进行作物光合作用研究提供理论支持。
中图分类号:
张雪楠, 王乐乐, 钮铭轩, 詹妮, 任浩杰, 徐浩聪, 杨昆, 武立权, 柯健, 尤翠翠, 何海兵. 基于叶片反射光谱和叶绿素荧光估测水稻叶片含水量[J]. 浙江农业学报, 2023, 35(6): 1265-1277.
ZHANG Xuenan, WANG Lele, NIU Mingxuan, ZHAN Ni, REN Haojie, XU Haocong, YANG Kun, WU Liquan, KE Jian, YOU Cuicui, HE Haibing. Estimation of rice leaf water content based on leaf reflectance spectrum and chlorophyll fluorescence[J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1265-1277.
植被指数 Vegetation index | 计算公式 Algorithm | 参考文献 Reference |
---|---|---|
归一化差值短红外指数Normalized difference short infrared index (NDSII) | VNDSII=(Rλ1-Rλ2)/(Rλ1+Rλ2) | 本研究This study |
归一化差值植被指数Normalized difference vegetation index (NDVI) | VNDVI=(R895-R675)/(R895+R675) | [ |
归一化差值近红外指数Normalized difference infrared index (NDII) | VNDII=(R819-R1600)/(R819+R1600) | [ |
归一化差值水分指数Normalized difference water index (NDWI) | VNDWI=(R860-R1240)/(R860+R1240) | [ |
水分指数Water index (WI) | VWI=R970/R900 | [ |
简单比值水分指数Simple ratio water index (SRWI) | VSRWI=R860/R1240 | [ |
水分胁迫指数Moisture stress index (MSI) | VMSI=R1600/R820 | [ |
全球植被水分指数Global vegetation water index (GVWI) | VGVWI=[(R820+0.1)-(R1600+0.2)]/ | [ |
[(R820+0.1)+(R1600+0.2)] |
表1 本研究采用的植被指数列表
Table 1 List of vegetation indexes used in this study
植被指数 Vegetation index | 计算公式 Algorithm | 参考文献 Reference |
---|---|---|
归一化差值短红外指数Normalized difference short infrared index (NDSII) | VNDSII=(Rλ1-Rλ2)/(Rλ1+Rλ2) | 本研究This study |
归一化差值植被指数Normalized difference vegetation index (NDVI) | VNDVI=(R895-R675)/(R895+R675) | [ |
归一化差值近红外指数Normalized difference infrared index (NDII) | VNDII=(R819-R1600)/(R819+R1600) | [ |
归一化差值水分指数Normalized difference water index (NDWI) | VNDWI=(R860-R1240)/(R860+R1240) | [ |
水分指数Water index (WI) | VWI=R970/R900 | [ |
简单比值水分指数Simple ratio water index (SRWI) | VSRWI=R860/R1240 | [ |
水分胁迫指数Moisture stress index (MSI) | VMSI=R1600/R820 | [ |
全球植被水分指数Global vegetation water index (GVWI) | VGVWI=[(R820+0.1)-(R1600+0.2)]/ | [ |
[(R820+0.1)+(R1600+0.2)] |
图1 水稻LWC的变化特征 柱上无相同小写字母表示差异显著(P<0.05)。下同。
Fig.1 Characteristics of LWC variation in rice Data on the bars marked without the same lowercase letter indicate significant differences at P<0.05. The same as below.
分组因子 Grouping factor | 变异来源 Variation source | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean square | F值 F-value | P值 P-value |
---|---|---|---|---|---|---|
水分处理 | 组间Intergroup | 0.011 | 2 | 0.005 | 18.154 | <0.01 |
Water treatment | 组内Intragroup | 0.023 | 78 | 0 | ||
总计Total | 0.034 | 80 | ||||
品种Variety | 组间Intergroup | 0.001 | 2 | 0 | 0.958 | 0.388 |
组内Intragroup | 0.033 | 78 | 0 | |||
总计Total | 0.034 | 80 | ||||
观测时期 | 组间Intergroup | 0.017 | 2 | 0.009 | 39.646 | 0 |
Observed periods | 组内Intragroup | 0.017 | 78 | 0 | ||
总计Total | 0.034 | 80 |
表2 LWC在品种、观测时期和水分处理下的方差分析
Table 2 Analysis of variance of LWC among varieties, water treatments, and observed periods, respectively
分组因子 Grouping factor | 变异来源 Variation source | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean square | F值 F-value | P值 P-value |
---|---|---|---|---|---|---|
水分处理 | 组间Intergroup | 0.011 | 2 | 0.005 | 18.154 | <0.01 |
Water treatment | 组内Intragroup | 0.023 | 78 | 0 | ||
总计Total | 0.034 | 80 | ||||
品种Variety | 组间Intergroup | 0.001 | 2 | 0 | 0.958 | 0.388 |
组内Intragroup | 0.033 | 78 | 0 | |||
总计Total | 0.034 | 80 | ||||
