浙江农业学报 ›› 2023, Vol. 35 ›› Issue (4): 780-788.DOI: 10.3969/j.issn.1004-1524.2023.04.05
收稿日期:
2022-05-12
出版日期:
2023-04-25
发布日期:
2023-05-05
作者简介:
张斌(1981—),男,湖南永州人,博士,副教授,研究方向为植物发育生物学。E-mail: zhangbin27104@163.com
基金资助:
ZHANG Bin(), FENG Xiaoqing, ZHENG Qian, CHEN Wen, TENG Jie
Received:
2022-05-12
Online:
2023-04-25
Published:
2023-05-05
摘要:
为研究水稻(Oryza sativa)多胺转运蛋白(polyamine uptake transporters, PUT)的功能,利用生物信息学方法对水稻中OsPUT家族成员进行鉴定,并对OsPUT5蛋白结构进行分析,采用实时荧光定量PCR(qRT-PCR)检测OsPUT5基因在水稻不同组织中的表达情况,最后利用水稻超表达(overexpress,OE)株系、日本晴(Nipponbare,Nip)株系和RNAi株系初步研究OsPUT5基因的功能。结果表明,水稻中含有6个OsPUT,其中OsPUT5是一种含有10个跨膜结构域,且N端和C端均位于细胞膜外,并具有腐胺-鸟氨酸逆向转运蛋白PotE特有结构域的膜蛋白。基因表达模式显示,OsPUT5基因在叶片中表达量最高,在根、茎和花中无显著差异(P>0.05)。在生命周期内,正常条件下,OE株系、Nip株系和RNAi株系无明显的表型差异。在水稻幼苗期,4 ℃处理30 h后,RNAi株系、Nip株系和OE株系的相对电导率、丙二醛含量和脯氨酸含量均显著(P<0.05)升高,且表型都受到一定程度的影响。与Nip株系和OE株系相比,RNAi株系受影响最大,叶片枯萎,失水严重,植株鲜重和脯氨酸含量显著降低(P<0.05),相对电导率和丙二醛含量显著升高(P<0.05)。低温胁迫处理后继续培养10 d,RNAi株系存活率显著(P<0.05)低于Nip株系和OE株系。表明超表达或抑制OsPUT5基因表达对水稻的正常生长发育没有明显影响,但抑制该基因表达降低了水稻对低温胁迫的抗性。
中图分类号:
张斌, 冯晓庆, 郑芊, 陈稳, 滕杰. 抑制OsPUT5基因表达降低水稻低温抗性[J]. 浙江农业学报, 2023, 35(4): 780-788.
ZHANG Bin, FENG Xiaoqing, ZHENG Qian, CHEN Wen, TENG Jie. OsPUT5 silencing reduced low temperature resistance in rice[J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 780-788.
多胺转运蛋白 基因名称 Name of polyamine transporter gene | 多胺转运蛋白 基因编号 Locus of polyamine transporter gene | 物种 Species |
---|---|---|
OsPUT1 | Os02g0700500 | 水稻 Oryza sativa L. |
OsPUT2 | Os03g0374900 | 水稻 Oryza sativa L. |
OsPUT3 | Os03g0375300 | 水稻 Oryza sativa L. |
OsPUT4 | Os03g0375966 | 水稻 Oryza sativa L. |
OsPUT5 | Os03g0576900 | 水稻 Oryza sativa L. |
OsPUT6 | Os12g0580400 | 水稻 Oryza sativa L. |
ATPUT1 | AT1G31820 | 拟南芥 Arabidopsis thaliana |
ATPUT2 | AT1G31830 | 拟南芥 Arabidopsis thaliana |
ATPUT3 | AT5G05630 | 拟南芥 Arabidopsis thaliana |
ATPUT4 | AT3G13620 | 拟南芥 Arabidopsis thaliana |
ATPUT5 | AT3G19553 | 拟南芥 Arabidopsis thaliana |
表1 基因信息
Table 1 Gene information
多胺转运蛋白 基因名称 Name of polyamine transporter gene | 多胺转运蛋白 基因编号 Locus of polyamine transporter gene | 物种 Species |
---|---|---|
OsPUT1 | Os02g0700500 | 水稻 Oryza sativa L. |
OsPUT2 | Os03g0374900 | 水稻 Oryza sativa L. |
OsPUT3 | Os03g0375300 | 水稻 Oryza sativa L. |
OsPUT4 | Os03g0375966 | 水稻 Oryza sativa L. |
OsPUT5 | Os03g0576900 | 水稻 Oryza sativa L. |
OsPUT6 | Os12g0580400 | 水稻 Oryza sativa L. |
ATPUT1 | AT1G31820 | 拟南芥 Arabidopsis thaliana |
ATPUT2 | AT1G31830 | 拟南芥 Arabidopsis thaliana |
ATPUT3 | AT5G05630 | 拟南芥 Arabidopsis thaliana |
ATPUT4 | AT3G13620 | 拟南芥 Arabidopsis thaliana |
ATPUT5 | AT3G19553 | 拟南芥 Arabidopsis thaliana |
图1 OsPUT5蛋白的生物信息学分析 A,水稻和其他物种PUT家族蛋白系统进化树;B,OsPUT5蛋白含10个跨膜结构域且N端和C端均位于细胞质侧;C,OsPUT5蛋白保守的结构域,黑条显示氨基酸序列的长度。
Fig.1 Bioinformatics analysis of OsPUT5 protein A, Phylogenetic tree of PUT family protein in rice and other plants; B, A cartoon representation showing the 10 transmembrane domains in the OsPUT5 protein with both C-and N-termini in the cytoplasmic side; C, Domains conserved in the OsPUT5 protein. The black bar shows the length of the amino acid sequence.
