浙江农业学报 ›› 2025, Vol. 37 ›› Issue (4): 909-919.DOI: 10.3969/j.issn.1004-1524.20240339
吴坤霖1,2(), 刘瑞玲2, 房祥军2, 王冠楠2, 牛犇2, 陈慧芝2, 陈杭君2, 吴伟杰2, 郜海燕2,*(
)
收稿日期:
2024-04-12
出版日期:
2025-04-25
发布日期:
2025-05-09
作者简介:
吴坤霖(1998—),女,广西梧州人,硕士研究生,研究方向为食品物流保鲜与品质调控。E-mail:wkunlin199@sina.com
通讯作者:
*郜海燕,E-mail: spsghy@163.com
基金资助:
WU Kunlin1,2(), LIU Ruiling2, FANG Xiangjun2, WANG Guannan2, NIU Ben2, CHEN Huizhi2, CHEN Hangjun2, WU Weijie2, GAO Haiyan2,*(
)
Received:
2024-04-12
Online:
2025-04-25
Published:
2025-05-09
摘要: 为探究茭白热泵联合远红外后程干燥工艺及其对茭白复水后水分迁移特性的影响,分析了茭白在不同热泵温度和热泵联合远红外后程干燥下的干燥特性,利用低场核磁共振(LF-NMR)技术对干燥茭白进行弛豫特性分析,测定复水率,并利用成像技术研究干燥后的复水能力。结果表明:在不同热泵温度下,茭白干基含水率随干燥时间的延长而快速下降,处理温度越高,干燥速率的最高点越大;热泵温度为60 ℃时,茭白的复水性好于其他处理温度。在60 ℃热泵干燥30 min后,启用热泵(60 ℃)联合不同远红外辐射强度(0、400、800 W)进行后程干燥处理,随着干燥时间延长,自由水的流动性逐渐降低;干燥结束时,60 ℃、60 ℃+400 W、60 ℃+800 W处理组T23对应的弛豫峰消失,自由水完全去除。复水茭白的主要水分状态是不易流动水,集中在茭白外部。60 ℃+400 W热泵联合远红外后程干燥制成的干燥茭白其复水水分信号明显强于其他处理组,与60 ℃单一热泵处理相比,其复水能力更强,并且干燥所需时间更短。总体上,热泵联合远红外后程干燥能显著提升茭白干的复水效率,LF-NMR技术可精准解析干燥过程中水分动态迁移规律,为果蔬联合干燥工艺优化提供无损检测方法支持。
中图分类号:
吴坤霖, 刘瑞玲, 房祥军, 王冠楠, 牛犇, 陈慧芝, 陈杭君, 吴伟杰, 郜海燕. 热泵联合远红外后程干燥茭白及其复水特性分析[J]. 浙江农业学报, 2025, 37(4): 909-919.
WU Kunlin, LIU Ruiling, FANG Xiangjun, WANG Guannan, NIU Ben, CHEN Huizhi, CHEN Hangjun, WU Weijie, GAO Haiyan. Study of heat pump combined with far-infrared final-stage drying of Zizania latifolia and its rehydration characteristics[J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 909-919.
图1 茭白在不同热泵温度下的干基含水率(A)和干燥速率(B)曲线
Fig.1 Dry-based water content curve (A) and drying rate curve (B) of Zizania latifolia at different heat pump temperatures
图2 不同热泵温度下制成的茭白干制品的复水率(A)和T2反演谱(B) 柱上无相同小写字母表示各处理间差异显著(P<0.05)。下同。
Fig.2 Rehydration rate (A) and T2 inversion spectrum (B) of Zizania latifolia dried products made at different heat pump temperatures Bars marked without the same lowercase letters in the figure indicate significant differences (P<0.05) between treatments. The same as below.
图3 不同热泵温度下制成的茭白干制品的复水MRI图 红色代表水分含量高,蓝色代表水分含量低。下同。
Fig.3 Rehydration MRI of Zizania latifolia dried products made at different heat pump temperatures Red represents high water content, and blue represents low water content. The same as below.
