浙江农业学报 ›› 2023, Vol. 35 ›› Issue (6): 1265-1277.DOI: 10.3969/j.issn.1004-1524.2023.06.04

• 作物科学 • 上一篇    下一篇

基于叶片反射光谱和叶绿素荧光估测水稻叶片含水量

张雪楠1(), 王乐乐1, 钮铭轩1, 詹妮1, 任浩杰2, 徐浩聪1, 杨昆1, 武立权1,3, 柯健1, 尤翠翠1, 何海兵1,*()   

  1. 1.安徽农业大学 农学院,安徽 合肥 230036
    2.普济圩现代农业集团有限公司,安徽 铜陵 244071
    3.江苏省现代作物生产协同创新中心,江苏 南京 210095
  • 收稿日期:2022-07-15 出版日期:2023-06-25 发布日期:2023-07-04
  • 通讯作者: *何海兵,E-mail:hhb_agr@ahau.edu.cn
  • 作者简介:张雪楠(1998—),女,河南周口人,硕士研究生,主要从事农作物光谱模型研究。E-mail:2869231417@qq.com
  • 基金资助:
    国家自然科学基金(32071946);安徽省自然科学基金(1908085MC67);安徽省教育厅自然科学基金重点项目(KJ2021A0201)

Estimation of rice leaf water content based on leaf reflectance spectrum and chlorophyll fluorescence

ZHANG Xuenan1(), WANG Lele1, NIU Mingxuan1, ZHAN Ni1, REN Haojie2, XU Haocong1, YANG Kun1, WU Liquan1,3, KE Jian1, YOU Cuicui1, HE Haibing1,*()   

  1. 1. College of Agronomy, Anhui Agricultural University, Hefei 230036, China
    2. Pujiwei Modern Agriculture Group Co., Ltd., Tongling 244071, Anhui, China
    3. Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China
  • Received:2022-07-15 Online:2023-06-25 Published:2023-07-04

摘要:

水稻冠层叶片含水量(leaf water content,LWC)快速无损监测对指导稻田精准灌溉和提高水稻水分利用效率具有重要意义。试验设置3个不同水分处理(传统淹灌、轻度干湿交替-15 kPa、重度干湿交替-30 kPa),于水分敏感期(抽穗-灌浆期)动态监测顶1叶(L1)、顶2叶(L2)和顶3叶(L3)的光谱数据和叶绿素荧光参数,通过全光谱波段筛选出水分敏感波段,建立新型植被指数,结合叶绿素荧光参数,以期建立基于叶位组合的水稻冠层LWC精准监测模型。结果表明:水稻叶片水分敏感波段在近红外波段(1 000~1 400 nm),所构建新型植被指数NDSII(1114,1387)较传统植被指数能更好地监测LWC;通过筛选与LWC有高相关性的荧光参数,基于实际光量子产量Y(Ⅱ)和植被指数NDSII(1114,1387)的耦合监测模型较单一植被指数NDSII(1114,1387)模型精度提高71.807%~83.976%。与单叶相比,L2和L3叶位组合的Y(Ⅱ)和植被指数NDSII(1114,1387)耦合模型对水稻冠层LWC监测精度相较L2、L3分别显著(P<0.05)提高11.641%和23.029%。由此表明,基于叶位组合的叶片反射光谱与叶绿素荧光耦合可有效监测水稻冠层LWC,为光学仪器监测水稻LWC提供理论基础,并对未来利用反射光谱与荧光参数进行作物光合作用研究提供理论支持。

关键词: 叶片含水量, 水稻, 植被指数, 叶绿素荧光参数, 模型

Abstract:

Rapid and non-destructive monitoring to leaf water content (LWC) in rice is of great significance for guiding precision irrigation of paddy fields and improving water use efficiency of rice plants. In this study, three different water treatments including traditional flooded irrigation, mild dry-wet alternation with-15 kPa supplementary irrigation critical value, severe dry-wet alternation with-30 kPa supplementary irrigation critical value were set in pot experiment to precisely regulate plant growth. The LWC of the canopy, single leaf spectral data and chlorophyll fluorescence parameters of the top 1 (L1), top 2 (L2), and top 3 (L3) leaves were continuously measured in the water-sensitive periods from heading to grain filling period. Water-sensitive bands were screened out through the full spectral bands to establish a new vegetation index. An accurate monitoring model for rice LWC based on leaf position combination was established in combination with the chlorophyll fluorescence parameters. It was found that: The sensitive water band is in the near-infrared band (1 000-1 400 nm), and a new vegetation index NDSII(1114,1387) was constructed. By screening the fluorescence parameters with a high correlation with LWC, the coupled monitoring model based on the actual photochemical efficiency Y(Ⅱ) and the vegetation index NDSII(1114,1387) was 71.807%-83.976% better accuracy than the single vegetation index NDSII(1114,1387) model. Compared with the single leaf, the Y(Ⅱ) and vegetation index NDSII(1114,1387) coupling model of L2and L3leaf position combination significantly improved the accuracy of LWC monitoring of rice canopy by 11.641% and 23.029% compared with L2and L3. This showed that the coupling of leaf reflectance spectrum and chlorophyll fluorescence could effectively monitor the LWC in the water-sensitive period of rice, providing a theoretical basis for optical instrument monitoring of rice LWC and theoretical support for future research on crop photosynthesis using the reflectance spectrum and fluorescence parameters.

Key words: leaf water content, Oryza sativa L., vegetation index, chlorophyll fluorescence parameter, model

中图分类号: