浙江农业学报 ›› 2024, Vol. 36 ›› Issue (2): 455-469.DOI: 10.3969/j.issn.1004-1524.20230262
杨洋1(), 袁璐1, 刘彬1, 王挺进1, 张爱珺1, 刘柯1, 李旭青2, 道丽筠2, 袁鑫3, 陈利萍1,3,*(
)
收稿日期:
2023-03-01
出版日期:
2024-02-25
发布日期:
2024-03-05
作者简介:
杨洋(1998—),女,山东潍坊人,硕士研究生,研究方向为蔬菜种质资源与分子育种。E-mail:22016061@zju.edu.cn
通讯作者:
*陈利萍,E-mail:chenliping@zju.edu.cn
基金资助:
YANG Yang1(), YUAN Lu1, LIU Bin1, WANG Tingjin1, ZHANG Aijun1, LIU Ke1, LI Xuqing2, DAO Liyun2, YUAN Xin3, CHEN Liping1,3,*(
)
Received:
2023-03-01
Online:
2024-02-25
Published:
2024-03-05
摘要:
水平基因转移(horizontal gene transfer, HGT)指通过受精以外的方式进行的跨物种遗传物质传递,是原核和真核生物基因组构成的重要来源,对生物进化具有重要推动作用。近年来,基因组测序技术的发展进一步证明了植物之间存在着大量的水平基因转移事件。文章主要对国内外植物间水平基因转移的途径、转移的基因分类,以及水平基因转移在农业中的应用潜力等方面进行了综述和讨论,分析了当前植物水平基因转移研究存在的问题,并就未来基础理论研究及利用的方向作了展望。
中图分类号:
杨洋, 袁璐, 刘彬, 王挺进, 张爱珺, 刘柯, 李旭青, 道丽筠, 袁鑫, 陈利萍. 植物间水平基因转移——基因交流新途径及其农业利用潜力[J]. 浙江农业学报, 2024, 36(2): 455-469.
YANG Yang, YUAN Lu, LIU Bin, WANG Tingjin, ZHANG Aijun, LIU Ke, LI Xuqing, DAO Liyun, YUAN Xin, CHEN Liping. Research progress on horizontal gene transfer between plants: a new way of gene exchange and its agricultural utilization potential[J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 455-469.
图1 嫁接诱导水平基因转移的一般步骤 图片参考自Stegemann等[15]的文章。a,接穗;b,嫁接部位;c,砧木;d,再生芽。
Fig.1 General steps of horizontal gene transfer induced by grafting The picture is taken from the article of Stegemann et al.[15]. a, Scion; b, Graft region; c, Rootstock; d, Regenerating shoots.
供体 Donor plant | 受体 Recipient plant | 转移途径 Transfer route | 基因 Gene | 参考文献 References |
---|---|---|---|---|
单子叶植物Monocot | 真双子叶植物Eudicots | rps2 | [ | |
毛茛目Ranunculales | 忍冬科Caprifoliaceae | — | rps11 | [ |
— | 桦木科Betulaceae | — | rps11 | [ |
单子叶植物Monocot | 血根草Sanguinaria canadensis | — | rps11 | [ |
真双子叶植物Eudicots | 无油樟Amborella trichopoda | — | atp1 | [ |
开花植物Flowering | 买麻藤属Gnetum | — | nad1 | [ |
菟丝子Cuscuta | 车前属Plantago | 寄生Parasitism | atp1, atp6, matR | [ |
唇形目Lamiales | 菟丝子亚属Pachystigma | 寄生Parasitism | atp1 | [ |
豆科Fabaceae | 大花草目 Rafflesiales | 寄生Parasitism | atp1 | [ |
豆生花属 Pilostyles | ||||
葡萄科Vitaceae | 大花草科Rafflesiacecae | 寄生Parasitism | nad1B-C | [ |
崖爬藤属Tetrastigma | ||||
石竹目Caryophyllales | 锁阳属 Cynomorium | 寄生Parasitism | atp8, atp9, ccmB, cox2, cox3, nad1, rps3 | [ |
无患子目Sapindales | 锁阳属 Cynomorium | 寄生Parasitism | atp1, atp8, rrn26, cox1 | [ |
葫芦目Cucurbitales/ | 锁阳属 Cynomorium | — | atp6 | [ |
菊目Asterales | ||||
石竹目Caryophyllales | 锁阳属 Cynomorium | 寄生Parasitism | atp1, atp8, ccmFn, cox2, cox1 | [ |
无患子目Sapindales | 锁阳属 Cynomorium | 寄生Parasitism | atp1, atp8, cox2, cox1 | [ |
豆科Fabaceae 含羞草亚科 Mimosoideae | 裸花蛇菰 Lophophytum mirabile | 寄生Parasitism | atp9, rpl10, atp1, atp4, atp6, atp8, ccmB, ccmC, ccmFC, ccmFN, cob, cox2, cox3, mttB, nad2x1x2, nad2x3x5, nad3, nad4L, nad5x4x5, nad6, rpl2, rpl5, rpl16, rps3, rps4, rps12, rps14, rps19, sdh4 | [ |
旋花科Convolvulaceae | 无根藤Cassytha filiformis | — | cox1 | [ |
被子植物Angiosperm | 加纳利松Pinus canariensis | — | nad5-1 | [ |
龙胆目Gentianales | 老鹳草属 Geranium | — | atp4 | [ |
真双子叶植物Eudicots | 老鹳草属 Geranium | — | atp8 | [ |
茄目 Solanales | 老鹳草属 Geranium | 寄生Parasitism | ccmC, cob, cox2, mttB, nad2 exon4,5, rpl5, rps4, rps14 | [ |
金虎尾目Malpighiales | 老鹳草属 Geranium | — | ccmFc, cox1, rpl16, rps1, rps3, rps4, rps10 | [ |