图5 热泵联合远红外后程干燥下茭白的干基含水率(A)和干燥速率(B)
Fig.5 Dry-based water content (A) and drying rate (B) of Zizania latifolia under heat pump combined with far-infrared final-stage drying
图6 热泵联合远红外后程干燥下T2反演谱随干燥时间的变化
Fig.6 The change of T2inversion spectrum with drying time under heat pump combined with far-infrared final-stage drying A,60 ℃;B,60 ℃+400 W;C, 60 ℃+800 W。
图7 热泵联合远红外后程干燥制成的茭白干制品的复水率(A)和T2反演谱(B)
Fig.7 Rehydration rate (A) and T2 inversion spectrum (B) of Zizania latifolia dried products made by heat pump combined with far-infrared final-stage drying
图8 热泵联合远红外后程干燥制成的茭白干制品的复水MRI图
Fig.8 Rehydration MRI of Zizania latifolia dried products made by heat pump combined with far-infrared final-stage drying
[1] | YUAN S W, ZHANG M M, YAO Z, et al. Isolation, structural characterization, and bioactivities of neutral polysaccharides from Zizania latifolia[J]. International Journal of Biological Macromolecules, 2024, 254: 127679. |
[2] | XIE Y N, QI Q Q, LI W H, et al. Domestication, breeding, omics research, and important genes of Zizania latifolia and Zizania palustris[J]. Frontiers in Plant Science, 2023, 14: 1183739. |
[3] | 董桂君, 乔勇进, 王春芳, 等. 茭白采后生理变化及保鲜技术研究进展[J]. 保鲜与加工, 2021, 21(9): 133-138. |
DONG G J, QIAO Y J, WANG C F, et al. A review of research on postharvest physiological changes and color protection and freshness of Zizania latifolia[J]. Storage and Process, 2021, 21(9): 133-138. (in Chinese with English abstract) | |
[4] | 任紫烟, 魏雯雯, 贾连文, 等. 气调处理对茭白贮藏品质的影响[J]. 食品与机械, 2023, 39(7): 137-142. |
REN Z Y, WEI W W, JIA L W, et al. Effects of controlled atmosphere on storage quality of water bamboo[J]. Food & Machinery, 2023, 39(7): 137-142. (in Chinese with English abstract) | |
[5] | 刘静, 赵亚, 石启龙. 果蔬和水产品新型干燥预处理技术研究进展及未来展望[J]. 食品工业科技, 2022, 43(10): 32-42. |
LIU J, ZHAO Y, SHI Q L. Research progress and future prospects of novel pretreatment technologies for the drying of fruits and vegetables and aquatic products[J]. Science and Technology of Food Industry, 2022, 43(10): 32-42. (in Chinese with English abstract) | |
[6] | 诸爱士. 茭白片热风对流干燥模型与传质性能[J]. 高校化学工程学报, 2012, 26(3): 541-546. |
ZHU A S. The model and mass transfer performance of convective hot air drying of water-oat slices[J]. Journal of Chemical Engineering of Chinese Universities, 2012, 26(3): 541-546. (in Chinese with English abstract) | |
[7] | 余文胜, 王俊. 茭白微波干燥特性及数学模型的研究[J]. 科技通报, 2009, 25(5): 654-658. |
YU W S, WANG J. Studies on the microwave drying characteristics and mathematical model of water-oat[J]. Bulletin of Science and Technology, 2009, 25(5): 654-658. (in Chinese with English abstract) | |
[8] | 颜建春, 胡志超, 吴朋来, 等. 热板-微波联合真空冷冻干燥茭白工艺优化[J]. 农业工程学报, 2017, 33(1): 262-270. |
YAN J C, HU Z C, WU P L, et al. Optimization of hot-plate and microwave combined vacuum freeze drying process of water-oat[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(1): 262-270. (in Chinese with English abstract) | |
[9] | AN K J, ZHAO D D, WANG Z F, et al. Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): Changes in volatiles, chemical profile, antioxidant properties, and microstructure[J]. Food Chemistry, 2016, 197: 1292-1300. |
