浙江农业学报 ›› 2024, Vol. 36 ›› Issue (2): 470-480.DOI: 10.3969/j.issn.1004-1524.20230373
• 综述 • 上一篇
郑涵1,2(), 丁文金1, 何招亮1, 侯凡3, 戴彬凤4, 钟列权4, 张海鹏1,*(
), 杨勇2,*(
)
收稿日期:
2023-03-23
出版日期:
2024-02-25
发布日期:
2024-03-05
作者简介:
郑涵(2000—),女,河南罗山人,硕士研究生,主要从事作物栽培和生理研究。E-mail:17637647593@163.com
通讯作者:
*张海鹏,E-mail:nxyzhp@163.com;杨勇,E-mail:yangyong@zaas.ac.cn
基金资助:
ZHENG Han1,2(), DING Wenjin1, HE Zhaoliang1, HOU Fan3, DAI Binfeng4, ZHONG Liequan4, ZHANG Haipeng1,*(
), YANG Yong2,*(
)
Received:
2023-03-23
Online:
2024-02-25
Published:
2024-03-05
摘要:
保障水稻产量是应对全球人口增长以及粮食危机的关键举措之一。水稻穗分化期遭遇高温天气的概率日益增加,并对该区域内水稻的安全生产造成了极大威胁,因此开展相关研究意义重大。文章从幼穗形成、花药结构和花粉发育、产量与品质以及对水稻生理指标、代谢调控机理的影响等方面综述了穗分化期高温对水稻的影响并提出相应的缓解措施,并对研究前景作出展望,以期为开展水稻逆境生理研究以及缓解措施的合理选择提供依据。
中图分类号:
郑涵, 丁文金, 何招亮, 侯凡, 戴彬凤, 钟列权, 张海鹏, 杨勇. 穗分化期高温对水稻生长发育的影响及缓解措施研究进展[J]. 浙江农业学报, 2024, 36(2): 470-480.
ZHENG Han, DING Wenjin, HE Zhaoliang, HOU Fan, DAI Binfeng, ZHONG Liequan, ZHANG Haipeng, YANG Yong. Research progress on effects of high temperature on growth and development of rice during panicle initiation stage and mitigation measures[J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 470-480.
供试品种 Variety | 试验处理 Treatment | 试验结果 Results | 参考文献 References |
---|---|---|---|
汕优63、N22、 两优培九 Shanyou 63, Nagina 22, Liangyoupeijiu | 穗分化期(幼穗长1~5 mm)设置:(1)夜间高温,全天31 ℃处理;(2)白天高温,白天38 ℃,夜间24 ℃;(3)全天高温,白天38 ℃,夜间31 ℃;(4)对照处理,白天31 ℃,夜间24 ℃ Panicle initiation (young panicle length 1-5 mm) setting (1) night high temperature, all day 31 ℃ treatment; (2) Daytime high temperature, 38 ℃ during the day, 24 ℃ at night; (3) All day high temperature, 38 ℃ during the day, 31 ℃ at night; (4) Control treatment, 31 ℃ during the day and 24 ℃ at night | 3个品种水稻产量平均降低42%,结实率平均降低33.1%,粒重显著降低,N22所受影响最大,汕优63影响最小 The average yield and seed setting rate of the three rice varieties decreased by 42% and 33.1%, grain weight decreased significantly, N22 was the most affected, Shanyou 63 was the least affected | [ |
IR36 | 幼穗分化期设置40 ℃高温、32 ℃适温处理 At the stage of young panicle differentiation, high temperature of 40 ℃ and warm temperature of 32 ℃ were set | 与常温相比,高温显著降低了水稻的结实率、每穗粒数以及产量 Compared with normal temperature, high temperature significantly decreased the seed setting rate, grain number per panicle and yield of rice | [ |
淦鑫203、中531 Ganxin 203, Zhong531 | 幼穗分化第7期38 ℃高温处理 The 7th stage of young panicle differentiation was treated at 38 ℃ | 水稻每穗粒数显著降低,温度对淦鑫203的结实率无显著影响,对两品种千粒重均无显著影响 In the 7th stage of young panicle differentiation, the number of grains per panicle was significantly decreased at 38 ℃, and the setting rate of Ganxin 203 and thousand seed weight of the two varieties were not significantly affected by temperature | [ |
常规粳稻获稻008 Conventional japonica rice 008 | 孕穗期38 ℃高温处理 Conventional japonica rice 008 was treated at 38 ℃ at booting stage | 与对照相比,高温处理显著降低水稻穗长13.29%、穗重82.84%、结实率25.06%、千粒重16.31%、每盆产量80.09% Compared with the control, the high temperature treatment significantly decreased the panicle length by 13.29%, panicle weight by 82.84%, seed setting rate by 25.06%, thousand seed weight by 16.31% and yield per pot by 80.09% | [ |
中籼稻品种黄华 占和双桂1号 Indica rice variety Huanghuazhan and Shuanggui 1 | 减数分裂至始穗期分别进行35 ℃和36 ℃的高温处理,以室外温度为对照 From meiosis to head stage, high temperature treatment was carried out at 35 ℃ and 36 ℃, respectively, with outdoor temperature as the control | 两种高温处理均显著降低了双桂1号和黄华占的每穗颖花数、结实率和千粒重,下降范围分别为16.6%~17.6%、13.4%~13.6%,10.8%~14.3%、4.9%~5.4%,7.0%~7.9%、3.4%~4.4% The number of spikelets per spike, seed setting rate and thousand seed weight of Shuanggui 1 and Huanghuazhan were decreased by 16.6%-17.6%, 13.4%-13.6%, 10.8%-14.3%, 4.9%-5.4%, 7.0%-7.9% and 3.4%-4.4%, respectively | [ |
