浙江农业学报 ›› 2023, Vol. 35 ›› Issue (4): 769-779.DOI: 10.3969/j.issn.1004-1524.2023.04.04
任开明(), 王犇, 杨文俊, 樊永惠, 张文静, 马尚宇, 黄正来(
)
收稿日期:
2022-05-24
出版日期:
2023-04-25
发布日期:
2023-05-05
通讯作者:
*黄正来,E-mail: xdnyyjs@163.com
作者简介:
任开明(1996—),男,安徽亳州人,硕士研究生,主要从事小麦高产优质栽培研究。E-mail: 15582408770@163.com
基金资助:
REN Kaiming(), WANG Ben, YANG Wenjun, FAN Yonghui, ZHANG Wenjing, MA Shangyu, HUANG Zhenglai(
)
Received:
2022-05-24
Online:
2023-04-25
Published:
2023-05-05
摘要:
为探索安徽省沿淮稻茬弱筋小麦提升产量、品质的适宜施氮量,在大田试验的条件下,设置0、75、150、225和300 kg·hm-2共5个施氮水平,研究施氮对安徽省沿淮稻茬麦区弱筋小麦产量、品质、干物质积累与转运,以及氮素利用效率的影响。结果表明,在0~300 kg·hm-2,随着施氮量的增加,小麦分蘖数、株高、叶面积指数(LAI)和叶绿素相对含量(SPAD)均呈上升趋势,花后21 d小麦冠层光谱反射率在760~925 nm逐渐上升,在925~1 300 nm先升后降。在孕穗至成熟期,小麦干物质积累量和花前营养器官干物质转运量随着施氮量的增加呈先升后降趋势,花前营养器官干物质转运对籽粒的贡献率不断下降,而花后干物质生产量和其对籽粒的贡献率均逐渐升高。增加施氮量能提高小麦穗粒数和有效穗数,而小麦千粒重和籽粒产量均呈先升后降趋势,小麦籽粒产量均在225 kg·hm-2施氮量处理下达到最大值,与不施氮处理相比,施氮量为75~300 kg·hm-2时,试验点1和试验点2的小麦籽粒产量分别增加了127.58%~230.45%和72.21%~131.94%。施氮量的增加使氮肥表观利用率、氮肥农学利用率、氮肥偏生产力逐渐下降。在225 kg·hm-2施氮量下小麦籽粒品质指标较优,施氮量为300 kg·hm-2时小麦籽粒蛋白质含量超过国家弱筋小麦蛋白质含量标准;与不施氮处理相比,施氮量为75~300 kg·hm-2时,两试验点小麦籽粒蛋白质含量分别增加12.02%~44.21%和9.64%~34.30%。总体上,当施氮量为225 kg·hm-2时小麦籽粒品质指标较优,且产量最高。综合高产、优质的选择条件,225 kg·hm-2是安徽省沿淮稻茬弱筋麦区适宜的施氮量。
中图分类号:
任开明, 王犇, 杨文俊, 樊永惠, 张文静, 马尚宇, 黄正来. 施氮对稻茬弱筋小麦生长特性、品质与产量的影响[J]. 浙江农业学报, 2023, 35(4): 769-779.
REN Kaiming, WANG Ben, YANG Wenjun, FAN Yonghui, ZHANG Wenjing, MA Shangyu, HUANG Zhenglai. Effects of nitrogen on physiological growth, quality and yield of weak gluten wheat after rice stubble[J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 769-779.