观测时期 | 组间Intergroup | 0.017 | 2 | 0.009 | 39.646 | 0 |
Observed periods | 组内Intragroup | 0.017 | 78 | 0 | ||
总计Total | 0.034 | 80 |
时期 Stage | 叶位 Leaf position | Fv/Fm | Fo | Y(Ⅱ) |
---|---|---|---|---|
抽穗期 | L1 | 0.572** | -0.573** | 0.705** |
Heading stage | L2 | 0.709** | -0.591** | 0.778** |
L3 | 0.662** | -0.585** | 0.740** | |
L12 | 0.717** | -0.594** | 0.797** | |
L13 | 0.677** | -0.634** | 0.785** | |
L23 | 0.732** | -0.656** | 0.800** | |
开花期 | L1 | 0.676** | -0.535** | 0.642** |
Flowering stage | L2 | 0.694** | -0.613** | 0.758** |
L3 | 0.679** | -0.570** | 0.756** | |
L12 | 0.717** | -0.603** | 0.747** | |
L13 | 0.714** | -0.589** | 0.735** | |
L23 | 0.721** | -0.623** | 0.767** | |
灌浆期 | L1 | 0.604** | -0.528** | 0.718** |
Filling stage | L2 | 0.674** | -0.589** | 0.767** |
L3 | 0.645** | -0.548** | 0.748** | |
L12 | 0.681** | -0.625** | 0.792** | |
L13 | 0.664** | -0.586** | 0.776** | |
L23 | 0.698** | -0.669** | 0.807** | |
抽穗-灌浆期 | L1 | 0.560** | -0.426** | 0.580** |
Heading- | L2 | 0.613** | -0.577** | 0.644** |
filling stage | L3 | 0.592** | -0.521** | 0.607** |
L12 | 0.626** | -0.528** | 0.654** | |
L13 | 0.632** | -0.517** | 0.635** | |
L23 | 0.654** | -0.618** | 0.663** |
表3 不同时期荧光参数与水稻LWC的相关系数
Table 3 Correlation coefficient between different fluorescence parameters and rice LWC at different growth stages
时期 Stage | 叶位 Leaf position | Fv/Fm | Fo | Y(Ⅱ) |
---|---|---|---|---|
抽穗期 | L1 | 0.572** | -0.573** | 0.705** |
Heading stage | L2 | 0.709** | -0.591** | 0.778** |
L3 | 0.662** | -0.585** | 0.740** | |
L12 | 0.717** | -0.594** | 0.797** | |
L13 | 0.677** | -0.634** | 0.785** | |
L23 | 0.732** | -0.656** | 0.800** | |
开花期 | L1 | 0.676** | -0.535** | 0.642** |
Flowering stage | L2 | 0.694** | -0.613** | 0.758** |
L3 | 0.679** | -0.570** | 0.756** | |
L12 | 0.717** | -0.603** | 0.747** | |
L13 | 0.714** | -0.589** | 0.735** | |
L23 | 0.721** | -0.623** | 0.767** | |
灌浆期 | L1 | 0.604** | -0.528** | 0.718** |
Filling stage | L2 | 0.674** | -0.589** | 0.767** |
L3 | 0.645** | -0.548** | 0.748** | |
L12 | 0.681** | -0.625** | 0.792** | |
L13 | 0.664** | -0.586** | 0.776** | |
L23 | 0.698** | -0.669** | 0.807** | |
抽穗-灌浆期 | L1 | 0.560** | -0.426** | 0.580** |
Heading- | L2 | 0.613** | -0.577** | 0.644** |
filling stage | L3 | 0.592** | -0.521** | 0.607** |
L12 | 0.626** | -0.528** | 0.654** | |
L13 | 0.632** | -0.517** | 0.635** | |
L23 | 0.654** | -0.618** | 0.663** |
叶位 Leaf position | 回归方程 Regression equation | 模型精度 Model Precision(R2) | 预测精度 Prediction Precision( | 均方根误 RMSE | 相对误差 RE/% |
---|---|---|---|---|---|
L1 | y =0.925x+0.670 | 0.337 | 0.363 | 0.018 | 2.318 |
L2 | y=1.032x+0.674 | 0.415 | 0.429 | 0.016 | 2.197 |
L3 | y=0.982x+0.682 | 0.369 | 0.416 | 0.016 | 2.295 |
L12 | y=1.114x+0.666 | 0.427 | 0.457 | 0.016 | 2.163 |
L13 | y=1.091x+0.670 | 0.404 | 0.425 | 0.016 | 2.215 |
L23 | y=1.130x+0.673 | 0.439 | 0.468 | 0.015 | 2.156 |
表4 水稻LWC与荧光参数Y(Ⅱ)的定量关系与模型检验效果
Table 4 Quantitative relationship and model verification effect of LWC and fluorescence parameter Y(Ⅱ) in rice
叶位 Leaf position | 回归方程 Regression equation | 模型精度 Model Precision(R2) | 预测精度 Prediction Precision( | 均方根误 RMSE | 相对误差 RE/% |
---|---|---|---|---|---|
L1 | y =0.925x+0.670 | 0.337 | 0.363 | 0.018 | 2.318 |
L2 | y=1.032x+0.674 | 0.415 | 0.429 | 0.016 | 2.197 |
L3 | y=0.982x+0.682 | 0.369 | 0.416 | 0.016 | 2.295 |