表1 穗分化期高温对水稻产量的影响
Table 1 Effect of high temperature on rice yield at panicle initiation stage
供试品种 Variety | 试验处理 Treatment | 试验结果 Results | 参考文献 References |
---|---|---|---|
汕优63、N22、 两优培九 Shanyou 63, Nagina 22, Liangyoupeijiu | 穗分化期(幼穗长1~5 mm)设置:(1)夜间高温,全天31 ℃处理;(2)白天高温,白天38 ℃,夜间24 ℃;(3)全天高温,白天38 ℃,夜间31 ℃;(4)对照处理,白天31 ℃,夜间24 ℃ Panicle initiation (young panicle length 1-5 mm) setting (1) night high temperature, all day 31 ℃ treatment; (2) Daytime high temperature, 38 ℃ during the day, 24 ℃ at night; (3) All day high temperature, 38 ℃ during the day, 31 ℃ at night; (4) Control treatment, 31 ℃ during the day and 24 ℃ at night | 3个品种水稻产量平均降低42%,结实率平均降低33.1%,粒重显著降低,N22所受影响最大,汕优63影响最小 The average yield and seed setting rate of the three rice varieties decreased by 42% and 33.1%, grain weight decreased significantly, N22 was the most affected, Shanyou 63 was the least affected | [ |
IR36 | 幼穗分化期设置40 ℃高温、32 ℃适温处理 At the stage of young panicle differentiation, high temperature of 40 ℃ and warm temperature of 32 ℃ were set | 与常温相比,高温显著降低了水稻的结实率、每穗粒数以及产量 Compared with normal temperature, high temperature significantly decreased the seed setting rate, grain number per panicle and yield of rice | [ |
淦鑫203、中531 Ganxin 203, Zhong531 | 幼穗分化第7期38 ℃高温处理 The 7th stage of young panicle differentiation was treated at 38 ℃ | 水稻每穗粒数显著降低,温度对淦鑫203的结实率无显著影响,对两品种千粒重均无显著影响 In the 7th stage of young panicle differentiation, the number of grains per panicle was significantly decreased at 38 ℃, and the setting rate of Ganxin 203 and thousand seed weight of the two varieties were not significantly affected by temperature | [ |
常规粳稻获稻008 Conventional japonica rice 008 | 孕穗期38 ℃高温处理 Conventional japonica rice 008 was treated at 38 ℃ at booting stage | 与对照相比,高温处理显著降低水稻穗长13.29%、穗重82.84%、结实率25.06%、千粒重16.31%、每盆产量80.09% Compared with the control, the high temperature treatment significantly decreased the panicle length by 13.29%, panicle weight by 82.84%, seed setting rate by 25.06%, thousand seed weight by 16.31% and yield per pot by 80.09% | [ |
中籼稻品种黄华 占和双桂1号 Indica rice variety Huanghuazhan and Shuanggui 1 | 减数分裂至始穗期分别进行35 ℃和36 ℃的高温处理,以室外温度为对照 From meiosis to head stage, high temperature treatment was carried out at 35 ℃ and 36 ℃, respectively, with outdoor temperature as the control | 两种高温处理均显著降低了双桂1号和黄华占的每穗颖花数、结实率和千粒重,下降范围分别为16.6%~17.6%、13.4%~13.6%,10.8%~14.3%、4.9%~5.4%,7.0%~7.9%、3.4%~4.4% The number of spikelets per spike, seed setting rate and thousand seed weight of Shuanggui 1 and Huanghuazhan were decreased by 16.6%-17.6%, 13.4%-13.6%, 10.8%-14.3%, 4.9%-5.4%, 7.0%-7.9% and 3.4%-4.4%, respectively | [ |
图1 穗分化期高温对水稻生长发育的影响及其缓解措施
Fig.1 Effects of high temperature on rice growth and development during panicle differentiation stage and its mitigation measures
[1] | PENG S B, ZHENG C, YU X. Progress and challenges of rice ratooning technology in China[J]. Crop and Environment, 2023, 2(1): 5-11. |
[2] | 李勇, 杨晓光, 叶清, 等. 全球气候变暖对中国种植制度可能影响Ⅸ.长江中下游地区单双季稻高低温灾害风险及其产量影响[J]. 中国农业科学, 2013, 46(19): 3997-4006. |
LI Y, YANG X G, YE Q, et al. The possible effects of global warming on cropping systems in China Ⅸ. the risk of high and low temperature disasters for single and double rice and its impacts on rice yield in the middle-Lower Yangtze plain[J]. Scientia Agricultura Sinica, 2013, 46(19): 3997-4006. (in Chinese with English abstract) | |