唇形目Lamiales | 老鹳草属 Geranium | 寄生Parasitism | nad6 | [ |
硅藻 Diatom | 绿胞藻 raphidophyte | — | cox1_g2_B | [ |
檀香目Santalales | 蕨萁Botrychium virginianum | — | nad1B-C, matR | [ |
被子植物Angiosperm | 北非雪松Cedrus atlantica | — | rps3, rpl16 | [ |
蔷薇目Rosales | 毛牵牛Ipomoea biflora | — | rps7 | [ |
蔷薇类植物Rosids | 旋花科Convolvulaceae | — | ccmFc | [ |
表1 植物间线粒体基因的水平转移
Table 1 Horizontal transfer of mitochondrial gene between plants
供体 Donor plant | 受体 Recipient plant | 转移途径 Transfer route | 基因 Gene | 参考文献 References |
---|---|---|---|---|
单子叶植物Monocot | 真双子叶植物Eudicots | rps2 | [ | |
毛茛目Ranunculales | 忍冬科Caprifoliaceae | — | rps11 | [ |
— | 桦木科Betulaceae | — | rps11 | [ |
单子叶植物Monocot | 血根草Sanguinaria canadensis | — | rps11 | [ |
真双子叶植物Eudicots | 无油樟Amborella trichopoda | — | atp1 | [ |
开花植物Flowering | 买麻藤属Gnetum | — | nad1 | [ |
菟丝子Cuscuta | 车前属Plantago | 寄生Parasitism | atp1, atp6, matR | [ |
唇形目Lamiales | 菟丝子亚属Pachystigma | 寄生Parasitism | atp1 | [ |
豆科Fabaceae | 大花草目 Rafflesiales | 寄生Parasitism | atp1 | [ |
豆生花属 Pilostyles | ||||
葡萄科Vitaceae | 大花草科Rafflesiacecae | 寄生Parasitism | nad1B-C | [ |
崖爬藤属Tetrastigma | ||||
石竹目Caryophyllales | 锁阳属 Cynomorium | 寄生Parasitism | atp8, atp9, ccmB, cox2, cox3, nad1, rps3 | [ |
无患子目Sapindales | 锁阳属 Cynomorium | 寄生Parasitism | atp1, atp8, rrn26, cox1 | [ |
葫芦目Cucurbitales/ | 锁阳属 Cynomorium | — | atp6 | [ |
菊目Asterales | ||||
石竹目Caryophyllales | 锁阳属 Cynomorium | 寄生Parasitism | atp1, atp8, ccmFn, cox2, cox1 | [ |
无患子目Sapindales | 锁阳属 Cynomorium | 寄生Parasitism | atp1, atp8, cox2, cox1 | [ |
豆科Fabaceae 含羞草亚科 Mimosoideae | 裸花蛇菰 Lophophytum mirabile | 寄生Parasitism | atp9, rpl10, atp1, atp4, atp6, atp8, ccmB, ccmC, ccmFC, ccmFN, cob, cox2, cox3, mttB, nad2x1x2, nad2x3x5, nad3, nad4L, nad5x4x5, nad6, rpl2, rpl5, rpl16, rps3, rps4, rps12, rps14, rps19, sdh4 | [ |
旋花科Convolvulaceae | 无根藤Cassytha filiformis | — | cox1 | [ |
被子植物Angiosperm | 加纳利松Pinus canariensis | — | nad5-1 | [ |
龙胆目Gentianales | 老鹳草属 Geranium | — | atp4 | [ |
真双子叶植物Eudicots | 老鹳草属 Geranium | — | atp8 | [ |
茄目 Solanales | 老鹳草属 Geranium | 寄生Parasitism | ccmC, cob, cox2, mttB, nad2 exon4,5, rpl5, rps4, rps14 | [ |
金虎尾目Malpighiales | 老鹳草属 Geranium | — | ccmFc, cox1, rpl16, rps1, rps3, rps4, rps10 | [ |
唇形目Lamiales | 老鹳草属 Geranium | 寄生Parasitism | nad6 | [ |
硅藻 Diatom | 绿胞藻 raphidophyte | — | cox1_g2_B | [ |
檀香目Santalales | 蕨萁Botrychium virginianum | — | nad1B-C, matR | [ |
被子植物Angiosperm | 北非雪松Cedrus atlantica | — | rps3, rpl16 | [ |
蔷薇目Rosales | 毛牵牛Ipomoea biflora | — | rps7 | [ |
蔷薇类植物Rosids | 旋花科Convolvulaceae | — | ccmFc | [ |
供体 Donor plant | 受体 Recipient plant | 转移途径 Transfer route | 基因 Gene | 参考文献 References |
---|---|---|---|---|
列当属 Orobanche | 小苞列当属 Phelipanche | — | rps2, trnL-F, rbcL | [ |
梭梭 Haloxylon ammodendron | 肉苁蓉 Cistanche deserticola | 寄生Parasitism | rpoC2 | [ |
被子植物Angiosperm | 野菰 Aeginetia indica | — | atpH | [ |
拟三列真藓 Bryum pseudotriquetrum | 大叶镰刀藓 Scorpidium cossonii | — | rpl16 | [ |
表2 植物间叶绿体基因的水平转移
Table 2 Horizontal transfer of chloroplast gene between plants
供体 Donor plant | 受体 Recipient plant | 转移途径 Transfer route | 基因 Gene | 参考文献 References |
---|---|---|---|---|
列当属 Orobanche | 小苞列当属 Phelipanche | — | rps2, trnL-F, rbcL | [ |