L12 | y=1.114x+0.666 | 0.427 | 0.457 | 0.016 | 2.163 |
L13 | y=1.091x+0.670 | 0.404 | 0.425 | 0.016 | 2.215 |
L23 | y=1.130x+0.673 | 0.439 | 0.468 | 0.015 | 2.156 |
时期 | 叶位 | NDVI | NDII | NDWI | WI | SRWI | MSI | GVWI |
---|---|---|---|---|---|---|---|---|
Stage | Leaf position | |||||||
抽穗期 | L1 | -0.663** | -0.604** | 0.674** | 0.588** | 0.591** | 0.623** | -0.603** |
Heading stage | L2 | -0.759** | -0.678** | 0.743** | 0.615** | 0.680** | 0.675** | -0.626** |
L3 | -0.678** | -0.644** | 0.735** | 0.637** | 0.625** | 0.660** | -0.684** | |
L12 | -0.783** | -0.683** | 0.832** | 0.673** | 0.683** | 0.667** | -0.686** | |
L13 | -0.764** | -0.661** | 0.748** | 0.699** | 0.681** | 0.683** | -0.677** | |
L23 | -0.782** | -0.705** | 0.842** | 0.717** | 0.702** | 0.699** | -0.704** | |
开花期 | L1 | -0.631** | -0.599** | 0.583** | 0.604** | 0.582** | 0.588** | -0.608** |
Flowering stage | L2 | -0.750** | -0.612** | 0.706** | 0.594** | 0.624** | 0.623** | -0.630** |
L3 | -0.656** | -0.601** | 0.625** | 0.557** | 0.653** | 0.632** | -0.620** | |
L12 | -0.716** | -0.629** | 0.721** | 0.628** | 0.622** | 0.632** | -0.664** | |
L13 | -0.709** | -0.649** | 0.684** | 0.607** | 0.615** | 0.670** | -0.658** | |
L23 | -0.725** | -0.657** | 0.737** | 0.621** | 0.667** | 0.696** | -0.709** | |
灌浆期 | L1 | -0.615** | -0.620** | 0.621** | 0.535** | 0.558** | 0.522** | -0.601** |
Filling stage | L2 | -0.691** | -0.661** | 0.699** | 0.613** | 0.622** | 0.623** | -0.585** |
L3 | -0.687** | -0.638** | 0.630** | 0.606** | 0.610** | 0.616** | -0.593** | |
L12 | -0.765** | -0.673** | 0.687** | 0.689** | 0.627** | 0.614** | -0.700** | |
L13 | -0.763** | -0.729** | 0.684** | 0.641** | 0.630** | 0.598** | -0.740** | |
L23 | -0.775** | -0.746** | 0.702** | 0.722** | 0.673** | 0.694** | -0.652** | |
抽穗-灌浆期 | L1 | -0.581** | -0.507** | 0.565** | 0.548** | 0.543** | 0.524** | -0.495** |
Heading-filling stage | L2 | -0.693** | -0.576** | 0.664** | 0.570** | 0.613** | 0.545** | -0.517** |
L3 | -0.651** | -0.555** | 0.600** | 0.567** | 0.587** | 0.541** | -0.520** | |
L12 | -0.702** | -0.546** | 0.644** | 0.565** | 0.624** | 0.538** | -0.516** | |
L13 | -0.670** | -0.554** | 0.583** | 0.571** | 0.607** | 0.538** | -0.522** | |
L23 | -0.731** | -0.583** | 0.656** | 0.576** | 0.643** | 0.545** | -0.521** |
表5 不同时期典型植被指数与水稻LWC的相关系数
Table 5 Correlation coefficient between typical vegetation indexes and rice LWC at different growth stages
时期 | 叶位 | NDVI | NDII | NDWI | WI | SRWI | MSI | GVWI |
---|---|---|---|---|---|---|---|---|
Stage | Leaf position | |||||||
抽穗期 | L1 | -0.663** | -0.604** | 0.674** | 0.588** | 0.591** | 0.623** | -0.603** |
Heading stage | L2 | -0.759** | -0.678** | 0.743** | 0.615** | 0.680** | 0.675** | -0.626** |
L3 | -0.678** | -0.644** | 0.735** | 0.637** | 0.625** | 0.660** | -0.684** | |
L12 | -0.783** | -0.683** | 0.832** | 0.673** | 0.683** | 0.667** | -0.686** | |
L13 | -0.764** | -0.661** | 0.748** | 0.699** | 0.681** | 0.683** | -0.677** | |
L23 | -0.782** | -0.705** | 0.842** | 0.717** | 0.702** | 0.699** | -0.704** | |
开花期 | L1 | -0.631** | -0.599** | 0.583** | 0.604** | 0.582** | 0.588** | -0.608** |
Flowering stage | L2 | -0.750** | -0.612** | 0.706** | 0.594** | 0.624** | 0.623** | -0.630** |
L3 | -0.656** | -0.601** | 0.625** | 0.557** | 0.653** | 0.632** | -0.620** | |