[3] | WANG F Y, ZHAN C S, ZOU L. Risk of crop yield reduction in China under 1.5 ℃ and 2 ℃ global warming from CMIP6 models[J]. Foods, 2023, 12(2): 413. |
[4] | WANG Y L, WANG L, ZHOU J X, et al. Research progress on heat stress of rice at flowering stage[J]. Rice Science, 2019, 26(1): 1-10. |
[5] | 李建, 江晓东, 杨沈斌, 等. 长江中下游地区水稻生长季节内农业气候资源变化[J]. 江苏农业学报, 2020, 36(1): 99-107. |
LI J, JIANG X D, YANG S B, et al. Changes of agricultural climate resources during rice growing season in the middle and lower reaches of the Yangtze River[J]. Jiangsu Journal of Agricultural Sciences, 2020, 36(1): 99-107. (in Chinese with English abstract) | |
[6] | 宋有金, 吴超, 李子煜, 等. 水稻产量对生殖生长阶段不同时期高温的响应差异[J]. 中国水稻科学, 2021, 35(2): 177-186. |
SONG Y J, WU C, LI Z Y, et al. Differential responses of grain yields to high temperature in different stages of reproductive growth in rice[J]. Chinese Journal of Rice Science, 2021, 35(2): 177-186. (in Chinese with English abstract) | |
[7] | 唐启勤, 黄德社, 黄牡林, 等. 杂交水稻幼穗分化时期的判断[J]. 作物研究, 1997, 11(1): 14-16. |
TANG Q Q, HUANG D S, HUANG M L, et al. Judgment on the differentiation period of young panicle in hybrid rice[J]. Crop Research, 1997, 11(1): 14-16. (in Chinese) | |
[8] | SÁNCHEZ B, RASMUSSEN A, PORTER J R. Temperatures and the growth and development of maize and rice: a review[J]. Global Change Biology, 2014, 20(2): 408-417. |
[9] | 陈斐, 杨沈斌, 申双和, 等. 长江中下游双季稻区春季低温冷害的时空分布[J]. 江苏农业学报, 2013, 29(3): 540-547. |
CHEN F, YANG S B, SHEN S H, et al. Spatial and temporal distribution of spring cold damage in double cropping rice areas of the middle and lower reaches of the Yangtze River[J]. Jiangsu Journal of Agricultural Sciences, 2013, 29(3): 540-547. (in Chinese with English abstract) | |
[10] | 王亚梁, 张玉屏, 向镜, 等. 籼稻颖花分化与退化对不同播期温光的响应[J]. 应用生态学报, 2017, 28(11): 3571-3580. |
WANG Y L, ZHANG Y P, XIANG J, et al. Response of indica rice spikelet differentiation and degeneration to air temperature and solar radiation of different sowing dates[J]. Chinese Journal of Applied Ecology, 2017, 28(11): 3571-3580. (in Chinese with English abstract) | |
[11] | 董明辉, 江贻, 陈培峰, 等. 非结构性碳水化合物与水稻颖花形成关系的研究进展[J]. 农学学报, 2020, 10(10): 1-6. |
DONG M H, JIANG Y, CHEN P F, et al. The relationship between non-structural carbohydrates and rice spikelet formation: a review[J]. Journal of Agriculture, 2020, 10(10): 1-6. (in Chinese with English abstract) | |
[12] | 张文地, 董明辉, 李扬, 等. 施氮量对水稻非结构性碳水化合物积累分配与颖花形成的影响[J]. 扬州大学学报(农业与生命科学版), 2023, 44(1): 29-39, 48. |
ZHANG W D, DONG M H, LI Y, et al. Effects of nitrogen application rate on accumulation and distribution of non-structural carbohydrates and spikelets formation in rice[J]. Journal of Yangzhou University (Agricultural and Life Science Edition), 2023, 44(1): 29-39, 48. (in Chinese with English abstract) | |
[13] | 陈燕华, 王亚梁, 朱德峰, 等. 外源油菜素内酯缓解水稻穗分化期高温伤害的机理研究[J]. 中国水稻科学, 2019, 33(5): 457-466. |
CHEN Y H, WANG Y L, ZHU D F, et al. Mechanism of exogenous brassinolide in alleviating high temperature injury at panicle initiation stage in rice[J]. Chinese Journal of Rice Science, 2019, 33(5): 457-466. (in Chinese with English abstract) | |
[14] | CHEN Y H, WANG Y L, CHEN H Z, et al. Brassinosteroids mediate endogenous phytohormone metabolism to alleviate high temperature injury at panicle initiation stage in rice[J]. Rice Science, 2023, 30(1): 70-86. |