梭梭 Haloxylon ammodendron | 肉苁蓉 Cistanche deserticola | 寄生Parasitism | rpoC2 | [ |
被子植物Angiosperm | 野菰 Aeginetia indica | — | atpH | [ |
拟三列真藓 Bryum pseudotriquetrum | 大叶镰刀藓 Scorpidium cossonii | — | rpl16 | [ |
供体 Donor plant | 受体 Recipient plant | 转移途径 Transfer route | 基因 Gene | 参考文献 References |
---|---|---|---|---|
十字花科Brassicaceous | 分枝列当Orobanche aegyptiaca | 寄生Parasitism | SSL | [ |
十字花科Brassicaceous | 南方菟丝子Cuscuta australis | 寄生Parasitism | SSL | [ |
蜀黍族 Andropogoneae | 毛颖草Alloteropsis semialata (采自澳大利亚Taken from Australia) | 错位授粉(推测) Misaligned pollination (speculated) | ppc | [ |
棕叶狗尾草 Setaria palmifolia | 毛颖草Alloteropsis semialata (采自南非Taken from South Africa) | 错位授粉(推测) Misaligned pollination (speculated) | ppc | [ |
糖蜜草亚族 Melinidinae | 毛颖草属 Alloteropsis 多种植物Multiple plants | 错位授粉(推测) Misaligned pollination (speculated) | ppc | [ |
蒺藜草亚族 Cenchrinae | 毛颖草属 Alloteropsis | 错位授粉(推测) Misaligned pollination (speculated) | pck | [ |
早熟禾属 Poa | 羊茅 Festuca ovina | 错位授粉(推测) Misaligned pollination (speculated) | PgiC | [ |
高粱Sorghum | 黄独脚金Striga hermonthica | 寄生Parasitism | ShContig9483 | [ |
角苔Anthoceros punctatus | 蕨类Fern | — | Neochrome | [ |
双子叶植物Dicotyledon | 欧洲猪牙花Erythronium dens-canis | — | ITS | [ |
黍亚科Panicoideae | 小麦族 Triticeae | — | BCGs | [ |
豆科Fabaceae | 裸花蛇菰Lophophytum mirabile | 寄生Parasitism | sdh3 | [ |
蓝藻Blue-green algae | 微小原甲藻Prorocentrum minimum | — | PmCuZnSOD | [ |
表3 植物间细胞核基因的水平转移
Table 3 Horizontal transfer of nucleus gene between plants
供体 Donor plant | 受体 Recipient plant | 转移途径 Transfer route | 基因 Gene | 参考文献 References |
---|---|---|---|---|
十字花科Brassicaceous | 分枝列当Orobanche aegyptiaca | 寄生Parasitism | SSL | [ |
十字花科Brassicaceous | 南方菟丝子Cuscuta australis | 寄生Parasitism | SSL | [ |
蜀黍族 Andropogoneae | 毛颖草Alloteropsis semialata (采自澳大利亚Taken from Australia) | 错位授粉(推测) Misaligned pollination (speculated) | ppc | [ |
棕叶狗尾草 Setaria palmifolia | 毛颖草Alloteropsis semialata (采自南非Taken from South Africa) | 错位授粉(推测) Misaligned pollination (speculated) | ppc | [ |
糖蜜草亚族 Melinidinae | 毛颖草属 Alloteropsis 多种植物Multiple plants | 错位授粉(推测) Misaligned pollination (speculated) | ppc | [ |
蒺藜草亚族 Cenchrinae | 毛颖草属 Alloteropsis | 错位授粉(推测) Misaligned pollination (speculated) | pck | [ |
早熟禾属 Poa | 羊茅 Festuca ovina | 错位授粉(推测) Misaligned pollination (speculated) | PgiC | [ |
高粱Sorghum | 黄独脚金Striga hermonthica | 寄生Parasitism | ShContig9483 | [ |
角苔Anthoceros punctatus | 蕨类Fern | — | Neochrome | [ |
双子叶植物Dicotyledon | 欧洲猪牙花Erythronium dens-canis | — | ITS | [ |
黍亚科Panicoideae | 小麦族 Triticeae | — | BCGs | [ |
豆科Fabaceae | 裸花蛇菰Lophophytum mirabile | 寄生Parasitism | sdh3 | [ |
蓝藻Blue-green algae | 微小原甲藻Prorocentrum minimum | — | PmCuZnSOD | [ |
图2 植物中水平基因转移的分类、途径以及作用 植物能够通过寄生、嫁接以及媒介介导的方式,将线粒体、叶绿体和核基因组的DNA水平转移到其他植物中。这些水平转移的基因可能对受体的光合作用、寄生、抗性及育性等性状产生影响。图片创作自BioRender。
Fig.2 Classification, pathway and its role of horizontal gene transfer in plants Plants can transfer DNA of mitochondria, chloroplast and nuclear genomes to other plants through parasitism, grafting and vector mediation. These horizontally transferred genes may affect the photosynthesis, parasitism, resistance and fertility of receptor. The image was created with BioRender.com.