图2 转基因苗鉴定和基因相对表达水平检测 A,RNAi株系DNA水平检测,1~6为抗性苗,7为pFGC5941-OsPUT5-RNAi质粒;B,OE株系DNA水平检测,1~4为抗性苗,5为pCAM1390-OsPUT5质粒;C,OE株系和RNAi株系RNA水平检测;D,OsPUT5基因表达模式。柱上无相同字母代表差异显著(P<0.05),误差线代表标准差,下同。
Fig.2 Identification of transgenic seedlings and detection of gene expression level A, DNA level detection of RNAi lines, 1-6 were resistant plantlets, 7 was pFGC5941-OsPUT5-RNAi plasmid; B, DNA level detection of OE lines, 1-4 were resistant plantlets, 5 was pCAM1390-OsPUT5 plasmid; C, RNA level detection in OE lines and RNAi lines; D, OsPUT5 expression pattern. Different lowercase letters indicated significant difference at P <0.05, the error bars represented the standard deviation. The same as below.
图3 OE株系、Nip株系和RNAi株系幼苗耐低温性比较 G,植株低温处理后继续正常培养10 d后的表型;H,植株低温处理后继续正常培养10 d后的存活率。
Fig.3 Comparison of cold tolerance of seedlings of OE lines, Nip lines and RNAi lines G, Phenotype of plant after 10 days of normal culture after low temperature treatment; H, The survival rate of plants after 10 days of normal culture after low temperature treatment.
株系 Line | 株高 Plant height/cm | 穗长 Ear length/cm | 每穗粒数 Seed numbers per panicle | 初级枝梗数 Primary branch number | 每穗实粒数 Plump grains per panicle | 千粒重 1 000-grain weight/g | 结实率 Seed setting rate/% |
---|---|---|---|---|---|---|---|
OE株系OE lines | 81.2±5.8 a | 19.9±2.4 a | 103.1±23.3 a | 10.2±0.9 a | 83.1±18.4 a | 24.5±0.45 a | 80.6±8.2 a |
Nip株系Nipponbare lines | 81.7±4.6 a | 20.3±2.1 a | 102.8±20.5 a | 10.4±0.7 a | 84.4±19.7 a | 24.3±0.47 a | 82.1±9.0 a |
RNAi株系RNAi lines | 79.8±6.2 a | 19.7±1.8 a | 101.9±21.6 a | 10.1±0.7 a | 83.6±18.2 a | 24.1±0.33 a | 82.0±10.2 a |
表2 OE株系、Nip株系和RNAi株系主要农艺性状的比较
Table 2 Comparison of main agronomic characters of OE lines, Nip lines and RNAi lines
株系 Line | 株高 Plant height/cm | 穗长 Ear length/cm | 每穗粒数 Seed numbers per panicle | 初级枝梗数 Primary branch number | 每穗实粒数 Plump grains per panicle | 千粒重 1 000-grain weight/g | 结实率 Seed setting rate/% |
---|---|---|---|---|---|---|---|
OE株系OE lines | 81.2±5.8 a | 19.9±2.4 a | 103.1±23.3 a | 10.2±0.9 a | 83.1±18.4 a | 24.5±0.45 a | 80.6±8.2 a |
Nip株系Nipponbare lines | 81.7±4.6 a | 20.3±2.1 a | 102.8±20.5 a | 10.4±0.7 a | 84.4±19.7 a | 24.3±0.47 a | 82.1±9.0 a |
RNAi株系RNAi lines | 79.8±6.2 a | 19.7±1.8 a | 101.9±21.6 a | 10.1±0.7 a | 83.6±18.2 a | 24.1±0.33 a | 82.0±10.2 a |
[1] |
IGARASHI K, KASHIWAGI K. Functional roles of polyamines and their metabolite acrolein in eukaryotic cells[J]. Amino Acids, 2021, 53(10): 1473-1492.