[15] | WU C, CUI K H, FAHAD S. Heat stress decreases rice grain weight: evidence and physiological mechanisms of heat effects prior to flowering[J]. International Journal of Molecular Sciences, 2022, 23(18): 10922. |
[16] | 杨军, 陈小荣, 朱昌兰, 等. 氮肥和孕穗后期高温对两个早稻品种产量和生理特性的影响[J]. 中国水稻科学, 2014, 28(5): 523-533. |
YANG J, CHEN X R, ZHU C L, et al. Effects of nitrogen level and high temperature at late booting stage on yield and physiological characteristics of two early rice cultivars[J]. Chinese Journal of Rice Science, 2014, 28(5): 523-533. (in Chinese with English abstract) | |
[17] | 王亚梁, 张玉屏, 朱德峰, 等. 水稻穗分化期高温胁迫对颖花退化及籽粒充实的影响[J]. 作物学报, 2016, 42(9): 1402-1410. |
WANG Y L, ZHANG Y P, ZHU D F, et al. Effect of heat stress on spikelet degeneration and grain filling at panicle initiation period of rice[J]. Acta Agronomica Sinica, 2016, 42(9): 1402-1410. (in Chinese with English abstract) | |
[18] | 邓运, 田小海, 吴晨阳, 等. 热害胁迫条件下水稻花药发育异常的早期特征[J]. 中国生态农业学报, 2010, 18(2): 377-383. |
DENG Y, TIAN X H, WU C Y, et al. Early signs of heat stress-induced abnormal development of anther in rice[J]. Chinese Journal of Eco-Agriculture, 2010, 18(2): 377-383. (in Chinese with English abstract) | |
[19] | HU Q Q, WANG W C, LU Q F, et al. Abnormal anther development leads to lower spikelet fertility in rice (Oryza sativa L.) under high temperature during the panicle initiation stage[J]. BMC Plant Biology, 2021, 21(1): 428. |
[20] | 王多祥, 祝万万, 袁政, 等. 水稻雄性发育功能基因的发掘及应用[J]. 生命科学, 2016, 28(10): 1180-1188. |
WANG D X, ZHU W W, YUAN Z, et al. Functional research of rice male reproduction and its utilization in breeding[J]. Chinese Bulletin of Life Sciences, 2016, 28(10): 1180-1188. (in Chinese with English abstract) | |
[21] | KUMAR R, GHATAK A, GOYAL I, et al. Heat-induced proteomic changes in anthers of contrasting rice genotypes under variable stress regimes[J]. Frontiers in Plant Science, 2023, 13: 1083971. |
[22] | ZHAO Q, GUAN X Y, ZHOU L J, et al. OsPDIL1-1 controls ROS generation by modulating NADPH oxidase in developing anthers to alter the susceptibility of floret fertility to heat for rice[J]. Environmental and Experimental Botany, 2023, 205: 105103. |
[23] | ZHAO Q, ZHOU L J, LIU J C, et al. Involvement of CAT in the detoxification of HT-induced ROS burst in rice anther and its relation to pollen fertility[J]. Plant Cell Reports, 2018, 37(5): 741-757. |
[24] | ZHAO Q, ZHOU L J, LIU J C, et al. Relationship of ROS accumulation and superoxide dismutase isozymes in developing anther with floret fertility of rice under heat stress[J]. Plant Physiology and Biochemistry, 2018, 122: 90-101. |
[25] | VERONICA N, RANI Y A, SUBRAHMANYAM D, et al. Physiological and biochemical responses in rice (Oryza sativaL.) to high temperature: a review[J]. Research on Crops, 2016, 17(1): 21. |
[26] | JUNG K H, HAN M J, LEE Y S, et al. Rice Undeveloped Tapetum1 is a major regulator of early tapetum development[J]. The Plant Cell, 2005, 17(10): 2705-2722. |
[27] | YANG Z F, SUN L P, ZHANG P P, et al. TDR INTERACTING PROTEIN 3, encoding a PHD-finger transcription factor, regulates Ubisch bodies and pollen wall formation in rice[J]. The Plant Journal, 2019, 99(5): 844-861. |
[28] | 张桂莲, 陈立云, 张顺堂, 等. 高温胁迫对水稻花粉粒性状及花药显微结构的影响[J]. 生态学报, 2008, 28(3): 1089-1097. |
ZHANG G L, CHEN L Y, ZHANG S T, et al. Effects of high temperature stress on pollen characters and anther microstructure of rice[J]. Acta Ecologica Sinica, 2008, 28(3): 1089-1097. (in Chinese with English abstract) | |