[1] | WICKELL D A, LI F W. On the evolutionary significance of horizontal gene transfers in plants[J]. The New Phytologist, 2020, 225(1): 113-117. |
[2] | GRIFFITH F. The significance of pneumococcal types[J]. The Journal of Hygiene, 1928, 27(2): 113-159. |
[3] | TATUM E L, LEDERBERG J. Gene recombination in the bacterium Escherichia coli[J]. Journal of Bacteriology, 1947, 53(6): 673-684. |
[4] | VRZOŇOVÁ R, TÓTH R, SIVÁKOVÁ B, et al. OCT1 -a yeast mitochondrial thiolase involved in the 3-oxoadipate pathway[J]. FEMS Yeast Research, 2021, 21(5): foab034. |
[5] | FRIESEN T L, STUKENBROCK E H, LIU Z H, et al. Emergence of a new disease as a result of interspecific virulence gene transfer[J]. Nature Genetics, 2006, 38(8): 953-956. |
[6] | MORAN N A, JARVIK T. Lateral transfer of genes from fungi underlies carotenoid production in aphids[J]. Science, 2010, 328(5978): 624-627. |
[7] | LI Y, LIU Z G, LIU C, et al. HGT is widespread in insects and contributes to male courtship in lepidopterans[J]. Cell, 2022, 185(16): 2975-2987.e10. |
[8] | EBENEZER T E, ZOLTNER M, BURRELL A, et al. Transcriptome, proteome and draft genome of Euglena gracilis[J]. BMC Biology, 2019, 17(1): 11. |
[9] | PARK S H, KYNDT J A, BROWN J K. Comparison of Auxenochlorella protothecoides and Chlorella spp. chloroplast genomes: evidence for endosymbiosis and horizontal virus-like gene transfer[J]. Life, 2022, 12(3): 458. |
[10] | DORRELL R G, VILLAIN A, PEREZ-LAMARQUE B, et al. Phylogenomic fingerprinting of tempo and functions of horizontal gene transfer within ochrophytes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(4): e2009974118. |
[11] | KIM H T, KIM J S. Structural mutations in the organellar genomes of Valeriana sambucifolia f. dageletiana(nakai. ex maekawa) Hara show dynamic gene transfer[J]. International Journal of Molecular Sciences, 2021, 22(7): 3770. |
[12] | SHESTAKOV S V, KHYEN N T. Evidence for genetic transformation in blue-green Alga Anacystis nidulans[J]. Molecular and General Genetics MGG, 1970, 107(4): 372-375. |
[13] | BERGTHORSSON U, ADAMS K L, THOMASON B, et al. Widespread horizontal transfer of mitochondrial genes in flowering plants[J]. Nature, 2003, 424(6945): 197-201. |
[14] | WON H, RENNER S S. Horizontal gene transfer from flowering plants to Gnetum[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(19): 10824-10829. |
[15] | STEGEMANN S, BOCK R. Exchange of genetic material between cells in plant tissue grafts[J]. Science, 2009, 324(5927): 649-651. |
[16] | YANG Z Z, ZHANG Y T, WAFULA E K, et al. Horizontal gene transfer is more frequent with increased heterotrophy and contributes to parasite adaptation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(45): E7010-E7019. |
[17] | 艾铁民, 彭华. 中国药用植物志第9卷被子植物门双子叶植物纲[M]. 北京: 北京大学医学出版社, 2017. |
[18] | KADO T, INNAN H. Horizontal gene transfer in five parasite plant species in Orobanchaceae[J]. Genome Biology and Evolution, 2018, 10(12): 3196-3210. |
[19] | YOSHIDA S, KIM S, WAFULA E K, et al. Genome sequence of Striga asiatica provides insight into the evolution of plant parasitism[J]. Current Biology, 2019, 29(18): 3041-3052.e4. |
[20] | MOWER J P, STEFANOVIĆ S, YOUNG G J, et al. Plant genetics: gene transfer from parasitic to host plants[J]. Nature, 2004, 432(7014): 165-166. |
[21] | MOWER J P, STEFANOVIĆ S, HAO W L, et al. Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes[J]. BMC Biology, 2010, 8: 150. |
[22] | ZHANG D L, QI J F, YUE J P, et al. Root parasitic plant Orobanche aegyptiaca and shoot parasitic plant Cuscuta australis obtained Brassicaceae-specific strictosidine synthase-like genes by horizontal gene transfer[J]. BMC Plant Biology, 2014, 14: 19. |
[23] | VOGEL A, SCHWACKE R, DENTON A K, et al. Footprints of parasitism in the genome of the parasitic flowering plant Cuscuta campestris[J]. Nature Communications, 2018, 9: 2515. |
[24] | ZHANG Y T, FERNANDEZ-APARICIO M, WAFULA E K, et al. Evolution of a horizontally acquired legume gene, albumin 1, in the parasitic plant Phelipanche aegyptiaca and related species[J]. BMC Evolutionary Biology, 2013, 13: 48. |
[25] | YANG Z Z, WAFULA E K, KIM G, et al. Convergent horizontal gene transfer and cross-talk of mobile nucleic acids in parasitic plants[J]. Nature Plants, 2019, 5(9): 991-1001. |
[26] | DAVIS C C, WURDACK K J. Host-to-parasite gene transfer in flowering plants: phylogenetic evidence from Malpighiales[J]. Science, 2004, 305(5684): 676-678. |