L12 | -0.716** | -0.629** | 0.721** | 0.628** | 0.622** | 0.632** | -0.664** | |
L13 | -0.709** | -0.649** | 0.684** | 0.607** | 0.615** | 0.670** | -0.658** | |
L23 | -0.725** | -0.657** | 0.737** | 0.621** | 0.667** | 0.696** | -0.709** | |
灌浆期 | L1 | -0.615** | -0.620** | 0.621** | 0.535** | 0.558** | 0.522** | -0.601** |
Filling stage | L2 | -0.691** | -0.661** | 0.699** | 0.613** | 0.622** | 0.623** | -0.585** |
L3 | -0.687** | -0.638** | 0.630** | 0.606** | 0.610** | 0.616** | -0.593** | |
L12 | -0.765** | -0.673** | 0.687** | 0.689** | 0.627** | 0.614** | -0.700** | |
L13 | -0.763** | -0.729** | 0.684** | 0.641** | 0.630** | 0.598** | -0.740** | |
L23 | -0.775** | -0.746** | 0.702** | 0.722** | 0.673** | 0.694** | -0.652** | |
抽穗-灌浆期 | L1 | -0.581** | -0.507** | 0.565** | 0.548** | 0.543** | 0.524** | -0.495** |
Heading-filling stage | L2 | -0.693** | -0.576** | 0.664** | 0.570** | 0.613** | 0.545** | -0.517** |
L3 | -0.651** | -0.555** | 0.600** | 0.567** | 0.587** | 0.541** | -0.520** | |
L12 | -0.702** | -0.546** | 0.644** | 0.565** | 0.624** | 0.538** | -0.516** | |
L13 | -0.670** | -0.554** | 0.583** | 0.571** | 0.607** | 0.538** | -0.522** | |
L23 | -0.731** | -0.583** | 0.656** | 0.576** | 0.643** | 0.545** | -0.521** |
图5 两波段组合的归一化差值植被指数预测水稻LWC的R2、RMSE和RE等势图
Fig.5 Contour maps of R2、RMSE and RE of LWC predicted by normalized difference vegetation index based on two wavebands-combination in rice
叶位 Leaf position | 回归方程 Regression equation | 模型精度 Model Precision(R2) | 预测精度 Prediction Precision( | 均方根误 RMSE | 相对误差 RE(%) |
---|---|---|---|---|---|
L1 | y=-0.582x+0.930 | 0.482 | 0.505 | 0.015 | 2.065 |
L2 | y=-0.620x+0.941 | 0.597 | 0.619 | 0.013 | 1.849 |
L3 | y=-0.567x+0.915 | 0.577 | 0.618 | 0.013 | 1.873 |
L12 | y=-0.781x+0.965 | 0.609 | 0.621 | 0.013 | 1.806 |
L13 | y=-0.647x+0.948 | 0.598 | 0.627 | 0.013 | 1.825 |
L23 | y=-0.654x+0.950 | 0.648 | 0.679 | 0.012 | 1.718 |
表6 水稻LWC与植被指数NDSII(1114,1387)的定量关系与模型检验效果
Table 6 Quantitative relationships and model verification effect of LWC and vegetation index NDSII(1114,1387) in rice
叶位 Leaf position | 回归方程 Regression equation | 模型精度 Model Precision(R2) | 预测精度 Prediction Precision( | 均方根误 RMSE | 相对误差 RE(%) |
---|---|---|---|---|---|
L1 | y=-0.582x+0.930 | 0.482 | 0.505 | 0.015 | 2.065 |
L2 | y=-0.620x+0.941 | 0.597 | 0.619 | 0.013 | 1.849 |
L3 | y=-0.567x+0.915 | 0.577 | 0.618 | 0.013 | 1.873 |
L12 | y=-0.781x+0.965 | 0.609 | 0.621 | 0.013 | 1.806 |
L13 | y=-0.647x+0.948 | 0.598 | 0.627 | 0.013 | 1.825 |
L23 | y=-0.654x+0.950 | 0.648 | 0.679 | 0.012 | 1.718 |
模型 Model | 回归方程 Regression equation | 模型精度 Model Precision (R2) | 预测精度 Prediction Precision ( | 均方根误 RMSE | 相对误差 RE/% | 校正效果 Correction effect/% | |
---|---|---|---|---|---|---|---|
Y(Ⅱ) | NDSII | ||||||
L1 | y=0.545a-0.482b+0.864 | 0.620 | 0.635 | 0.009 | 1.249 | 83.976 | 28.631 |
L2 | y=0.367a-0.459b+0.871 | 0.713 | 0.725 | 0.008 | 1.090 | 71.807 | 19.430 |
L3 | y=0.237a-0.668b+0.949 | 0.647 | 0.661 | 0.009 | 1.207 | 75.339 | 12.132 |
L12 | y=0.495a-0.427b+0.852 | 0.768 | 0.777 | 0.007 | 0.981 | 79.859 | 26.108 |
L13 | y=0.579a-0.478b+0.865 | 0.714 | 0.726 | 0.008 | 1.079 | 76.733 | 19.398 |
L23 | y=0.452a-0.464b+0.866 | 0.796 | 0.804 | 0.007 | 0.917 | 81.321 | 22.840 |
表7 模型综合评价
Table 7 Comprehensive evaluation of model