[29] | 张桂莲, 蔡志欢, 李波, 等. 水稻对减数分裂期高温胁迫的生理响应[J]. 杂交水稻, 2016, 31(3): 64-67. |
ZHANG G L, CAI Z H, LI B, et al. Physiological responses of rice to high temperature stress during meiosis stage[J]. Hybrid Rice, 2016, 31(3): 64-67. (in Chinese with English abstract) | |
[30] | 杨浩, 刘晨, 王志飞, 等. 作物花粉高温应答机制研究进展[J]. 植物学报, 2019, 54(2): 157-167. |
YANG H, LIU C, WANG Z F, et al. Advances in the regulatory mechanisms of pollen response to heat stress in crops[J]. Chinese Bulletin of Botany, 2019, 54(2): 157-167. (in Chinese with English abstract) | |
[31] | TWELL D. Male gametogenesis and germline specification in flowering plants[J]. Sexual Plant Reproduction, 2011, 24(2): 149-160. |
[32] | KHLAIMONGKHON S, CHAKHONKAEN S, TONGMARK K, et al. RNA sequencing reveals rice genes involved in male reproductive development under temperature alteration[J]. Plants, 2021, 10(4): 663. |
[33] | ARSHAD M S, FAROOQ M, ASCH F, et al. Thermal stress impacts reproductive development and grain yield in rice[J]. Plant Physiology and Biochemistry, 2017, 115: 57-72. |
[34] | PAN Y F, LI Q F, WANG Z Z, et al. Genes associated with thermosensitive genic male sterility in rice identified by comparative expression profiling[J]. BMC Genomics, 2014, 15(1): 1114. |
[35] | 曹珍珍. 高温对水稻花器伤害和籽粒品质影响的相关碳氮代谢机理[D]. 杭州: 浙江大学, 2014. |
CAO Z Z. Effects of high temperature on rice (Oryza sativa L.) floral injury and grain quality in relation to carbon and nitrogen mechanism[D]. Hangzhou: Zhejiang University, 2014. (in Chinese with English abstract) | |
[36] | JAIN M, CHOUREY P S, BOOTE K J, et al. Short-term high temperature growth conditions during vegetative-to-reproductive phase transition irreversibly compromise cell wall invertase-mediated sucrose catalysis and microspore meiosis in grain Sorghum (Sorghum bicolor)[J]. Journal of Plant Physiology, 2010, 167(7): 578-582. |
[37] | WANG Y L, ZHANG Y K, SHI Q H, et al. Decrement of sugar consumption in rice young panicle under high temperature aggravates spikelet number reduction[J]. Rice Science, 2020, 27(1): 44-55. |
[38] | WU C, CUI K H, WANG W C, et al. Heat-induced phytohormone changes are associated with disrupted early reproductive development and reduced yield in rice[J]. Scientific Reports, 2016, 6: 34978. |
[39] | MOHAMMED R, COTHREN J T, TARPLEY L. High night temperature and abscisic acid affect rice productivity through altered photosynthesis, respiration and spikelet fertility[J]. Crop Science, 2013, 53(6): 2603-2612. |
[40] | 甄博, 郭瑞琪, 周新国, 等. 孕穗期高温与涝对水稻光合特性和产量的影响[J]. 灌溉排水学报, 2021, 40(4): 45-51. |
ZHEN B, GUO R Q, ZHOU X G, et al. The effects of thermal and waterlogging stresses at booting stage on photosynthesis and yield of rice[J]. Journal of Irrigation and Drainage, 2021, 40(4): 45-51. (in Chinese with English abstract) | |
[41] | 曹云英, 段骅, 杨立年, 等. 减数分裂期高温胁迫对耐热性不同水稻品种产量的影响及其生理原因[J]. 作物学报, 2008, 34(12): 2134-2142. |
CAO Y Y, DUAN H, YANG L N, et al. Effect of heat-stress during meiosis on grain yield of rice cultivars differing in heat-tolerance and its physiological mechanism[J]. Acta Agronomica Sinica, 2008, 34(12): 2134-2142. (in Chinese with English abstract) | |
[42] | SHI Y Y, GUO E J, CHENG X, et al. Effects of chilling at different growth stages on rice photosynthesis, plant growth, and yield[J]. Environmental and Experimental Botany, 2022, 203: 105045. |