[27] | XI Z X, BRADLEY R K, WURDACK K J, et al. Horizontal transfer of expressed genes in a parasitic flowering plant[J]. BMC Genomics, 2012, 13: 227. |
[28] | NICKRENT D L, BLARER A, QIU Y L, et al. Phylogenetic inference in Rafflesiales: the influence of rate heterogeneity and horizontal gene transfer[J]. BMC Evolutionary Biology, 2004, 4: 40. |
[29] | LI X, ZHANG T C, QIAO Q, et al. Complete chloroplast genome sequence of holoparasite Cistanche deserticola(Orobanchaceae) reveals gene loss and horizontal gene transfer from its host Haloxylon ammodendron(Chenopodiaceae)[J]. PLoS One, 2013, 8(3): e58747. |
[30] | BELLOT S, CUSIMANO N, LUO S X, et al. Assembled plastid and mitochondrial genomes, as well as nuclear genes, place the parasite family Cynomoriaceae in the saxifragales[J]. Genome Biology and Evolution, 2016, 8(7): 2214-2230. |
[31] | CUSIMANO N, RENNER S S. Sequential horizontal gene transfers from different hosts in a widespread Eurasian parasitic plant, Cynomorium coccineum[J]. American Journal of Botany, 2019, 106(5): 679-689. |
[32] | STEGEMANN S, KEUTHE M, GREINER S, et al. Horizontal transfer of chloroplast genomes between plant species[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(7): 2434-2438. |
[33] | THYSSEN G, SVAB Z, MALIGA P. Cell-to-cell movement of plastids in plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(7): 2439-2443. |
[34] | GURDON C, SVAB Z, FENG Y P, et al. Cell-to-cell movement of mitochondria in plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(12): 3395-3400. |
[35] | FUENTES I, STEGEMANN S, GOLCZYK H, et al. Horizontal genome transfer as an asexual path to the formation of new species[J]. Nature, 2014, 511(7508): 232-235. |
[36] | HERTLE A P, HABERL B, BOCK R. Horizontal genome transfer by cell-to-cell travel of whole organelles[J]. Science Advances, 2021, 7(1): eabd8215. |
[37] | GILBERT C, CORDAUX R. Viruses as vectors of horizontal transfer of genetic material in eukaryotes[J]. Current Opinion in Virology, 2017, 25: 16-22. |
[38] | CATONI M, NORIS E, VAIRA A M, et al. Virus-mediated export of chromosomal DNA in plants[J]. Nature Communications, 2018, 9: 5308. |
[39] | CHRISTIN P A, EDWARDS E J, BESNARD G, et al. Adaptive evolution of C4 photosynthesis through recurrent lateral gene transfer[J]. Current Biology, 2012, 22(5): 445-449. |
[40] | DIAO X M, FREELING M, LISCH D. Horizontal transfer of a plant transposon[J]. PLoS Biology, 2006, 4(1): e5. |
[41] | VALLENBACK P, JAAROLA M, GHATNEKAR L, et al. Origin and timing of the horizontal transfer of a PgiC gene from Poa to Festuca ovina[J]. Molecular Phylogenetics and Evolution, 2008, 46(3): 890-896. |
[42] | MOLINA J, HAZZOURI K M, NICKRENT D, et al. Possible loss of the chloroplast genome in the parasitic flowering plant Rafflesia lagascae(Rafflesiaceae)[J]. Molecular Biology and Evolution, 2014, 31(4): 793-803. |
[43] | YOSHIDA S, MARUYAMA S, NOZAKI H, et al. Horizontal gene transfer by the parasitic plant Striga hermonthica[J]. Science, 2010, 328(5982): 1128. |
[44] | KEELING P J, PALMER J D. Horizontal gene transfer in eukaryotic evolution[J]. Nature Reviews Genetics, 2008, 9(8): 605-618. |
[45] | ZHAO N, WANG Y M, HUA J P. The roles of mitochondrion in intergenomic gene transfer in plants: a source and a pool[J]. International Journal of Molecular Sciences, 2018, 19(2): 547. |
[46] | ARIMURA S I, YAMAMOTO J, AIDA G P, et al. Frequent fusion and fission of plant mitochondria with unequal nucleoid distribution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(20): 7805-7808. |
[47] | SHEDGE V, ARRIETA-MONTIEL M, CHRISTENSEN A C, et al. Plant mitochondrial recombination surveillance requires unusual RecA and MutS homologs[J]. The Plant Cell, 2007, 19(4): 1251-1264. |
[48] | SANCHEZ-PUERTA M V, GARCÍA L E, WOHLFEILER J, et al. Unparalleled replacement of native mitochondrial genes by foreign homologs in a holoparasitic plant[J]. The New Phytologist, 2017, 214(1): 376-387. |
[49] | SANCHEZ-PUERTA M V, EDERA A, GANDINI C L, et al. Genome-scale transfer of mitochondrial DNA from legume hosts to the holoparasite Lophophytum mirabile(Balanophoraceae)[J]. Molecular Phylogenetics and Evolution, 2019, 132: 243-250. |