地区 Location | pH值 pH value | 有机质 Organic matter/ (g·kg-1) | 碱解氮 Alkali hydrolyzed nitrogen/(mg·kg-1) | 速效钾 Available potassiu/ (mg·kg-1) | 速效磷 Available phosphorus/ (mg·kg-1) |
---|---|---|---|---|---|
试验点1 Location 1 | 5.23 | 21.31 | 106.5 | 105 | 21.2 |
试验点2 Location 2 | 7.39 | 20.37 | 117.5 | 82 | 47.4 |
表1 播前土壤基础养分
Table 1 Soil basic nutrients before sowing
地区 Location | pH值 pH value | 有机质 Organic matter/ (g·kg-1) | 碱解氮 Alkali hydrolyzed nitrogen/(mg·kg-1) | 速效钾 Available potassiu/ (mg·kg-1) | 速效磷 Available phosphorus/ (mg·kg-1) |
---|---|---|---|---|---|
试验点1 Location 1 | 5.23 | 21.31 | 106.5 | 105 | 21.2 |
试验点2 Location 2 | 7.39 | 20.37 | 117.5 | 82 | 47.4 |
地区 Location | 处理 Treatment | 分蘖数Tiller number/×104 hm-2 | 株高Height/cm | ||
---|---|---|---|---|---|
分蘖期 Tillering stage | 拔节期 Jointing stage | 开花期 Flowering stage | 成熟期 Maturing stage | ||
试验点1 | N0 | 695.35 c | 948.80 d | 290.12 d | 72.67 e |
Location 1 | N1 | 792.06 b | 1 013.84 c | 430.03 c | 78.22 d |
N2 | 813.74 b | 1 045.52 c | 483.35 b | 82.89 c | |
N3 | 817.07 b | 1 208.93 b | 513.91 a | 88.33 b | |
N4 | 872.10 a | 1 263.96 a | 515.53 a | 94.33 a | |
试验点2 | N0 | 556.94 d | 540.27 e | 356.00 d | 72.89 c |
Location 2 | N1 | 653.66 c | 787.06 d | 460.33 c | 74.56 c |
N2 | 837.08 b | 968.81 c | 507.33 b | 80.56 b | |
N3 | 857.09 b | 1 352.34 b | 540.33 a | 82.11 b | |
N4 | 887.11 a | 1 429.04 a | 553.33 a | 85.89 a |
表2 不同施氮水平下小麦的茎蘖动态和株高
Table 2 Tiller dynamics and plant height of wheat under different nitrogen application levels
地区 Location | 处理 Treatment | 分蘖数Tiller number/×104 hm-2 | 株高Height/cm | ||
---|---|---|---|---|---|
分蘖期 Tillering stage | 拔节期 Jointing stage | 开花期 Flowering stage | 成熟期 Maturing stage | ||
试验点1 | N0 | 695.35 c | 948.80 d | 290.12 d | 72.67 e |
Location 1 | N1 | 792.06 b | 1 013.84 c | 430.03 c | 78.22 d |
N2 | 813.74 b | 1 045.52 c | 483.35 b | 82.89 c | |
N3 | 817.07 b | 1 208.93 b | 513.91 a | 88.33 b | |
N4 | 872.10 a | 1 263.96 a | 515.53 a | 94.33 a | |
试验点2 | N0 | 556.94 d | 540.27 e | 356.00 d | 72.89 c |
Location 2 | N1 | 653.66 c | 787.06 d | 460.33 c | 74.56 c |
N2 | 837.08 b | 968.81 c | 507.33 b | 80.56 b | |
N3 | 857.09 b | 1 352.34 b | 540.33 a | 82.11 b | |
N4 | 887.11 a | 1 429.04 a | 553.33 a | 85.89 a |
图1 不同施氮水平下小麦的叶面积指数 A,试验点1;B,试验点2。Ⅰ,分蘖期;Ⅱ,孕穗期;Ⅲ,开花期;Ⅳ,花后7 d;Ⅴ,花后14 d;Ⅵ,花后21 d;Ⅶ,花后28 d。
Fig.1 Leaf area index of wheat under different nitrogen application levels A, Test site 1; B, Test site 2. Ⅰ, Tillering stage; Ⅱ, Booting stage; Ⅲ, Flowering stage; Ⅳ, 7 days after flowering; Ⅴ, 14 days after flowering; Ⅵ, 21 days after flowering; Ⅶ, 28 days after flowering.
图2 不同施氮处理下小麦叶片的SPAD值 A,试验点1;B,试验点2。Ⅰ,分蘖期;Ⅱ,拔节期;Ⅲ,孕穗期;Ⅳ,开花期;Ⅴ,花后7 d;Ⅵ,花后14 d;Ⅶ,花后21 d;Ⅷ,花后28 d。
Fig.2 SPAD value of wheat leaves under different nitrogen application levels A, Test site 1; B, Test site 2. Ⅰ, Tillering stage; Ⅱ, Jointing stage; Ⅲ, Booting stage; Ⅳ, Flowering stage; Ⅴ, 7 days after flowering; Ⅵ, 14 days after flowering; Ⅶ, 21 days after flowering; Ⅷ, 28 days after flowering.
图3 不同施氮水平下小麦花后21 d冠层光谱反射率 A,试验点1;B,试验点2。
Fig.3 Canopy spectral reflectance of wheat at 21 days after anthesis under different nitrogen application levels A, Test site 1; B, Test site 2.