[10] | 薛扬, 刘云宏, 刘恩宠, 等. 超声功率对铁棍山药超声强化热泵干燥水分迁移的影响[J]. 中国食品学报, 2023, 23(2): 213-222. |
XUE Y, LIU Y H, LIU E C, et al. Effect of ultrasonic power on moisture migration in contact ultrasound enhanced heat pump drying of Dioscorea opposita[J]. Journal of Chinese Institute of Food Science and Technology, 2023, 23(2): 213-222. (in Chinese with English abstract) | |
[11] | 尚建伟, 张倩, 王同勋, 等. 远红外干燥对甘草切片干燥特性及品质的影响[J]. 核农学报, 2023, 37(8): 1609-1617. |
SHANG J W, ZHANG Q, WANG T X, et al. Effect of far-infrared drying on drying characteristics and quality of Glycyrrhiza slices[J]. Journal of Nuclear Agricultural Sciences, 2023, 37(8): 1609-1617. (in Chinese with English abstract) | |
[12] | 刘飞, 王云, 李春华, 等. 茶叶干燥技术研究现状及展望[J]. 中国农学通报, 2015, 31(6): 210-215. |
LIU F, WANG Y, LI C H, et al. Research status and prospect of tea drying technology[J]. Chinese Agricultural Science Bulletin, 2015, 31(6): 210-215. (in Chinese with English abstract) | |
[13] | NATHAKARANAKULE A, JAIBOON P, SOPONRONNARIT S. Far-infrared radiation assisted drying of Longan fruit[J]. Journal of Food Engineering, 2010, 100(4): 662-668. |
[14] | YAO L Y, FAN L P, DUAN Z H. Effect of different pretreatments followed by hot-air and far-infrared drying on the bioactive compounds, physicochemical property and microstructure of mango slices[J]. Food Chemistry, 2020, 305: 125477. |
[15] | 彭健, 王蔚婕, 唐道邦, 等. 分段式远红外-热泵干燥对龙眼品质的影响[J]. 食品科学, 2020, 41(19): 118-123. |
PENG J, WANG W J, TANG D B, et al. Effect of multi-stage far-infrared radiation-assisted heat pump drying on the quality characteristics of Longan[J]. Food Science, 2020, 41(19): 118-123. (in Chinese with English abstract) | |
[16] | 陈明, 李金龙, 李伟, 等. 利用低场核磁共振进行活体玉米籽粒水分动态测试与成像[J]. 农业工程学报, 2020, 36(23): 285-292. |
CHEN M, LI J L, LI W, et al. Dynamic testing and imaging of living maize kernel moisture using Low-Field Nuclear Magnetic Resonance(LF-NMR)[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(23): 285-292. (in Chinese with English abstract) | |
[17] | WANG H C, CHE G, WAN L, et al. Combination of LF-NMR and BP-ANN to monitor the moisture content of rice during hot-air drying[J]. Journal of Food Process Engineering, 2022, 45(9): e14102. |
[18] | 刘建波, 李璐, 徐庆, 等. 基于低场核磁的青萝卜块低压过热蒸汽干燥机理研究[J]. 包装与食品机械, 2023, 41(4): 33-38. |
LIU J B, LI L, XU Q, et al. Study on dehydration mechanism of green turnip blocks by low pressure superheated steam drying based on LF-NMR[J]. Packaging and Food Machinery, 2023, 41(4): 33-38. (in Chinese with English abstract) | |
[19] | 陈文玉, 穆宏磊, 吴伟杰, 等. 利用低场核磁共振技术无损检测澳洲坚果含水率[J]. 农业工程学报, 2020, 36(11): 303-309. |
CHEN W Y, MU H L, WU W J, et al. Nondestructive measurement of moisture content of Macadamia nuts by low-field nuclear magnetic resonance[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(11): 303-309. (in Chinese with English abstract) | |
[20] | 麦馨允, 黄斌, 黄娇丽, 等. 白玉菇远红外干燥工艺优化及其对品质的影响[J]. 食品与发酵工业, 2019, 45(14): 150-157. |