[50] | ROULET M E, GARCIA L E, GANDINI C L, et al. Multichromosomal structure and foreign tracts in the Ombrophytum subterraneum(Balanophoraceae) mitochondrial genome[J]. Plant Molecular Biology, 2020, 103(6): 623-638. |
[51] | CHOI I S, SCHWARZ E N, RUHLMAN T A, et al. Fluctuations in Fabaceae mitochondrial genome size and content are both ancient and recent[J]. BMC Plant Biology, 2019, 19(1): 448. |
[52] | XIA L, CHENG C Y, ZHAO X K, et al. Characterization of the mitochondrial genome of Cucumis hystrix and comparison with other cucurbit crops[J]. Gene, 2022, 823: 146342. |
[53] | GANDINI C L, SANCHEZ-PUERTA M V. Foreign plastid sequences in plant mitochondria are frequently acquired via mitochondrion-to-mitochondrion horizontal transfer[J]. Scientific Reports, 2017, 7: 43402. |
[54] | ZHANG C, LIN Q S, ZHANG J Y, et al. Comparing complete organelle genomes of holoparasitic Christisonia kwangtungensis(Orabanchaceae) with its close relatives: how different are they?[J]. BMC Plant Biology, 2022, 22(1): 444. |
[55] | TOFFALETTI D L, DEL POETA M, RUDE T H, et al. Regulation of cytochrome c oxidase subunit 1 (COX1) expression in Cryptococcus neoformans by temperature and host environment[J]. Microbiology, 2003, 149(Pt 4): 1041-1049. |
[56] | VAUGHN J C, MASON M T, SPER-WHITIS G L, et al. Fungal origin by horizontal transfer of a plant mitochondrial group I intron in the chimeric coxI gene of Peperomia[J]. Journal of Molecular Evolution, 1995, 41(5): 563-572. |
[57] | CHO Y, QIU Y L, KUHLMAN P, et al. Explosive invasion of plant mitochondria by a group I intron[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(24): 14244-14249. |
[58] | SANCHEZ-PUERTA M V, CHO Y, MOWER J P, et al. Frequent, phylogenetically local horizontal transfer of the cox1 group I Intron in flowering plant mitochondria[J]. Molecular Biology and Evolution, 2008, 25(8): 1762-1777. |
[59] | ZHANG C Y, MA H, SANCHEZ-PUERTA M V, et al. Horizontal gene transfer has impacted cox1 gene evolution in Cassytha filiformis[J]. Journal of Molecular Evolution, 2020, 88(4): 361-371. |
[60] | WANG B, CLIMENT J, WANG X R. Horizontal gene transfer from a flowering plant to the insular pine Pinus canariensis(Chr. Sm. Ex DC in Buch)[J]. Heredity, 2015, 114(4): 413-418. |
[61] | PARK S, GREWE F, ZHU A D, et al. Dynamic evolution of Geranium mitochondrial genomes through multiple horizontal and intracellular gene transfers[J]. The New Phytologist, 2015, 208(2): 570-583. |
[62] | BARKMAN T J, MCNEAL J R, LIM S H, et al. Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants[J]. BMC Evolutionary Biology, 2007, 7: 248. |
[63] | GUILLORY W X, ONYSHCHENKO A, RUCK E C, et al. Recurrent loss, horizontal transfer, and the obscure origins of mitochondrial introns in diatoms (bacillariophyta)[J]. Genome Biology and Evolution, 2018, 10(6): 1504-1515. |
[64] | DAVIS C C, ANDERSON W R, WURDACK K J. Gene transfer from a parasitic flowering plant to a fern[J]. Proceedings Biological Sciences, 2005, 272(1578): 2237-2242. |
[65] | FORGIONE I, BONAVITA S, REGINA T M R. Mitochondria of Cedrus atlantica and allied species: a new chapter in the horizontal gene transfer history[J]. Plant Science, 2019, 281: 93-101. |
[66] | LIN Q S, BANERJEE A, STEFANOVIĆ S. Mitochondrial phylogenomics of Cuscuta(Convolvulaceae) reveals a potentially functional horizontal gene transfer from the host[J]. Genome Biology and Evolution, 2022, 14(6): evac091. |
[67] | GARCIA L E, EDERA A A, PALMER J D, et al. Horizontal gene transfers dominate the functional mitochondrial gene space of a holoparasitic plant[J]. The New Phytologist, 2021, 229(3): 1701-1714. |
[68] | GATICA-SORIA L M, CERIOTTI L F, GARCIA L E, et al. Native and foreign mitochondrial and nuclear encoded proteins conform the OXPHOS complexes of a holoparasitic plant[J]. Gene, 2022, 817: 146176. |
[69] | XU F Y, YANG X D, ZHAO N, et al. Exploiting sterility and fertility variation in cytoplasmic male sterile vegetable crops[J]. Horticulture Research, 2022, 9: uhab039. |
[70] | WOLOSZYNSKA M, BOCER T, MACKIEWICZ P, et al. A fragment of chloroplast DNA was transferred horizontally, probably from non-eudicots, to mitochondrial genome of Phaseolus[J]. Plant Molecular Biology, 2004, 56(5): 811-820. |
[71] | SKIPPINGTON E, BARKMAN T J, RICE D W, et al. Miniaturized mitogenome of the parasitic plant Viscum scurruloideum is extremely divergent and dynamic and has lost all nad genes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(27): E3515-E3524. |