[43] | MAKINO A, SUZUKI Y, ISHIYAMA K. Enhancing photosynthesis and yield in rice with improved N use efficiency[J]. Plant Science, 2022, 325: 111475. |
[44] | TANG S, ZHAO Y F, RAN X A, et al. Exogenous application of methyl jasmonate at the booting stage improves rice’s heat tolerance by enhancing antioxidant and photosynthetic activities[J]. Agronomy, 2022, 12(7): 1573. |
[45] | SHU F K, MITCHELL J. Role of canopy temperature depression in rice[J]. Crop and Environment, 2022, 1(3): 198-213. |
[46] | WANG W C, CUI K H, HU Q Q, et al. Response of spikelet water status to high temperature and its relationship with heat tolerance in rice[J]. The Crop Journal, 2021, 9(6): 1344-1356. |
[47] | 江晓东, 华梦飞, 杨沈斌, 等. 喷施钾钙硅制剂改善高温胁迫水稻叶片光合性能提高产量[J]. 农业工程学报, 2019, 35(5): 126-133. |
JIANG X D, HUA M F, YANG S B, et al. Spraying exogenous potassium, calcium and silicon solutions improve photosynthetic performance of flag leaf and increase the yield of rice under heat stress condition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(5): 126-133. (in Chinese with English abstract) | |
[48] | 唐汇春, 谢晓金. 不同生育期高温对水稻物质转运及产量结构的影响[J]. 江西农业学报, 2022, 34(2): 1-7. |
TANG H C, XIE X J. Effect of high temperature on matter transport and yield component of rice at different growth stages[J]. Acta Agriculturae Jiangxi, 2022, 34(2): 1-7. (in Chinese with English abstract) | |
[49] | LI G Y, CHEN T T, FENG B H, et al. Respiration, rather than photosynthesis, determines rice yield loss under moderate high-temperature conditions[J]. Frontiers in Plant Science, 2021, 12: 678653. |
[50] | TANG R S, ZHENG J C, JIN Z Q, et al. Possible correlation between high temperature-induced floret sterility and endogenous levels of IAA, GAs and ABA in rice (Oryza sativa L.)[J]. Plant Growth Regulation, 2008, 54(1): 37-43. |
[51] | CECCHETTI V, CELEBRIN D, NAPOLI N, et al. An auxin maximum in the middle layer controls stamen development and pollen maturation in Arabidopsis[J]. The New Phytologist, 2017, 213(3): 1194-1207. |
[52] | 王夏雯, 王绍华, 李刚华, 等. 氮素穗肥对水稻幼穗细胞分裂素和生长素浓度的影响及其与颖花发育的关系[J]. 作物学报, 2008, 34(12): 2184-2189. |
WANG X W, WANG S H, LI G H, et al. Effect of panicle nitrogen fertilizer on concentrations of cytokinin and auxin in young panicles of japonica rice and its relation with spikelet development[J]. Acta Agronomica Sinica, 2008, 34(12): 2184-2189. (in Chinese with English abstract) | |
[53] | WU C, CUI K H, WANG W C, et al. Heat-induced cytokinin transportation and degradation are associated with reduced panicle cytokinin expression and fewer spikelets per panicle in rice[J]. Frontiers in Plant Science, 2017, 8: 371. |
[54] | SAKATA T, OSHINO T, MIURA S, et al. Auxins reverse plant male sterility caused by high temperatures[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(19): 8569-8574. |
[55] | WU C, TANG S, LI G H, et al. Roles of phytohormone changes in the grain yield of rice plants exposed to heat: a review[J]. PeerJ, 2019, 7: e7792. |
[56] | CHEN Y H, CHEN H Z, XIANG J, et al. Rice spikelet formation inhibition caused by decreased sugar utilization under high temperature is associated with brassinolide decomposition[J]. Environmental and Experimental Botany, 2021, 190: 104585. |
[57] | 曹云英, 陈艳红, 李卫振, 等. 水稻减数分裂期幼穗激素、多胺和蛋白质对高温的响应[J]. 植物生理学报, 2015, 51(10): 1687-1696. |
CAO Y Y, CHEN Y H, LI W Z, et al. Responses of hormones, polyamines and proteins in young panicles of rice to high temperature during meiosis[J]. Plant Physiology Journal, 2015, 51(10): 1687-1696. (in Chinese with English abstract) | |