MAI X Y, HUANG B, HUANG J L, et al. Optimized far-infrared drying of white Hypsizygus marmoreus and effects on quality[J]. Food and Fermentation Industries, 2019, 45(14): 150-157. (in Chinese with English abstract) | |
[21] | 石芳, 肖星凝, 杨雅轩, 等. 基于低场核磁共振技术研究不同热风干燥工艺条件下香菇复水过程中的水分传递特性[J]. 食品与发酵工业, 2017, 43(10): 144-149. |
SHI F, XIAO X N, YANG Y X, et al. Characterization of moisture transfer inrehydration process for dried mushroom(Lentinus edodes) by different drying methods[J]. Food and Fermentation Industries, 2017, 43(10): 144-149. (in Chinese with English abstract) | |
[22] | 青舒婷, 杨丰, 张海仑, 等. 远红外辅助热泵干燥食用玫瑰花瓣及产品品质分析[J]. 食品工业科技, 2021, 42(22): 246-253. |
QING S T, YANG F, ZHANG H L, et al. Far-infrared assisted heat pump drying of edible roses petals and the product quality analysis[J]. Science and Technology of Food Industry, 2021, 42(22): 246-253. (in Chinese with English abstract) | |
[23] | 卞瑞姣, 曹荣, 赵玲, 等. 基于低场核磁共振技术检测秋刀鱼腌干制过程水分状态变化[J]. 食品安全质量检测学报, 2017, 8(5): 1698-1703. |
BIAN R J, CAO R, ZHAO L, et al. Changes in moisture status of Cololabis saira during salting and drying by low-field nuclear magnetic resonance[J]. Journal of Food Safety & Quality, 2017, 8(5): 1698-1703. (in Chinese with English abstract) | |
[24] | 康宏彬, 刘铭, 黄高鹏, 等. 陈皮热泵干燥动力学模型构建和特性分析[J]. 农机化研究, 2023, 45(8): 94-102. |
KANG H B, LIU M, HUANG G P, et al. Construction and characteristic analysis of drying kinetic model of pericarpium citri reticulatae heat pump[J]. Journal of Agricultural Mechanization Research, 2023, 45(8): 94-102. (in Chinese with English abstract) | |
[25] | 王旭, 李文峰, 何泽威, 等. 干燥温度及超声波预处理对茎瘤芥热风脱水和复水的影响[J]. 农产品加工, 2018(24): 17-22. |
WANG X, LI W F, HE Z W, et al. Effects of drying temperature and ultrasound pre-treatment on hot-air dehydration and rehydration of tumorous stem mustard[J]. Farm Products Processing, 2018(24): 17-22. (in Chinese with English abstract) | |
[26] | 曾雅, 刘云宏, 张嘉怡, 等. 远红外辐射温度对猕猴桃干燥水分迁移的影响[J]. 食品与机械, 2019, 35(8): 143-147. |
ZENG Y, LIU Y H, ZHANG J Y, et al. Effects of far-infrared radiation temperature on the moisture transfer of kiwifruit slices[J]. Food & Machinery, 2019, 35(8): 143-147. (in Chinese with English abstract) | |
[27] | 覃焱婷, 段振华, 韦珍珍, 等. 微波功率对月柿果片微波间歇干燥中水分迁移及品质的影响[J]. 食品与机械, 2021, 37(10): 1-5, 78. |
QIN Y T, DUAN Z H, WEI Z Z, et al. Effects of microwave power on moisture migration and quality of persimmon slices during microwave intermittent drying[J]. Food & Machinery, 2021, 37(10): 1-5, 78. (in Chinese with English abstract) | |
[28] | 贺健, 易军鹏, 李欣, 等. 酸菜微波真空冷冻干燥工艺及复水特性研究[J]. 食品与机械, 2020, 36(8): 109-116. |
HE J, YI J P, LI X, et al. Study on microwave vacuum freeze drying technology and rehydration characteristics of sauerkraut[J]. Food & Machinery, 2020, 36(8): 109-116. (in Chinese with English abstract) | |
[29] | 王毓宁, 刘红锦, 李鹏霞, 等. 干制金针菜复水前后水分状态的变化[J]. 江苏农业科学, 2015, 43(10): 343-346. |
WANG Y N, LIU H J, LI P X, et al. Changes of water state of dried day lily before and after rehydration[J]. Jiangsu Agricultural Sciences, 2015, 43(10): 343-346. (in Chinese) | |