[72] | ANDERSON B M, KRAUSE K, PETERSEN G. Mitochondrial genomes of two parasitic Cuscuta species lack clear evidence of horizontal gene transfer and retain unusually fragmented ccmFC genes[J]. BMC Genomics, 2021, 22(1): 816. |
[73] | LIN Y X, LI P, ZHANG Y C, et al. Unprecedented organelle genomic variations in morning glories reveal independent evolutionary scenarios of parasitic plants and the diversification of plant mitochondrial complexes[J]. BMC Biology, 2022, 20(1): 49. |
[74] | BERGTHORSSON U, RICHARDSON A O, YOUNG G J, et al. Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(51): 17747-17752. |
[75] | RICE D W, ALVERSON A J, RICHARDSON A O, et al. Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella[J]. Science, 2013, 342(6165): 1468-1473. |
[76] | 石磊, 张明慧, 陈虞超, 等. 植物中的水平基因转移[J]. 植物学报, 2016, 51(4): 542-559. |
SHI L, ZHANG M H, CHEN Y C, et al. Horizontal gene transfer in plants[J]. Chinese Bulletin of Botany, 2016, 51(4): 542-559. (in Chinese with English abstract) | |
[77] | STRAUB S C K, CRONN R C, EDWARDS C, et al. Horizontal transfer of DNA from the mitochondrial to the plastid genome and its subsequent evolution in milkweeds (Apocynaceae)[J]. Genome Biology and Evolution, 2013, 5(10): 1872-1885. |
[78] | RUCK E C, LINARD S R, NAKOV T, et al. Hoarding and horizontal transfer led to an expanded gene and intron repertoire in the plastid genome of the diatom, Toxarium undulatum(Bacillariophyta)[J]. Current Genetics, 2017, 63(3): 499-507. |
[79] | PARK J M, MANEN J F, SCHNEEWEISS G M. Horizontal gene transfer of a plastid gene in the non-photosynthetic flowering plants Orobanche and Phelipanche(Orobanchaceae)[J]. Molecular Phylogenetics and Evolution, 2007, 43(3): 974-985. |
[80] | CHOI K S, PARK S. Complete plastid and mitochondrial genomes of Aeginetia indica reveal intracellular gene transfer (IGT), horizontal gene transfer (HGT), and cytoplasmic male sterility (CMS)[J]. International Journal of Molecular Sciences, 2021, 22(11): 6143. |
[81] | GOREMYKIN V V, SALAMINI F, VELASCO R, et al. Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer[J]. Molecular Biology and Evolution, 2009, 26(1): 99-110. |
[82] | LU Y H, STEGEMANN S, AGRAWAL S, et al. Horizontal transfer of a synthetic metabolic pathway between plant species[J]. Current Biology, 2017, 27(19): 3034-3041. |
[83] | HEDENÄS L, LARSSON P, CRONHOLM B, et al. Evidence of horizontal gene transfer between land plant plastids has surprising conservation implications[J]. Annals of Botany, 2021, 127(7): 903-908. |
[84] | KELLY S. The economics of organellar gene loss and endosymbiotic gene transfer[J]. Genome Biology, 2021, 22(1): 345. |
[85] | 刘英, 刘广达, 苏小娟, 等. 高等植物水平基因转移研究进展[J]. 植物生理学报, 2015, 51(7): 985-995. |
LIU Y, LIU G D, SU X J, et al. Research progress of horizontal gene transfer between higher plants[J]. Plant Physiology Journal, 2015, 51(7): 985-995. (in Chinese with English abstract) | |
[86] | LI F W, VILLARREAL J C, KELLY S, et al. Horizontal transfer of an adaptive chimeric photoreceptor from bryophytes to ferns[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(18): 6672-6677. |
[87] | OLOFSSON J K, BIANCONI M, BESNARD G, et al. Genome biogeography reveals the intraspecific spread of adaptive mutations for a complex trait[J]. Molecular Ecology, 2016, 25(24): 6107-6123. |
[88] | DUNNING L T, OLOFSSON J K, PARISOD C, et al. Lateral transfers of large DNA fragments spread functional genes among grasses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(10): 4416-4425. |
[89] | PHANSOPA C, DUNNING L T, REID J D, et al. Lateral gene transfer acts as an evolutionary shortcut to efficient C4 biochemistry[J]. Molecular Biology and Evolution, 2020, 37(11): 3094-3104. |
[90] | PRENTICE H C, LI Y, LÖNN M, et al. A horizontally transferred nuclear gene is associated with microhabitat variation in a natural plant population[J]. Proceedings Biological Sciences, 2015, 282(1821): 20152453. |
[91] | HIBDIGE S G S, RAIMONDEAU P, CHRISTIN P A, et al. Widespread lateral gene transfer among grasses[J]. The New Phytologist, 2021, 230(6): 2474-2486. |
[92] | WU D Y, JIANG B W, YE C Y, et al. Horizontal transfer and evolution of the biosynthetic gene cluster for benzoxazinoids in plants[J]. Plant Communications, 2022, 3(3): 100320. |