[58] | 周玉萍, 颜嘉豪, 田长恩. 保卫细胞中ABA信号调控机制研究进展[J]. 植物学报, 2022, 57(5): 684-696. |
ZHOU Y P, YAN J H, TIAN C E. Research progress on the regulatory mechanisms of ABA signal transduction in guard cells[J]. Chinese Bulletin of Botany, 2022, 57(5): 684-696. (in Chinese with English abstract) | |
[59] | CHEN Y, XIANG Z P, LIU M, et al. ABA biosynthesis gene OsNCED3 contributes to preharvest sprouting resistance and grain development in rice[J]. Plant, Cell & Environment, 2023, 46(4): 1384-1401. |
[60] | ZHAO Q, GUAN X Y, ZHOU L J, et al. ABA-triggered ROS burst in rice developing anthers is critical for tapetal programmed cell death induction and heat stress-induced pollen abortion[J]. Plant, Cell & Environment, 2023, 46(5): 1453-1471. |
[61] | HU L F, LIANG W Q, YIN C S, et al. Rice MADS3 regulates ROS homeostasis during late anther development[J]. The Plant Cell, 2011, 23(2): 515-533. |
[62] | YANG F Y, XIONG M, HUANG M J, et al. Panicle apical abortion 3 controls panicle development and seed size in rice[J]. Rice, 2021, 14(1): 68. |
[63] | 刘新宇, 陈鹏, 张光辉, 等. 外源脯氨酸对番茄体内残留百菌清降解的调控作用[J]. 浙江农业学报, 2020, 32(3): 437-446. |
LIU X Y, CHEN P, ZHANG G H, et al. Effect of exogenous proline on degradation of residual chlorothalonil in tomato[J]. Acta Agriculturae Zhejiangensis, 2020, 32(3): 437-446. (in Chinese with English abstract) | |
[64] | YI J, MOON S, LEE Y S, et al. Defective tapetum cell death 1 (DTC1) regulates ROS levels by binding to metallothionein during tapetum degeneration[J]. Plant Physiology, 2016, 170(3): 1611-1623. |
[65] | 徐鹏, 贺一哲, 黄亚茹, 等. 花期短时高温对不同品种水稻颖花开放动态及产量的影响[J]. 中国农业气象, 2023, 44(1): 25-35. |
XU P, HE Y Z, HUANG Y R, et al. Effects of short-term high temperature on spikelet opening dynamics and yield of different rice varieties during flowering period[J]. Chinese Journal of Agrometeorology, 2023, 44(1): 25-35. (in Chinese with English abstract) | |
[66] | 宋佳谕, 陈宇眺, 洪晓富, 等. 外源芸苔素内酯对不同基因型杂交稻开花期耐热性的影响[J]. 核农学报, 2021, 35(12): 2893-2903. |
SONG J Y, CHEN Y T, HONG X F, et al. Effect of exogenous brassinolide on high temperature tolerance in hybrid rice with different genetic background[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(12): 2893-2903. (in Chinese with English abstract) | |
[67] | 杨军, 陈小荣, 朱昌兰, 等. 氮肥和高温对早稻淦鑫203产量、SPAD值及可溶性糖含量的影响[J]. 江西农业大学学报, 2015, 37(5): 759-764. |
YANG J, CHEN X R, ZHU C L, et al. Effects of nitrogen level and high temperature treatment on yield, SPAD value, and soluble sugar content of early rice Ganxin 203[J]. Acta Agriculturae Universitatis Jiangxiensis, 2015, 37(5): 759-764. (in Chinese with English abstract) | |
[68] | 江晓东, 华梦飞, 胡凝, 等. 不同水源灌溉对水稻高温热害影响的微气象学分析[J]. 中国农业气象, 2019, 40(4): 260-268. |
JIANG X D, HUA M F, HU N, et al. Micrometeorological analysis of the effects of different irrigation water sources on the heat stress of rice[J]. Chinese Journal of Agrometeorology, 2019, 40(4): 260-268. (in Chinese with English abstract) | |
[69] | YANG J, YU Q Y, CHEN X R, et al. Effects of nitrogen level and high temperature stress on yield, SPAD value and soluble sugar content of early rice Ganxin 203[J]. Agricultural Science & Technology, 2016, 17(2): 385-390. |
[70] | 刘霞. 外源茉莉酸甲酯和亚精胺对水稻高温胁迫的缓解效应[D]. 南京: 南京农业大学, 2016. |
LIU X. Alleviation effects of exogenous methyl jasmonate and spermidine on rice under heat stress[D]. Nanjing: Nanjing Agricultural University, 2016. (in Chinese with English abstract) | |