模型 Model | 回归方程 Regression equation | 模型精度 Model Precision (R2) | 预测精度 Prediction Precision ( | 均方根误 RMSE | 相对误差 RE/% | 校正效果 Correction effect/% | |
---|---|---|---|---|---|---|---|
Y(Ⅱ) | NDSII | ||||||
L1 | y=0.545a-0.482b+0.864 | 0.620 | 0.635 | 0.009 | 1.249 | 83.976 | 28.631 |
L2 | y=0.367a-0.459b+0.871 | 0.713 | 0.725 | 0.008 | 1.090 | 71.807 | 19.430 |
L3 | y=0.237a-0.668b+0.949 | 0.647 | 0.661 | 0.009 | 1.207 | 75.339 | 12.132 |
L12 | y=0.495a-0.427b+0.852 | 0.768 | 0.777 | 0.007 | 0.981 | 79.859 | 26.108 |
L13 | y=0.579a-0.478b+0.865 | 0.714 | 0.726 | 0.008 | 1.079 | 76.733 | 19.398 |
L23 | y=0.452a-0.464b+0.866 | 0.796 | 0.804 | 0.007 | 0.917 | 81.321 | 22.840 |
[1] | 陈海波, 李就好. 基于光谱反射率的作物水分状况研究进展[J]. 节水灌溉, 2010(8): 69-72. |
CHEN H B, LI J H. Advances on crop water content diagnosis based on spectral reflectance[J]. Water Saving Irrigation, 2010(8): 69-72. (in Chinese with English abstract) | |
[2] | THOMAS J R, NAMKEN L N, OERTHER G F, et al. Estimating leaf water content by reflectance Measurements[J]. Agronomy Journal, 1971, 63(6): 845-847. |
[3] | SEELIG H D, HOEHN A, STODIECK L S, et al. The assessment of leaf water content using leaf reflectance ratios in the visible, near-, and short-wave-infrared[J]. International Journal of Remote Sensing, 2008, 29(13): 3701-3713. |
[4] | LIN W P, LI Y, DU S Q, et al. Effect of dust deposition on spectrum-based estimation of leaf water content in urban plant[J]. Ecological Indicators, 2019, 104: 41-47. |
[5] | KONG W P, HUANG W J, MA L L, et al. Estimating vertical distribution of leaf water content within wheat canopies after head emergence[J]. Remote Sensing, 2021, 13(20): 4125. |
[6] | 刘良云, 王纪华, 张永江, 等. 叶片辐射等效水厚度计算与叶片水分定量反演研究[J]. 遥感学报, 2007, 11(3): 289-295. |
LIU L Y, WANG J H, ZHANG Y J, et al. Detection of leaf EWT by calculating REWT from reflectance spectra[J]. Journal of Remote Sensing, 2007, 11(3): 289-295. (in Chinese with English abstract) | |
[7] | YANG F F, LIU T, WANG Q Y, et al. Rapid determination of leaf water content for monitoring waterlogging in winter wheat based on hyperspectral parameters[J]. Journal of Integrative Agriculture, 2021, 20(10): 2613-2626. |
[8] | KOVAR M, BRESTIC M, SYTAR O, et al. Evaluation of hyperspectral reflectance parameters to assess the leaf water content in soybean[J]. Water, 2019, 11(3): 443. |
[9] | PEÑUELAS J, FILELLA I, BIEL C, et al. The reflectance at the 950-970 nm region as an indicator of plant water status[J]. International Journal of Remote Sensing, 1993, 14(10): 1887-1905. |
[10] | ZHU Z, LI T S, CUI J, et al. Non-destructive estimation of winter wheat leaf moisture content using near-ground hyperspectral imaging technology[J]. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 2020, 70(4): 294-306. |
[11] | YANG J A, ZHANG Y Y, DU L, et al. Improving the selection of vegetation index characteristic wavelengths by using the PROSPECT model for leaf water content estimation[J]. Remote Sensing, 2021, 13(4): 821. |
[12] | 田永超, 杨杰, 姚霞, 等. 利用叶片高光谱指数预测水稻群体叶层全氮含量[J]. 作物学报, 2010, 36(9): 1529-1537. |
TIAN Y C, YANG J, YAO X, et al. Monitoring canopy leaf nitrogen concentration based on leaf hyperspectral indices in rice[J]. Acta Agronomica Sinica, 2010, 36(9): 1529-1537. (in Chinese with English abstract) | |