DOI PMID |
[2] |
YU J, WANG B A, FAN W Q, et al. Polyamines involved in regulating self-incompatibility in apple[J]. Genes, 2021, 12(11): 1797.
DOI URL |
[3] |
DAS K C, MISRA H P. Hydroxyl radical scavenging and singlet oxygen quenching properties of polyamines[J]. Molecular and Cellular Biochemistry, 2004, 262(1): 127-133.
DOI URL |
[4] |
ZARZA X, SHABALA L, FUJITA M, et al. Extracellular spermine triggers a rapid intracellular phosphatidic acid response in Arabidopsis, involving PLDδ activation and stimulating ion flux[J]. Frontiers in Plant Science, 2019, 10: 601.
DOI URL |
[5] |
SODA K. Overview of polyamines as nutrients for human healthy long life and effect of increased polyamine intake on DNA methylation[J]. Cells, 2022, 11(1): 164.
DOI URL |
[6] |
CHEN D D, SHAO Q S, YIN L H, et al. Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses[J]. Frontiers in Plant Science, 2018, 9: 1945.
DOI PMID |
[7] |
TAKÁCS Z, POÓR P, TARI I. Interaction between polyamines and ethylene in the response to salicylic acid under normal photoperiod and prolonged darkness[J]. Plant Physiology and Biochemistry, 2021, 167: 470-480.
DOI PMID |
[8] |
GERLIN L, BAROUKH C, GENIN S. Polyamines: double agents in disease and plant immunity[J]. Trends in Plant Science, 2021, 26(10): 1061-1071.
DOI PMID |
[9] | 何超, 沈登荣, 花蕾, 等. 梨小食心虫滞育过程中多胺代谢的变化[J]. 浙江农业学报, 2015, 27(11): 1960-1964. |
HE C, SHEN D R, HUA L, et al. Changes of polyamine metabolism in larvae of oriental fruit moth, Grapholita molesta, during diapause development[J]. Acta Agriculturae Zhejiangensis, 2015, 27(11): 1960-1964. (in Chinese with English abstract) | |
[10] | 胡俊杰, 张古文, 胡齐赞, 等. 低温胁迫对菜用大豆生长、叶片活性氧及多胺代谢的影响[J]. 浙江农业学报, 2011, 23(6): 1113-1118. |
HU J J, ZHANG G W, HU Q Z, et al. Effects of chilling stress on growth, metabolism of reactive oxygen species and polyamines in vegetable soybean seedlings[J]. Acta Agriculturae Zhejiangensis, 2011, 23(6): 1113-1118. (in Chinese with English abstract) | |
[11] |
JIMÉNEZ-BREMONT J F, CHÁVEZ-MARTÍNEZ A I, ORTEGA-AMARO M A, et al. Translational and post-translational regulation of polyamine metabolic enzymes in plants[J]. Journal of Biotechnology, 2022, 344: 1-10.
DOI URL |
[12] | KHAZAAL S, AL SAFADI R, OSMAN D, et al. Investigation of the polyamine biosynthetic and transport capability of Streptococcus agalactiae: the non-essential PotABCD transporter[J]. Microbiology (Reading, England), 2021, 167(12): 001124. |
[13] | FUJITA M, FUJITA Y, IUCHI S, et al. Natural variation in a polyamine transporter determines paraquat tolerance in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16): 6343-6347. |
[14] |
CHAI H X, GUO J F, ZHONG Y L, et al. The plasma-membrane polyamine transporter PUT3 is regulated by the Na(+)/H(+) antiporter SOS1 and protein kinase SOS2[J]. The New Phytologist, 2020, 226(3): 785-797.
DOI URL |
[15] |
MULANGI V, CHIBUCOS M C, PHUNTUMART V, et al. Kinetic and phylogenetic analysis of plant polyamine uptake transporters[J]. Planta, 2012, 236(4): 1261-1273.