图4 不同施氮处理下小麦的干物质积累 A,试验点1;B,试验点2。柱上无相同字母表示同一时期不同处理间差异显著(P<0.05)。
Fig.4 Dry matter accumulation of wheat under different nitrogen application treatments A, Test site 1; B, Test site 2. Data on the bars marked without the same lowercase letter indicated significant differences at P<0.05 among different treatments in the same stage.
地区 Location | 处理 Treatment | 花前营养器官干物质转运 Pre anthesis dry matter transport | 花后干物质生产 Post anthesis dry matter production | ||
---|---|---|---|---|---|
转运量 Transportation/(kg·hm-2) | 贡献率 Contribution rate/% | 生产量 Production/(kg·hm-2) | 贡献率 Contribution rate/% | ||
试验点1 | N0 | 848.00 e | 48.46 | 901.97 d | 51.54 |
Location 1 | N1 | 1 733.60 d | 44.70 | 2 144.53 c | 55.30 |
N2 | 1 982.00 c | 42.25 | 2 709.41 b | 57.75 | |
N3 | 2 285.62 a | 40.56 | 3 349.97 b | 59.44 | |
N4 | 2 211.57 b | 40.27 | 3 280.64 a | 59.73 | |
试验点2 | N0 | 1 481.22 d | 45.71 | 1 759.41 d | 54.29 |
Location 2 | N1 | 2 539.25 c | 45.50 | 3 041.34 c | 54.50 |
N2 | 2 946.15 b | 45.22 | 3 568.68 b | 54.78 | |
N3 | 3 203.03 a | 42.61 | 4 313.26 a | 57.39 | |
N4 | 2 616.33 c | 37.03 | 4 448.71 a | 62.97 |
表3 不同施氮水平下小麦的花前干物质转运和花后干物质生产
Table 3 Pre anthesis dry matter transport and post anthesis dry matter production of wheat under different nitrogen application levels
地区 Location | 处理 Treatment | 花前营养器官干物质转运 Pre anthesis dry matter transport | 花后干物质生产 Post anthesis dry matter production | ||
---|---|---|---|---|---|
转运量 Transportation/(kg·hm-2) | 贡献率 Contribution rate/% | 生产量 Production/(kg·hm-2) | 贡献率 Contribution rate/% | ||
试验点1 | N0 | 848.00 e | 48.46 | 901.97 d | 51.54 |
Location 1 | N1 | 1 733.60 d | 44.70 | 2 144.53 c | 55.30 |
N2 | 1 982.00 c | 42.25 | 2 709.41 b | 57.75 | |
N3 | 2 285.62 a | 40.56 | 3 349.97 b | 59.44 | |
N4 | 2 211.57 b | 40.27 | 3 280.64 a | 59.73 | |
试验点2 | N0 | 1 481.22 d | 45.71 | 1 759.41 d | 54.29 |
Location 2 | N1 | 2 539.25 c | 45.50 | 3 041.34 c | 54.50 |
N2 | 2 946.15 b | 45.22 | 3 568.68 b | 54.78 | |
N3 | 3 203.03 a | 42.61 | 4 313.26 a | 57.39 | |
N4 | 2 616.33 c | 37.03 | 4 448.71 a | 62.97 |
地区 Location | 处理 Treatment | 地上部氮素积累量 N accumulation/(kg·hm-2) | 氮肥表观利用率 NFAU/% | 氮肥农学利用率 NFAE/(kg·kg-1) | 氮肥偏生产力 NFPP/(kg·kg-1) |
---|---|---|---|---|---|
试验点1 | N0 | 58.32 e | |||
Location 1 | N1 | 101.20 d | 57.17 a | 29.25 a | 52.18 a |
N2 | 141.30 c | 55.32 a | 20.33 b | 31.80 b | |
N3 | 166.45 b | 48.06 b | 17.61 bc | 25.26 c | |
N4 | 188.08 a | 43.25 b | 12.57 c | 18.31 d | |
试验点2 | N0 | 78.40 e | |||
Location 2 | N1 | 123.93 d | 60.71 a | 31.20 a | 74.41 a |
N2 | 159.55 c | 54.10 b | 21.83 b | 43.43 b | |
N3 | 184.03 b | 46.95 c | 19.00 b | 33.41 c | |
N4 | 211.30 a | 44.30 c | 12.75 c | 23.55 d |
表4 不同施氮水平下小麦的氮素吸收利用
Table 4 Nitrogen absorption and utilization targets of wheat under different nitrogen application levels