[13] | DANSON F M, STEVEN M D, MALTHUS T J, et al. High-spectral resolution data for determining leaf water content[J]. International Journal of Remote Sensing, 1992, 13(3): 461-470. |
[14] | 梁亮, 张连蓬, 林卉, 等. 基于导数光谱的小麦冠层叶片含水量反演[J]. 中国农业科学, 2013, 46(1): 18-29. |
LIANG L, ZHANG L P, LIN H, et al. Estimating canopy leaf water content in wheat based on derivative spectra[J]. Scientia Agricultura Sinica, 2013, 46(1): 18-29. (in Chinese with English abstract) | |
[15] | 刘小军, 田永超, 姚霞, 等. 基于高光谱的水稻叶片含水量监测研究[J]. 中国农业科学, 2012, 45(3): 435-442. |
LIU X J, TIAN Y C, YAO X, et al. Monitoring leaf water content based on hyperspectra in rice[J]. Scientia Agricultura Sinica, 2012, 45(3): 435-442. (in Chinese with English abstract) | |
[16] | 李刚华, 薛利红, 尤娟, 等. 水稻氮素和叶绿素SPAD叶位分布特点及氮素诊断的叶位选择[J]. 中国农业科学, 2007, 40(6): 1127-1134. |
LI G H, XUE L H, YOU J, et al. Spatial distribution of leaf N content and SPAD value and determination of the suitable leaf for N diagnosis in rice[J]. Scientia Agricultura Sinica, 2007, 40(6): 1127-1134. (in Chinese with English abstract) | |
[17] | 徐浩聪, 姚波, 王权, 等. 基于叶片反射光谱估测水稻氮营养指数[J]. 中国农业科学, 2021, 54(21): 4525-4539. |
XU H C, YAO B, WANG Q, et al. Determination of suitable band width for estimating rice nitrogen nutrition index based on leaf reflectance spectra[J]. Scientia Agricultura Sinica, 2021, 54(21): 4525-4539. (in Chinese with English abstract) | |
[18] | PEREIRA T S, LIMA M D R, PAULA L S, et al. Tolerance to water deficit in cowpea populations resulting from breeding program: detection by gas exchange and chlorophyll fluorescence[J]. Indian Journal of Plant Physiology, 2016, 21(2): 171-178. |
[19] | 白晶晶, 吴俊文, 李吉跃, 等. 干旱胁迫对2种速生树种叶绿素荧光特性的影响[J]. 华南农业大学学报, 2015, 36(1): 85-90. |
BAI J J, WU J W, LI J Y, et al. Effects of drought stress on chlorophyll fluorescence parameters of two fast-growing tree species[J]. Journal of South China Agricultural University, 2015, 36(1): 85-90. (in Chinese with English abstract) | |
[20] | BANKS J M. Chlorophyll fluorescence as a tool to identify drought stress in Acer genotypes[J]. Environmental and Experimental Botany, 2018, 155: 118-127. |
[21] | 汤飞洋, 金荷仙, 唐宇力. 不同程度干旱胁迫对4个杜鹃品种叶绿素荧光参数的影响[J]. 西北林学院学报, 2017, 32(5): 64-68. |
TANG F Y, JIN H X, TANG Y L. Effects of different drought stress on chlorophyll fluorescence of four Rhododendron cultivars[J]. Journal of Northwest Forestry University, 2017, 32(5): 64-68. (in Chinese with English abstract) | |
[22] | 吴姗姗, 徐学欣, 张霞, 等. 不同品种冬小麦苗期叶绿素荧光参数与抗旱性关系研究[J]. 华北农学报, 2020, 35(6): 90-99. |
WU S S, XU X X, ZHANG X, et al. Relationship analysis of chlorophyll fluorescence parameters and drought resistance in different winter wheat varieties at seedling stage[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(6): 90-99. (in Chinese with English abstract) | |
[23] | WANG B F, YANG X L, CHEN L, et al. Physiological mechanism of drought-resistant rice coping with drought stress[J]. Journal of Plant Growth Regulation, 2022, 41(7): 2638-2651. |
[24] | 倪建中, 罗倩, 陈小宇, 等. 木棉叶片叶绿素荧光参数和SPAD值对干旱胁迫的响应[J]. 亚热带植物科学, 2021, 50(4): 257-261. |
NI J Z, LUO Q, CHEN X Y, et al. Responses of chlorophyll fluorescence parameters and SPAD value in leaves of Bombax ceiba to drought stress[J]. Subtropical Plant Science, 2021, 50(4): 257-261. (in Chinese with English abstract) | |
[25] | 印玉明, 王永清, 马春晨, 等. 利用日光诱导叶绿素荧光监测水稻叶片叶绿素含量[J]. 农业工程学报, 2021, 37(12): 169-180. |
YIN Y M, WANG Y Q, MA C C, et al. Monitoring of chlorophyll content in rice canopy and single leaf using Sun-induced chlorophyll fluorescence[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(12): 169-180. (in Chinese with English abstract) | |
[26] | 何海兵, 杨茹, 廖江, 等. 水分和氮肥管理对灌溉水稻优质高产高效调控机制的研究进展[J]. 中国农业科学, 2016, 49(2): 305-318. |
HE H B, YANG R, LIAO J, et al. Research advance of high-yielding and high efficiency in resource use and improving grain quality of rice plants under water and nitrogen managements in an irrigated region[J]. Scientia Agricultura Sinica, 2016, 49(2): 305-318. (in Chinese with English abstract) | |
[27] | 姚霞. 小麦冠层和单叶氮素营养指标的高光谱监测研究[D]. 南京: 南京农业大学, 2009. |
YAO X. Monitoring nitrogen status at canopy and leaf scales with hyperspectral sensing in wheat[D]. Nanjing: Nanjing Agricultural University, 2009. (in Chinese with English abstract) | |
[28] | SERRANO L, USTIN S L, ROBERTS D A, et al. Deriving water content of chaparral vegetation from AVIRIS data[J]. Remote Sensing of Environment, 2000, 74(3): 570-581. |
[29] | HARDISKY M. The influence of soil salinity, growth form, and leaf moisture on-the spectral radiance of Spartina alterniflora canopies[J]. Photogrammetric Engineering and Remote Sensing, 1983, 49(1):77-84. |
[30] | GAO B C. NDWI: a normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sensing of Environment, 1996, 58(3): 257-266. |
[31] | ZARCO-TEJADA P J, RUEDA C A, USTIN S L. Water content estimation in vegetation with MODIS reflectance data and model inversion methods[J]. Remote Sensing of Environment, 2003, 85(1): 109-124. |
[32] | MACK A R, FERGUSON W S. A moisture stress index for wheat by means of a modulated soil moisture budget[J]. Canadian Journal of Plant Science, 1968, 48(5): 535-544. |
[33] | CECCATO P, GOBRON N, FLASSE S, et al. Designing a spectral index to estimate vegetation water content from remote sensing data: part 1[J]. Remote Sensing of Environment, 2002, 82(2/3): 188-197. |
[34] | DAS D, ULLAH H, TISARUM R, et al. Morpho-physiological responses of tropical rice to potassium and silicon fertilization under water-deficit stress[J]. Journal of Soil Science and Plant Nutrition, 2023, 23(1): 220-237. |
[35] | HE H B, WANG Q A, WANG L L, et al. Photosynthetic physiological response of water-saving and drought-resistant rice to severe drought under wetting-drying alternation irrigation[J]. Physiologia Plantarum, 2021, 173(4): 2191-2206. |
[36] | KRAUSE G H, SOMERSALO S, OSMOND C B, et al. Fluorescence as a tool in photosynthesis research: application in studies of photoinhibition, cold acclimation and freezing stress[J]. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 1989, 323(1216): 281-293. |
[37] | SAGLAM A, SARUHAN N, TERZI R, et al. The relations between antioxidant enzymes and chlorophyll fluorescence parameters in common bean cultivars differing in sensitivity to drought stress[J]. Russian Journal of Plant Physiology, 2011, 58(1): 60-68. |
[38] | 王玉芬, 李娟, 路战远, 等. 玉米高产品种光合特性及抗氧化系统对水分胁迫的响应[J]. 华北农学报, 2015, 30(6): 97-104. |
WANG Y F, LI J, LU Z Y, et al. Responses of water stress on photosynthetic trait and antioxygenation system in two high-yield maize cultivars[J]. Acta Agriculturae Boreali-Sinica, 2015, 30(6): 97-104. (in Chinese with English abstract) | |
[39] | 卜令铎, 张仁和, 常宇, 等. 苗期玉米叶片光合特性对水分胁迫的响应[J]. 生态学报, 2010, 30(5): 1184-1191. |