[93] | ROULIN A, PIEGU B, FORTUNE P M, et al. Whole genome surveys of rice, maize and sorghum reveal multiple horizontal transfers of the LTR-retrotransposon Route66 in Poaceae[J]. BMC Evolutionary Biology, 2009, 9: 58. |
[94] | WELLS J N, FESCHOTTE C. A field guide to eukaryotic transposable elements[J]. Annual Review of Genetics, 2020, 54: 539-561. |
[95] | WANG H, ABASSI S, KI J S. Origin and roles of a novel copper-zinc superoxide dismutase (CuZnSOD) gene from the harmful dinoflagellate Prorocentrum minimum[J]. Gene, 2019, 683: 113-122. |
[96] | BARTHA L, MANDÁKOVÁ T, KOVAŘÍK A, et al. Intact ribosomal DNA arrays of Potentilla origin detected in Erythronium nucleus suggest recent eudicot-to-monocot horizontal transfer[J]. The New Phytologist, 2022, 235(3): 1246-1259. |
[97] | GUO M L, YE J Y, GAO D W, et al. Agrobacterium -mediated horizontal gene transfer: mechanism, biotechnological application, potential risk and forestalling strategy[J]. Biotechnology Advances, 2019, 37(1): 259-270. |
[98] | KIM Y C, KANG Y, YANG E Y, et al. Applications and major achievements of genome editing in vegetable crops: a review[J]. Frontiers in Plant Science, 2021, 12: 688980. |
[99] | DONG O X, RONALD P C. Targeted DNA insertion in plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(22): 9. |
[100] | SHAHID S, KIM G, JOHNSON N R, et al. microRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs[J]. Nature, 2018, 553(7686): 82-85. |
[101] | JOHNSON N R, AXTELL M J. Small RNA warfare: exploring origins and function of trans-species microRNAs from the parasitic plant Cuscuta[J]. Current Opinion in Plant Biology, 2019, 50: 76-81. |
[102] | ZANGISHEI Z, ANNACONDIA M L, GUNDLACH H, et al. Parasitic plant small RNA analyses unveil parasite-specific signatures of microRNA retention, loss, and gain[J]. Plant Physiology, 2022, 190(2): 1242-1259. |
[103] | SIDOROV V, ARMSTRONG C, REAM T, et al. “Cell grafting”: a new approach for transferring cytoplasmic or nuclear genome between plants[J]. Plant Cell Reports, 2018, 37(8): 1077-1089. |
[104] | NOTAGUCHI M, KUROTANI K I, SATO Y, et al. Cell-cell adhesion in plant grafting is facilitated by β-1, 4-glucanases[J]. Science, 2020, 369(6504): 698-702. |
[105] | WANG P, KHOSHRAVESH R, KARKI S, et al. Re-creation of a key step in the evolutionary switch from C3 to C4 leaf anatomy[J]. Current Biology: CB, 2017, 27(21): 3278-3287.e6. |
[106] | ERMAKOVA M, ARRIVAULT S, GIULIANI R, et al. Installation of C4 photosynthetic pathway enzymes in rice using a single construct[J]. Plant Biotechnology Journal, 2021, 19(3): 575-588. |
[107] | HAO J J, JIA X H, YU J W, et al. Direct visualization of horizontal gene transfer in cotton plants[J]. The Journal of Heredity, 2014, 105(6): 834-836. |
[108] | TANWAR N, ARYA S S, ROOKES J E, et al. Prospects of chloroplast metabolic engineering for developing nutrient-dense food crops[J]. Critical Reviews in Biotechnology, 2022: 1-18. |
[1] | 夏小东, 张晓波, 施勇烽, 许如根. 水稻致死突变体基因克隆与分子机制研究进展[J]. 浙江农业学报, 2023, 35(5): 1223-1234. |
[2] | 张加强, 刘慧春, 王杰, 许雯婷, 周江华, 朱开元. 金银花大毛花叶绿体基因组密码子的偏好性分析[J]. 浙江农业学报, 2023, 35(4): 821-830. |
[3] | 林兴雨, 宋南. 茸毛小长蝽的线粒体基因组测序和分析[J]. 浙江农业学报, 2023, 35(12): 2878-2889. |
[4] | 刘林雨, 张扬, 刘威, 包强, 翁恺麒, 徐欣磊, 张钰, 徐琪, 陈国宏. 国内外5个典型鹅品种线粒体DNA遗传多样性与系统进化分析[J]. 浙江农业学报, 2023, 35(11): 2525-2532. |
[5] | 郭丹丹, 刘峰, 牛宝龙, 楼宝. 基于线粒体Cytb基因和D-loop区的野生与养殖小黄鱼群体遗传多样性[J]. 浙江农业学报, 2022, 34(9): 1856-1865. |
[6] | 李含芬, 李鼎立, 王然, 马春晖. 不同矮化中间砧对黄金梨树体生长的影响及嫁接亲和性相关性分析[J]. 浙江农业学报, 2022, 34(6): 1175-1182. |
[7] | 钟丽君, 邓嘉强, 古丛伟, 沈留红, 曹随忠, 余树民. MitoQ对犬骨髓间充质干细胞线粒体功能及抗氧化能力的影响[J]. 浙江农业学报, 2022, 34(5): 934-941. |
[8] | 曹联飞, 施金虎, 徐雅岚, 苏晓玲, 胡福良, 郑火青. 基于线粒体DNA tRNAleu-COⅡ序列的浙江省东方蜜蜂遗传多样性研究[J]. 浙江农业学报, 2022, 34(11): 2395-2403. |
[9] | 陶鹏, 赵彦婷, 岳智臣, 雷娟利, 李必元. 菜心BcSVP基因mRNA在异源嫁接体中的运输分析[J]. 浙江农业学报, 2021, 33(7): 1192-1198. |
[10] | 刘凯, 冯晓宇, 马恒甲, 谢楠. 钱塘江三角鲂线粒体基因组测序及其结构特征分析[J]. 浙江农业学报, 2020, 32(9): 1591-1608. |
[11] | 黄科文, 李克强, 刘继, 岁立云, 刘磊, 王铤, 郑阳霞, 林立金, 廖明安. 不同砧穗组合对豆瓣菜扦插苗生理特性及硒积累的影响[J]. 浙江农业学报, 2020, 32(3): 447-454. |
[12] | 杨明霞, 连红娟, 王晓芳, 杜宜洋, 董志刚, 纪薇. 葡萄MPT基因家族鉴定与表达分析[J]. 浙江农业学报, 2020, 32(12): 2173-2185. |
[13] | 汪炳良, 海睿, 金炳胜, 江建红, 施星仁, 林玉泉, 叶红霞. 嫁接方法对甜瓜嫁接工效及嫁接苗生长和果实品质的影响[J]. 浙江农业学报, 2020, 32(10): 1809-1815. |
[14] | 尹潇潇, 李燕方, 古江, 廖艳, 谢跃, 杨光友, 古小彬. 基于线粒体ATP6基因全序列分析中国绵羊痒螨(兔亚种)的遗传多样性[J]. 浙江农业学报, 2019, 31(8): 1231-1238. |
[15] | 周秀敏, 杨永江, 毕英杰, 任卫合, 张丽. 基于线粒体COXⅠ基因变异探讨国内外猪种的遗传多样性及系统进化研究[J]. 浙江农业学报, 2017, 29(8): 1271-1280. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||