地区 Location | 处理 Treatment | 地上部氮素积累量 N accumulation/(kg·hm-2) | 氮肥表观利用率 NFAU/% | 氮肥农学利用率 NFAE/(kg·kg-1) | 氮肥偏生产力 NFPP/(kg·kg-1) |
---|---|---|---|---|---|
试验点1 | N0 | 58.32 e | |||
Location 1 | N1 | 101.20 d | 57.17 a | 29.25 a | 52.18 a |
N2 | 141.30 c | 55.32 a | 20.33 b | 31.80 b | |
N3 | 166.45 b | 48.06 b | 17.61 bc | 25.26 c | |
N4 | 188.08 a | 43.25 b | 12.57 c | 18.31 d | |
试验点2 | N0 | 78.40 e | |||
Location 2 | N1 | 123.93 d | 60.71 a | 31.20 a | 74.41 a |
N2 | 159.55 c | 54.10 b | 21.83 b | 43.43 b | |
N3 | 184.03 b | 46.95 c | 19.00 b | 33.41 c | |
N4 | 211.30 a | 44.30 c | 12.75 c | 23.55 d |
地区 Location | 处理 Treatment | 蛋白质含量 Protein content/% | 湿面筋含量 Wet gluten content/% | 硬度指数 Hardness index | 沉淀值 Sedimentation value/mL |
---|---|---|---|---|---|
试验点1 | N0 | 9.07 d | 20.37 d | 45.33 d | 18.10 d |
Location Ⅰ | N1 | 10.16 c | 24.03 c | 47.36 c | 24.13 c |
N2 | 11.83 b | 25.69 b | 48.01 bc | 27.97 b | |
N3 | 12.38 a b | 25.35 b | 49.37 ab | 28.30 b | |
N4 | 13.08 a | 27.78 a | 51.15 a | 32.13 a | |
试验点2 | N0 | 9.65 d | 20.87 d | 42.67 c | 13.90 d |
Location Ⅱ | N1 | 10.58 c | 21.08 d | 44.33 bc | 15.73 d |
N2 | 11.75 b | 23.04 c | 46.00 b | 23.23 c | |
N3 | 12.33 ab | 24.65 b | 49.33 a | 29.67 b | |
N4 | 12.96 a | 26.47 a | 52.67 a | 32.77 a |
表5 不同施氮处理下小麦的籽粒品质指标
Table 5 Grain quality indexes of wheat under different nitrogen application levels
地区 Location | 处理 Treatment | 蛋白质含量 Protein content/% | 湿面筋含量 Wet gluten content/% | 硬度指数 Hardness index | 沉淀值 Sedimentation value/mL |
---|---|---|---|---|---|
试验点1 | N0 | 9.07 d | 20.37 d | 45.33 d | 18.10 d |
Location Ⅰ | N1 | 10.16 c | 24.03 c | 47.36 c | 24.13 c |
N2 | 11.83 b | 25.69 b | 48.01 bc | 27.97 b | |
N3 | 12.38 a b | 25.35 b | 49.37 ab | 28.30 b | |
N4 | 13.08 a | 27.78 a | 51.15 a | 32.13 a | |
试验点2 | N0 | 9.65 d | 20.87 d | 42.67 c | 13.90 d |
Location Ⅱ | N1 | 10.58 c | 21.08 d | 44.33 bc | 15.73 d |
N2 | 11.75 b | 23.04 c | 46.00 b | 23.23 c | |
N3 | 12.33 ab | 24.65 b | 49.33 a | 29.67 b | |
N4 | 12.96 a | 26.47 a | 52.67 a | 32.77 a |
地区 Location | 处理 Treatment | 穗粒数 Grains per spike | 穗数 Spike number/×104 hm-2 | 千粒重 1 000-grain weight/g | 产量 Yield/(kg·hm-2) |
---|---|---|---|---|---|
试验点1 | N0 | 19.32 c | 289.23 d | 38.67 c | 1 719.65 d |
Location Ⅰ | N1 | 29.20 b | 427.56 c | 38.95 ab | 3 913.65 c |
N2 | 30.97 ab | 480.61 b | 39.60 ab | 4 769.56 b | |
N3 | 32.67 ab | 512.36 a | 40.80 a | 5 682.56 a | |
N4 | 33.20 a | 511.59 a | 40.10 ab | 5 491.70 a | |
试验点2 | N0 | 22.78 c | 356.95e | 48.88 a | 3 240.63 d |
Location Ⅱ | N1 | 30.56 b | 460.30 d | 49.08 a | 5 580.59 c |
N2 | 32.33 ab | 507.05 c | 48.40 a | 6 514.83 b | |
N3 | 35.25 a | 540.40 b | 47.94 b | 7 516.29 a | |
N4 | 35.89 a | 553.45 a | 45.34 bc | 7 065.04 a |
表6 不同施氮水平下小麦的产量及其构成因素
Table 6 Wheat yield and its components under different nitrogen application levels
地区 Location | 处理 Treatment | 穗粒数 Grains per spike | 穗数 Spike number/×104 hm-2 | 千粒重 1 000-grain weight/g | 产量 Yield/(kg·hm-2) |
---|---|---|---|---|---|
试验点1 | N0 | 19.32 c | 289.23 d | 38.67 c | 1 719.65 d |
Location Ⅰ | N1 | 29.20 b | 427.56 c | 38.95 ab | 3 913.65 c |
N2 | 30.97 ab | 480.61 b | 39.60 ab | 4 769.56 b | |
N3 | 32.67 ab | 512.36 a | 40.80 a | 5 682.56 a | |
N4 | 33.20 a | 511.59 a | 40.10 ab | 5 491.70 a | |
试验点2 | N0 | 22.78 c | 356.95e | 48.88 a | 3 240.63 d |
Location Ⅱ | N1 | 30.56 b | 460.30 d | 49.08 a | 5 580.59 c |
N2 | 32.33 ab | 507.05 c | 48.40 a | 6 514.83 b | |
N3 | 35.25 a | 540.40 b | 47.94 b | 7 516.29 a | |
N4 | 35.89 a | 553.45 a | 45.34 bc | 7 065.04 a |
[1] | 汤泽慧. 中国小麦进出口现状及依存度分析[J]. 农业展望, 2018, 14(7): 83-87. |
TANG Z H. Imports and exports of China’s wheat and its dependency[J]. Agricultural Outlook, 2018, 14(7): 83-87. (in Chinese with English abstract) | |
[2] | 张晓, 张勇, 高德荣, 等. 中国弱筋小麦育种进展及生产现状[J]. 麦类作物学报, 2012, 32(1): 184-189. |
ZHANG X, ZHANG Y, GAO D R, et al. The development of weak-gluten wheat breeding and present situation of its production[J]. Journal of Triticeae Crops, 2012, 32(1): 184-189. (in Chinese with English abstract) | |
[3] |
ZHU X K, LI C Y, JIANG Z Q, et al. Responses of phosphorus use efficiency, grain yield, and quality to phosphorus application amount of weak-gluten wheat[J]. Journal of Integrative Agriculture, 2012, 11(7): 1103-1110.
DOI URL |
[4] |
ZHANG S L, SADRAS V, CHEN X P, et al. Water use efficiency of dryland wheat in the Loess Plateau in response to soil and crop management[J]. Field Crops Research, 2013, 151: 9-18.
DOI URL |
[5] | 吴培金, 闫素辉, 邵庆勤, 等. 施氮量对弱筋小麦籽粒品质形成的影响[J]. 麦类作物学报, 2020, 40(10): 1232-1238. |
WU P J, YAN S H, SHAO Q Q, et al. Effect of nitrogen rate on grain quality of weak gluten wheat[J]. Journal of Triticeae Crops, 2020, 40(10): 1232-1238. (in Chinese with English abstract) | |
[6] | 姚金保, 马鸿翔, 张平平, 等. 施氮量和种植密度对弱筋小麦宁麦18籽粒产量和蛋白质含量的影响[J]. 西南农业学报, 2017, 30(7): 1507-1510. |
YAO J B, MA H X, ZHANG P P, et al. Effect of nitrogen application rate and plant density on grain yield and protein contents of weak gluten wheat cultivar ningmai 18[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(7): 1507-1510. (in Chinese with English abstract) | |
[7] | 李金娜, 姜丽娜, 岳影, 等. 灌溉方式和施氮量对冬小麦籽粒氮代谢酶和蛋白质产量的影响[J]. 麦类作物学报, 2018, 38(7): 817-824. |
LI J N, JIANG L N, YUE Y, et al. Effect of irrigation modes and nitrogen application on nitrogen metabolism enzymes and protein yield in wheat grain[J]. Journal of Triticeae Crops, 2018, 38(7): 817-824. (in Chinese with English abstract) | |
[8] | 王茂莹, 贺明荣, 李玉, 等. 施氮量对不同小麦品种产量及氮素吸收利用的影响[J]. 水土保持学报, 2020, 34(4): 241-248. |
WANG M Y, HE M R, LI Y, et al. Effects of nitrogen application rate on yield and nitrogen uptake and utilization of different wheat varieties[J]. Journal of Soil and Water Conservation, 2020, 34(4): 241-248. (in Chinese with English abstract) | |