[71] | 张宇, 许莹, 黄国桂, 等. 高温胁迫下不同防御处理对水稻生长和产量的影响[J]. 安徽农业科学, 2019, 47(23): 19-20, 23. |
ZHANG Y, XU Y, HUANG G G, et al. Effects of different defense treatments on rice growth and yield under high temperature stress[J]. Journal of Anhui Agricultural Sciences, 2019, 47(23): 19-20, 23. (in Chinese with English abstract) | |
[72] | LAKSHMI G, BEENA R, SONI K B, et al. Exogenously applied plant growth regulator protects rice from heat-induced damage by modulating plant defense mechanism[J]. Journal of Crop Science and Biotechnology, 2023, 26(1): 63-75. |
[73] | 符冠富, 张彩霞, 杨雪芹, 等. 水杨酸减轻高温抑制水稻颖花分化的作用机理研究[J]. 中国水稻科学, 2015, 29(6): 637-647. |
FU G F, ZHANG C X, YANG X Q, et al. Action mechanism by which SA alleviates high temperature-induced inhibition to spikelet differentiation[J]. Chinese Journal of Rice Science, 2015, 29(6): 637-647. (in Chinese with English abstract) | |
[74] | 杨过, 聂圣松, 杭俊楠, 等. 褪黑素在植物生长发育和逆境响应中的研究进展[J]. 山地农业生物学报, 2022, 41(6): 37-46. |
YANG G, NIE S S, HANG J N, et al. Research progress of melatonin in plant growth and development and stress response[J]. Journal of Mountain Agriculture and Biology, 2022, 41(6): 37-46. (in Chinese with English abstract) | |
[75] | REZAUL I M, FENG B H, CHEN T T, et al. Abscisic acid prevents pollen abortion under high-temperature stress by mediating sugar metabolism in rice spikelets[J]. Physiologia Plantarum, 2019, 165(3): 644-663. |
[76] | 张秋云, 沈亚琦, 蒋文翔, 等. 水稻绒毡层发育相关转录因子研究进展[J]. 湖北农业科学, 2021, 60(19): 5-10, 14. |
ZHANG Q Y, SHEN Y Q, JIANG W X, et al. Advances in studies of transcription factors in rice related to tapetum development[J]. Hubei Agricultural Sciences, 2021, 60(19): 5-10, 14. (in Chinese with English abstract) | |
[77] | 罗成科, 肖国举, 李茜. 水稻逆境相关转录因子研究进展[J]. 广西植物, 2015, 35(6): 942-947. |
LUO C K, XIAO G J, LI Q. Research advance of the transcription factors related to stress resistances in rice[J]. Guihaia, 2015, 35(6): 942-947. (in Chinese with English abstract) |
[1] | 杨西帆, 郭彬, 裘高扬, 刘俊丽, 童文彬, 杨海峻, 祝伟东, 毛聪妍. 不同钝化产品对水稻生产中镉、铅、砷的钝化效果[J]. 浙江农业学报, 2024, 36(1): 1-8. |
[2] | 左晓洁, 吴明江, 罗琳, 马增岭, 庞观凤, 陈斌斌. 羊栖菜优良品系对高温的耐受性比较[J]. 浙江农业学报, 2024, 36(1): 148-155. |
[3] | 何雨, 刘峰, 张天乐, 楼宝, 魏福亮, 叶挺. 高温胁迫对小黄鱼肝脏组织结构和细胞凋亡的影响[J]. 浙江农业学报, 2024, 36(1): 58-66. |
[4] | 罗英杰, 崔维军, 王忠华, 吴月燕, 林宏友, 周洁, 严成其, 王栩鸣. 水稻泛素连接酶D3与抗病相关蛋白VOZ2的互作分析[J]. 浙江农业学报, 2024, 36(1): 9-17. |
[5] | 高晓萍, 张婧, 牛天航, 刘阳, 常有麟, 刘思恬, 颉建明. 甜菜碱对高温胁迫下茄子幼苗生理特性的影响[J]. 浙江农业学报, 2023, 35(9): 2097-2108. |
[6] | 张思雨, 林朝阳, 叶雨轩, 沈志成. 转cry1Ab-vip3Af2和cp4-epsps基因的抗虫耐除草剂水稻的研究[J]. 浙江农业学报, 2023, 35(8): 1823-1833. |
[7] | 杨坤, 侯冠军, 赵秀侠, 方婷, 王利军. 水生动植物协同净化系统对鳜鱼养殖池塘水质与经济效益的影响[J]. 浙江农业学报, 2023, 35(7): 1709-1719. |
[8] | 王鑫彤, 万祖粱, 杨振中, 王国骄. 秸秆秋季湿耙还田对水稻不同生育时期叶片-土壤生态化学计量特征的影响[J]. 浙江农业学报, 2023, 35(6): 1243-1252. |
[9] | 张雪楠, 王乐乐, 钮铭轩, 詹妮, 任浩杰, 徐浩聪, 杨昆, 武立权, 柯健, 尤翠翠, 何海兵. 基于叶片反射光谱和叶绿素荧光估测水稻叶片含水量[J]. 浙江农业学报, 2023, 35(6): 1265-1277. |
[10] | 张超正, 张旭鹏, 陈丹玲. 劳动力老龄化、耕地细碎化必然导致水稻生产成本增加吗?——基于鄂东南地区的微观调查[J]. 浙江农业学报, 2023, 35(5): 1211-1222. |
[11] | 夏小东, 张晓波, 施勇烽, 许如根. 水稻致死突变体基因克隆与分子机制研究进展[J]. 浙江农业学报, 2023, 35(5): 1223-1234. |
[12] | 蒋莹莹, 张华, 雷志伟, 徐恒, 张恒, 朱英. 茉莉酸信号关键转录因子OsMYC2影响水稻愈伤诱导和分化的功能初探[J]. 浙江农业学报, 2023, 35(5): 973-982. |
[13] | 张斌, 冯晓庆, 郑芊, 陈稳, 滕杰. 抑制OsPUT5基因表达降低水稻低温抗性[J]. 浙江农业学报, 2023, 35(4): 780-788. |
[14] | 樊闯, 赵子皓, 张雪松, 杨沈斌. 基于BP神经网络的一季稻发育期预测模型[J]. 浙江农业学报, 2023, 35(2): 434-444. |
[15] | 张红梅, 王保君, 沈亚强, 程旺大. 浙北地区不同粒形优质粳稻产量和品质对播期调控的响应[J]. 浙江农业学报, 2023, 35(12): 2751-2762. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||