DOI PMID |
[16] |
WIPF D, LUDEWIG U, TEGEDER M, et al. Conservation of amino acid transporters in fungi, plants and animals[J]. Trends in Biochemical Sciences, 2002, 27(3): 139-147.
PMID |
[17] |
OKUMOTO S, PILOT G. Amino acid export in plants: a missing link in nitrogen cycling[J]. Molecular Plant, 2011, 4(3): 453-463.
DOI PMID |
[18] |
BEGAM R A, GOOD A G. The Arabidopsis paraquat resistant1 mutant accumulates leucine upon dark treatment[J]. Botany, 2017, 95(7): 751-761.
DOI URL |
[19] |
DONG S C, HU H Z, WANG Y M, et al. A pqr2 mutant encodes a defective polyamine transporter and is negatively affected by ABA for paraquat resistance in Arabidopsis thaliana[J]. Journal of Plant Research, 2016, 129(5): 899-907.
DOI URL |
[20] |
SAGOR G H M, BERBERICH T, KOJIMA S, et al. Spermine modulates the expression of two probable polyamine transporter genes and determines growth responses to cadaverine in Arabidopsis[J]. Plant Cell Reports, 2016, 35(6): 1247-1257.
DOI URL |
[21] |
MARTINIS J, GAS-PASCUAL E, SZYDLOWSKI N, et al. Long-distance transport of thiamine (vitamin B1) is concomitant with that of polyamines[J]. Plant Physiology, 2016, 171(1): 542-553.
DOI PMID |
[22] |
SHEN Y, RUAN Q X, CHAI H X, et al. The Arabidopsis polyamine transporter LHR1/PUT3 modulates heat responsive gene expression by enhancing mRNA stability[J]. The Plant Journal, 2016, 88(6): 1006-1021.
DOI URL |
[23] |
AHMED S, ARIYARATNE M, PATEL J, et al. Altered expression of polyamine transporters reveals a role for spermidine in the timing of flowering and other developmental response pathways[J]. Plant Science, 2017, 258: 146-155.
DOI PMID |
[24] |
LI J Y, MU J Y, BAI J T, et al. PARAQUAT RESISTANT1, a golgi-localized putative transporter protein, is involved in intracellular transport of paraquat[J]. Plant Physiology, 2013, 162(1): 470-483.
DOI PMID |
[25] | 张斌, 刘询, 耿雅楠, 等. 水稻多胺转运蛋白OsPUT1基因RNAi载体的构建及遗传转化[J]. 分子植物育种, 2016, 14(10): 2653-2658. |
ZHANG B, LIU X, GENG Y N, et al. Construction and genetic transformation of RNAi vector for OsPUT1 gene in rice[J]. Molecular Plant Breeding, 2016, 14(10): 2653-2658. (in Chinese with English abstract) | |
[26] | 张斌, 阮颖. 水稻多胺转运蛋白OsPUT1基因过表达载体构建及遗传转化[J]. 基因组学与应用生物学, 2018, 37(1): 386-392. |
ZHANG B, RUAN Y. Construction of overexpression vector and genetic transformation of polyamine transporter OsPUT1 gene in rice[J]. Genomics and Applied Biology, 2018, 37(1): 386-392. (in Chinese with English abstract) | |
[27] |
王长龙, 张力, 罗立新, 等. 水稻NAL11基因对苗期非生物逆境的响应分析[J]. 华北农学报, 2020, 35(4): 120-128.
DOI |
WANG C L, ZHANG L, LUO L X, et al. Response analysis of rice gene NAL11 to abiotic stresses at the stage of seedling[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(4): 120-128. (in Chinese with English abstract) | |
[28] | 张斌, 黄亚玲, 彭英姿, 等. 拟南芥突变体atput3过表达水稻OsPUT1基因对百草枯敏感性的研究[J]. 农业生物技术学报, 2023, 30(2): 242-249. |
ZHANG B, HUANG Y L, PENG Y Z, et al. Study on the sensitivity of Arabidopsis thaliana mutant atput3 which overexpressing rice(Oryza sativa) OsPUT1 gene to paraquat[J]. Journal of Agricultural Biotechnology, 2023, 30(2): 242-249. (in Chinese with English abstract) | |
[29] |
ZHAO H M, MA H L, YU L, et al. Genome-wide survey and expression analysis of amino acid transporter gene family in rice (Oryza sativa L.)[J]. PLoS One, 2012, 7(11): e49210.
DOI URL |
[30] |
IGARASHI K, KASHIWAGI K. Characteristics of cellular polyamine transport in prokaryotes and eukaryotes[J]. Plant Physiology and Biochemistry, 2010, 48(7): 506-512.