BU L D, ZHANG R H, CHANG Y, et al. Response of photosynthetic characteristics to water stress of maize leaf in seeding[J]. Acta Ecologica Sinica, 2010, 30(5): 1184-1191. (in Chinese with English abstract) | |
[40] | 李娟, 彭镇华, 高健, 等. 干旱胁迫下黄条金刚竹的光合和叶绿素荧光特性[J]. 应用生态学报, 2011, 22(6): 1395-1402. |
LI J, PENG Z H, GAO J, et al. Photosynthetic parameters and chlorophyll fluorescence characteristics of Pleioblastus kongosanensis f. aureostriaus under drought stress[J]. Chinese Journal of Applied Ecology, 2011, 22(6): 1395-1402. (in Chinese with English abstract) | |
[41] | 孙骏威, 杨勇, 蒋德安. 水分亏缺下水稻的光化学和抗氧化应答[J]. 浙江大学学报(农业与生命科学版), 2004, 30(3): 278-284. |
SUN J W, YANG Y, JIANG D A. Photochemical and antioxidant behavior of rice in response to water deficit[J]. Journal of Zhejiang University(Agric & Life Sci), 2004, 30(3): 278-284. (in Chinese with English abstract) | |
[42] | CHENG T, RIVARD B, SÁNCHEZ-AZOFEIFA A. Spectroscopic determination of leaf water content using continuous wavelet analysis[J]. Remote Sensing of Environment, 2011, 115(2): 659-670. |
[43] | ZARCO-TEJADA P J, HORNERO A, HERNÁNDEZ-CLEMENTE R, et al. Understanding the temporal dimension of the red-edge spectral region for forest decline detection using high-resolution hyperspectral and Sentinel-2a imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 137: 134-148. |
[44] | FRAMPTON W J, DASH J, WATMOUGH G, et al. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 82: 83-92. |
[45] | 王化新, 李实蕡, 陈翼伯, 等. 水稻不同节位叶的光合强度和光合产物的运转与分配[J]. 四川农业大学学报, 1989, 7(3): 142-145. |
WANG H X, LI S F, CHEN Y B, et al. The intensity of photosynthesis and the transportation and distribution of the photosynthetic product in the different node leaves of rice headinc stace[J]. Journal of Sichuan Agricultural University, 1989, 7(3): 142-145. (in Chinese with English abstract) |
[1] | 王鑫彤, 万祖粱, 杨振中, 王国骄. 秸秆秋季湿耙还田对水稻不同生育时期叶片-土壤生态化学计量特征的影响[J]. 浙江农业学报, 2023, 35(6): 1243-1252. |
[2] | 朱冬琴, 冯全, 张建华. 基于剪枝的植物病害识别方法[J]. 浙江农业学报, 2023, 35(6): 1462-1472. |
[3] | 张超正, 张旭鹏, 陈丹玲. 劳动力老龄化、耕地细碎化必然导致水稻生产成本增加吗?——基于鄂东南地区的微观调查[J]. 浙江农业学报, 2023, 35(5): 1211-1222. |
[4] | 夏小东, 张晓波, 施勇烽, 许如根. 水稻致死突变体基因克隆与分子机制研究进展[J]. 浙江农业学报, 2023, 35(5): 1223-1234. |
[5] | 蒋莹莹, 张华, 雷志伟, 徐恒, 张恒, 朱英. 茉莉酸信号关键转录因子OsMYC2影响水稻愈伤诱导和分化的功能初探[J]. 浙江农业学报, 2023, 35(5): 973-982. |
[6] | 张斌, 冯晓庆, 郑芊, 陈稳, 滕杰. 抑制OsPUT5基因表达降低水稻低温抗性[J]. 浙江农业学报, 2023, 35(4): 780-788. |
[7] | 马新超, 轩正英, 谭占明, 周宇, 王旭峰. 温室沙培黄瓜生产效应的水氮耦合方案优化[J]. 浙江农业学报, 2023, 35(4): 809-820. |
[8] | 樊闯, 赵子皓, 张雪松, 杨沈斌. 基于BP神经网络的一季稻发育期预测模型[J]. 浙江农业学报, 2023, 35(2): 434-444. |
[9] | 尤翠翠, 贺一哲, 徐鹏, 黄亚茹, 王辉, 何海兵, 柯健, 武立权. 高温胁迫对水稻生长发育的伤害效应及其防御对策[J]. 浙江农业学报, 2023, 35(1): 10-22. |
[10] | 李斌, 刘东阳, 时国龙, 慕京生, 徐浩然, 辜丽川, 焦俊. 基于改进YOLOv4模型的群养生猪姿态检测[J]. 浙江农业学报, 2023, 35(1): 215-225. |
[11] | 杨胜玲, 黄兴成, 李渝, 刘彦伶, 张雅蓉, 张艳, 张文安, 蒋太明. 长期有机无机肥配施对水稻生长、干物质积累及产量的影响[J]. 浙江农业学报, 2022, 34(9): 1815-1825. |
[12] | 王晨, 张敏, 王振旗, 钱晓雍, 徐昶, 倪远之, 李金文, 沈根祥. 长期施用猪粪稻田的重金属迁移规律与累积风险[J]. 浙江农业学报, 2022, 34(9): 1985-1994. |
[13] | 姜友谊, 张成健, 韩少宇, 杨小冬, 杨贵军, 杨浩. 基于无人机三维点云的玉米植株自动计数研究[J]. 浙江农业学报, 2022, 34(9): 2032-2042. |
[14] | 黄东慧, 钟鹏, 王建丽, 胡云龙, 王志刚. 环境条件对Bacillus altitudinis LZP02生物膜形成的影响[J]. 浙江农业学报, 2022, 34(7): 1466-1473. |
[15] | 娄飞, 付天岭, 代良羽, 周凯, 林大松, 何腾兵. 不同土壤调理剂对黔中地区水稻Cd积累转运和产量的影响[J]. 浙江农业学报, 2022, 34(7): 1493-1501. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||