[9] | 薛忠财, 高辉远, 柳洁, 等. 利用光谱反射技术监测不同地力和施肥条件下小麦生长和产量的变化[J]. 麦类作物学报, 2011, 31(2): 324-330. |
XUE Z C, GAO H Y, LIU J, et al. Monitoring growth and grain yield of wheat in fields with different soil fertility levels and different fertilizer application using spectral reflectance technique[J]. Journal of Triticeae Crops, 2011, 31(2): 324-330. (in Chinese with English abstract) | |
[10] | 张金汕, 贾永红, 孙鹏, 等. 匀播和施氮量对冬小麦群体、光合及干物质积累的影响[J]. 中国农业大学学报, 2021, 26(7): 12-24. |
ZHANG J S, JIA Y H, SUN P, et al. Effect of uniform pattern and N application rate on colony, photosynthesis and dry matter accumulation of winter wheat[J]. Journal of China Agricultural University, 2021, 26(7): 12-24. (in Chinese with English abstract) | |
[11] |
李升东, 王法宏, 司纪升, 等. 氮肥管理对小麦产量和氮肥利用效率的影响[J]. 核农学报, 2012, 26(2): 403-407.
DOI |
LI S D, WANG F H, SI J S, et al. Effects of nitrogen application patterns on yields of winter wheat and nitrogen use efficiency[J]. Journal of Nuclear Agricultural Sciences, 2012, 26(2): 403-407. (in Chinese with English abstract) | |
[12] |
丁锦峰, 乐韬, 李福建, 等. 耕作方式和施氮量对稻茬小麦产量构成和群体质量的影响[J]. 中国农学通报, 2019, 35(5): 93-99.
DOI |
DING J F, LE T, LI F J, et al. Tillage modes and nitrogen fertilization rates affect yield component and population quality in wheat following rice[J]. Chinese Agricultural Science Bulletin, 2019, 35(5): 93-99. (in Chinese with English abstract)
DOI |
|
[13] | 周洁, 王旭, 朱玉磊, 等. 氮肥运筹模式对小麦茎秆抗倒性能与产量的影响[J]. 麦类作物学报, 2019, 39(8): 979-987. |
ZHOU J, WANG X, ZHU Y L, et al. Effects of nitrogen fertilizer management on stem lodging resistance and yield of wheat[J]. Journal of Triticeae Crops, 2019, 39(8): 979-987. (in Chinese with English abstract) | |
[14] | 张文静, 江东国, 黄正来, 等. 氮肥施用对稻茬小麦冠层结构及产量、品质的影响[J]. 麦类作物学报, 2018, 38(2): 164-174. |
ZHANG W J, JIANG D G, HUANG Z L, et al. Effects of nitrogen fertilizer application on canopy structure traits, grain yield and quality of wheat after rice[J]. Journal of Triticeae Crops, 2018, 38(2): 164-174. (in Chinese with English abstract) | |
[15] | 张向前, 徐云姬, 杜世州, 等. 氮肥运筹对稻茬麦区弱筋小麦生理特性、品质及产量的调控效应[J]. 麦类作物学报, 2019, 39(7): 810-817. |
ZHANG X Q, XU Y J, DU S Z, et al. Regulation effect of nitrogen application on physiological characteristics, quality and yield of weak gluten wheat in rice-wheat cropping area[J]. Journal of Triticeae Crops, 2019, 39(7): 810-817. (in Chinese with English abstract) | |
[16] | 胡昊, 白由路, 杨俐苹, 等. 不同氮营养冬小麦冠层光谱红边特征分析[J]. 植物营养与肥料学报, 2009, 15(6): 1317-1323. |
HU H, BAI Y L, YANG L P, et al. Red edge parameters of winter wheat canopy under different nitrogen levels[J]. Plant Nutrition and Fertilizer Science, 2009, 15(6): 1317-1323. (in Chinese with English abstract) | |
[17] |
KONG L G, XIE Y, HU L, et al. Remobilization of vegetative nitrogen to developing grain in wheat (Triticum aestivum L.)[J]. Field Crops Research, 2016, 196: 134-144.