DOI PMID |
[31] |
ALHAG A, SONG J, DAHRO B, et al. Genome-wide identification and expression analysis of polyamine uptake transporter gene family in sweet orange (Citrus sinensis)[J]. Plant Biology (Stuttgart, Germany), 2021, 23(6): 1157-1166.
DOI PMID |
[32] |
LI M, WANG C H, SHI J L, et al. Abscisic acid and putrescine synergistically regulate the cold tolerance of melon seedlings[J]. Plant Physiology and Biochemistry, 2021, 166: 1054-1064.
DOI PMID |
[1] | 张超正, 张旭鹏, 陈丹玲. 劳动力老龄化、耕地细碎化必然导致水稻生产成本增加吗?——基于鄂东南地区的微观调查[J]. 浙江农业学报, 2023, 35(5): 1211-1222. |
[2] | 夏小东, 张晓波, 施勇烽, 许如根. 水稻致死突变体基因克隆与分子机制研究进展[J]. 浙江农业学报, 2023, 35(5): 1223-1234. |
[3] | 蒋莹莹, 张华, 雷志伟, 徐恒, 张恒, 朱英. 茉莉酸信号关键转录因子OsMYC2影响水稻愈伤诱导和分化的功能初探[J]. 浙江农业学报, 2023, 35(5): 973-982. |
[4] | 樊闯, 赵子皓, 张雪松, 杨沈斌. 基于BP神经网络的一季稻发育期预测模型[J]. 浙江农业学报, 2023, 35(2): 434-444. |
[5] | 尤翠翠, 贺一哲, 徐鹏, 黄亚茹, 王辉, 何海兵, 柯健, 武立权. 高温胁迫对水稻生长发育的伤害效应及其防御对策[J]. 浙江农业学报, 2023, 35(1): 10-22. |
[6] | 杨胜玲, 黄兴成, 李渝, 刘彦伶, 张雅蓉, 张艳, 张文安, 蒋太明. 长期有机无机肥配施对水稻生长、干物质积累及产量的影响[J]. 浙江农业学报, 2022, 34(9): 1815-1825. |
[7] | 王晨, 张敏, 王振旗, 钱晓雍, 徐昶, 倪远之, 李金文, 沈根祥. 长期施用猪粪稻田的重金属迁移规律与累积风险[J]. 浙江农业学报, 2022, 34(9): 1985-1994. |
[8] | 黄东慧, 钟鹏, 王建丽, 胡云龙, 王志刚. 环境条件对Bacillus altitudinis LZP02生物膜形成的影响[J]. 浙江农业学报, 2022, 34(7): 1466-1473. |
[9] | 娄飞, 付天岭, 代良羽, 周凯, 林大松, 何腾兵. 不同土壤调理剂对黔中地区水稻Cd积累转运和产量的影响[J]. 浙江农业学报, 2022, 34(7): 1493-1501. |
[10] | 董袁袁, 徐恒, 张华, 张恒, 王伏林, 顾娜娜, 朱英. 水稻种子成熟后期高湿环境下种子休眠相关基因的表达[J]. 浙江农业学报, 2022, 34(6): 1103-1113. |
[11] | 邰粤鹰, 何腾兵, 陈小然, 张旺, 黄啸云, 刘鸿雁, 高珍冉. 叶面喷施阻控剂对常淹水稻田水稻吸收转运镉的影响[J]. 浙江农业学报, 2022, 34(6): 1248-1257. |
[12] | 朱铭, 刘琛, 林义成, 郭彬, 李华, 傅庆林. 不同调理剂组合对浙江红壤土壤肥力、微生物群落多样性和水稻产量的影响[J]. 浙江农业学报, 2022, 34(6): 1258-1267. |
[13] | 叶迎, 赵考诚, 马军, 祝轲, 庄恒扬. 播期和施氮量组合对水稻南粳9108产量和氮素利用的影响[J]. 浙江农业学报, 2022, 34(5): 879-886. |
[14] | 林智文, 张鹏, 吴天昊, 单颖, 邹刚华, 赵凤亮, 郑桂萍. 秸秆直接还田与炭化还田对热带土壤-水稻系统氨挥发的影响[J]. 浙江农业学报, 2022, 34(12): 2689-2699. |
[15] | 高雪萍, 张予涵, 张梦玲, 廖文梅. 互联网信息技术使用对农业生产率的影响分析——以江西省水稻种植户为例[J]. 浙江农业学报, 2022, 34(12): 2809-2822. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||