DOI URL |
[18] | 史辛凯, 于振文, 赵俊晔, 等. 施氮量对高产小麦光合特性、干物质积累分配与产量的影响[J]. 麦类作物学报, 2021, 41(6): 713-721. |
SHI X K, YU Z W, ZHAO J Y, et al. Effect of nitrogen application rateon photosynthetic characteristics, dry matter accumulation and distribution and yield of high-yielding winter wheat[J]. Journal of Triticeae Crops, 2021, 41(6): 713-721. (in Chinese with English abstract) | |
[19] | 李朝苏, 汤永禄, 吴春, 等. 施氮量对四川盆地小麦生长及灌浆的影响[J]. 植物营养与肥料学报, 2015, 21(4): 873-883. |
LI C S, TANG Y L, WU C, et al. Effect of N rate on growth and grain filling of wheat in Sichuan Basin[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(4): 873-883. (in Chinese with English abstract) | |
[20] | 雷钧杰, 张永强, 赛力汗·赛, 等. 施氮量对滴灌冬小麦干物质积累、分配与转运的影响[J]. 麦类作物学报, 2017, 37(8): 1078-1086. |
LEI J J, ZHANG Y Q, SAILIHAN S, et al. Effect of nitrogen application rate on dry matter accumulation, distribution and translocation of winter wheat under drip irrigation[J]. Journal of Triticeae Crops, 2017, 37(8): 1078-1086. (in Chinese with English abstract) | |
[21] | 韩上, 武际, 李敏, 等. 秸秆还田条件下氮肥运筹对作物产量和氮肥利用效率的影响[J]. 中国土壤与肥料, 2020(3): 23-28. |
HAN S, WU J, LI M, et al. Effects of nitrogen fertilization managements on crops yield and nitrogen nutrient use efficiency under straw returning[J]. Soil and Fertilizer Sciences in China, 2020(3): 23-28. (in Chinese with English abstract) | |
[22] | 吴培金, 闫素辉, 张从宇, 等. 应用15N分析施氮量对弱筋小麦氮素吸收利用与产量的影响[J]. 中国土壤与肥料, 2019(4): 121-126. |
WU P J, YAN S H, ZHANG C Y, et al. Effects of nitrogen fertilizer application rate on nitrogen uptake, utilization and yield of weak gluten wheat using15N trace technique[J]. Soil and Fertilizer Sciences in China, 2019(4): 121-126. (in Chinese with English abstract) | |
[23] | 张耀兰, 曹承富, 杜世州, 等. 施氮水平对不同类型小麦产量和品质的影响[J]. 麦类作物学报, 2009, 29(4): 652-657. |
ZHANG Y L, CAO C F, DU S Z, et al. Effect of nitrogen on yield and quality of different types of wheat[J]. Journal of Triticeae Crops, 2009, 29(4): 652-657. (in Chinese with English abstract) | |
[24] |
YANG X L, LU Y L, DING Y, et al. Optimising nitrogen fertilisation: a key to improving nitrogen-use efficiency and minimising nitrate leaching losses in an intensive wheat/maize rotation (2008-2014)[J]. Field Crops Research, 2017, 206: 1-10.
DOI URL |
[25] | 张定一, 党建友, 王姣爱, 等. 施氮量对不同品质类型小麦产量、品质和旗叶光合作用的调节效应[J]. 植物营养与肥料学报, 2007, 13(4): 535-542. |
ZHANG D Y, DANG J Y, WANG J A, et al. Regulative effect of nitrogen fertilization on grain yield, quality and photosynthesis of flag leaves in different wheat varieties[J]. Plant Nutrition and Fertilizer Science, 2007, 13(4): 535-542. (in Chinese with English abstract) | |
[26] | 吴强, 张永平, 董玉新, 等. 施氮量和灌水模式对小麦产量、品质和氮肥利用的影响[J]. 麦类作物学报, 2020, 40(3): 334-342. |
WU Q, ZHANG Y P, DONG Y X, et al. Effect of nitrogen application rates and irrigation modes on yield, nitrogen use efficiency and quality in wheat[J]. Journal of Triticeae Crops, 2020, 40(3): 334-342. (in Chinese with English abstract) | |
[27] | 代新俊, 杨珍平, 陆梅, 等. 不同形态氮肥及其用量对强筋小麦氮素转运、产量和品质的影响[J]. 植物营养与肥料学报, 2019, 25(5): 710-720. |
DAI X J, YANG Z P, LU M, et al. Effects of nitrogen forms and amounts on nitrogen translocation, yield and quality of strong-gluten wheat[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(5): 710-720. (in Chinese with English abstract) |
[1] | 夏小东, 张晓波, 施勇烽, 许如根. 水稻致死突变体基因克隆与分子机制研究进展[J]. 浙江农业学报, 2023, 35(5): 1223-1234. |
[2] | 王犇, 李宇星, 李哲, 姜沣溢, 黄正来, 樊永惠, 张文静, 马尚宇. 海藻糖处理对花后高温胁迫弱筋小麦生选6号产量形成及品质的影响[J]. 浙江农业学报, 2023, 35(1): 1-9. |
[3] | 吕敬, 吴治勇, 郭晓农, 冯玉兰, 卢建雄, 柴薇薇. 基于响应面法的乳酸菌发酵藜麦秸秆工艺条件优化[J]. 浙江农业学报, 2022, 34(9): 1866-1876. |
[4] | 陈照明, 王强, 李燕丽, 张金萍, 冯江, 刘涛, 俞巧钢, 马军伟. 氮素水平对潮土氨氧化微生物和硝化作用的影响[J]. 浙江农业学报, 2022, 34(9): 2004-2012. |
[5] | 叶迎, 赵考诚, 马军, 祝轲, 庄恒扬. 播期和施氮量组合对水稻南粳9108产量和氮素利用的影响[J]. 浙江农业学报, 2022, 34(5): 879-886. |
[6] | 张琪琪, 万映秀, 曹文昕, 李炎, 刘方方, 李耀, 张平治. 安徽省小麦品质性状分析与评价[J]. 浙江农业学报, 2022, 34(10): 2079-2087. |
[7] | 王掌军, 姚明明, 余慧霞, 王彦青, 李清峰, 刘凤楼, 刘彩霞, 张双喜, 张晓岗, 刘生祥. 宁春4号×河东乌麦F2∶5家系遗传图谱构建与籽粒蛋白质性状QTL分析[J]. 浙江农业学报, 2021, 33(8): 1367-1378. |
[8] | 汪峰, 谌江华, 陈若霞, 史骏, 任少鹏, 金树权, 姚红燕, 朱德峰, 戴瑶璐. 减氮对甬优籼粳杂交稻产量和氮肥利用率的影响[J]. 浙江农业学报, 2021, 33(6): 984-992. |
[9] | 王玲玲, 吴文革, 李瑞, 胡健, 闫素辉, 邵庆勤, 许峰, 张从宇, 周永进, 李文阳. 施氮量对弱筋小麦籽粒品质与氮素利用的影响[J]. 浙江农业学报, 2021, 33(5): 777-784. |
[10] | 张辉, 车旭升, 吕剑, 缑兆辉, 秦启杰, 罗建, 张国斌. 灌水量与氮素形态对西兰花生产和氮代谢的影响[J]. 浙江农业学报, 2021, 33(2): 308-315. |
[11] | 赵琳, 叶夏芳, 董韦, 石江, 骆乐谈, 陆国权. 贮藏期不同类型甘薯块根营养品质与淀粉特性变化[J]. 浙江农业学报, 2021, 33(12): 2224-2233. |
[12] | 陈贵, 鲁晨妮, 石艳平, 倪雄伟, 程旺大, 张红梅, 王保君, 张丽萍, 孙达. 不同缓控释肥搭配脲铵对水稻产量、氮素利用效率和土壤养分的影响[J]. 浙江农业学报, 2021, 33(1): 122-130. |
[13] | 刘予煊, 程焕, 叶兴乾, 刘慧燕, 方海田. 不同菌株发酵枸杞汁中生物活性物质与香气组成物质含量变化[J]. 浙江农业学报, 2020, 32(3): 499-509. |
[14] | 裘劼人, 柴伟国, 童建新, 周历萍, 王淑珍. 质谱蛋白质组学研究中草莓雌蕊蛋白提取方法优化[J]. 浙江农业学报, 2020, 32(12): 2186-2191. |
[15] | 王哲, 柴里昂, 樊怀福, 杜长霞. 植物响应盐胁迫蛋白质组学研究进展[J]. 浙江农业学报, 2019, 31(6): 1021-1028. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||