[30] | 崔莉, 杜利平, 闫慧娇, 等. 皱皮木瓜真空冻干工艺优化及基于LF-NMR技术的复水特性研究[J]. 中国食品学报, 2019, 19(6): 124-133. |
CUI L, DU L P, YAN H J, et al. Optimization of vacuum freeze-drying process and rehydration of Chaenomeles speciosa(sweet.) nakai based on low-field NMR technology[J]. Journal of Chinese Institute of Food Science and Technology, 2019, 19(6): 124-133. (in Chinese with English abstract) | |
[31] | CHENG S S, LI R R, YANG H M, et al. Water status and distribution in shiitake mushroom and the effects of drying on water dynamics assessed by LF-NMR and MRI[J]. Drying Technology, 2020, 38(8): 1001-1010. |
[32] | KAMAL T, ZHANG T, SONG Y K, et al. Water dynamics and physicochemical analysis of two different varieties of apple jam (Fuji) and (Yinduqing) by LF-NMR and MRI[J]. International Journal of Food Engineering, 2018, 14(3): 20170225. |
[33] | 高婵, 贾凤娟, 王文亮, 等. 响应面法优化切片香菇热泵干燥工艺研究[J]. 中国果菜, 2021, 41(12): 7-16. |
GAO C, JIA F J, WANG W L, et al. Optimization of sliced Lentinus edodes by heat pump drying using response surface methodology[J]. China Fruit & Vegetable, 2021, 41(12): 7-16. (in Chinese with English abstract) | |
[34] | 穆欢. 多功能封闭式热泵干燥系统的性能研究[D]. 广州: 广州大学, 2019. |
MU H. Performance study of multifunctional closed heat pump drying system[D]. Guangzhou: Guangzhou University, 2019. (in Chinese with English abstract) | |
[35] | 陈登宇, 朱锡锋. 生物质热反应机理与活化能确定方法Ⅰ.干燥段研究[J]. 燃料化学学报, 2011, 39(8): 580-584. |
CHEN D Y, ZHU X F. Thermal reaction mechanism of biomass and determination of activation energy Ⅰ.drying section[J]. Journal of Fuel Chemistry and Technology, 2011, 39(8): 580-584. (in Chinese with English abstract) | |
[36] | 唐小闲, 蔡明君, 韦珍珍, 等. 低场核磁共振技术分析杏鲍菇在热风-微波联合干燥过程中的水分变化[J]. 粮食与油脂, 2023, 36(8): 90-94. |
TANG X X, CAI M J, WEI Z Z, et al. Analysis of moisture change of Pleurotu seryngii during hot air-microwave combined drying process by low field nuclear magnetic resonance technique[J]. Cereals & Oils, 2023, 36(8): 90-94. (in Chinese with English abstract) | |
[37] | 孙江丽, 李瑞, 朱洪梅. 基于低场核磁的紫薯片真空冷冻干燥过程中水分变化[J]. 食品工业科技, 2021, 42(7): 9-14. |
SUN J L, LI R, ZHU H M. Water changes of purple sweet potato slices using low-field NMR during vacuum freeze drying[J]. Science and Technology of Food Industry, 2021, 42(7): 9-14. (in Chinese with English abstract) | |
[38] | 陈丽霞, 叶丽芳, 张英, 等. 基于低场核磁共振和物性分析技术的牡丹皮饮片干燥特性及动力学研究[J]. 暨南大学学报(自然科学与医学版), 2023, 44(2): 203-210. |
CHEN L X, YE L F, ZHANG Y, et al. Study on drying characteristics and kinetics of Moutan Cortex decoction pieces based on LF-NMR/MRI and TA-HD plus[J]. Journal of Jinan University( Natural Science & Medicine Edition), 2023, 44(2): 203-210. (in Chinese with English abstract) | |
[39] | 郭婷, 陈振林, 何新益, 等. 热风干燥温度对甘薯粉品质的影响[J]. 食品与机械, 2016, 32(1): 175-178. |
GUO T, CHEN Z L, HE X Y, et al. Effect of hot air drying temperature on qualities of sweet potato powder[J]. Food & Machinery, 2016, 32(1): 175-178. (in Chinese with English abstract) | |
[40] | 吕朝燕, 高智席, 马秀情, 等. 不同热风干燥温度对方竹笋品质的影响[J]. 食品工业科技, 2021, 42(11): 23-29. |
LV C Y, GAO Z X, MA X Q, et al. Effect of different hot air drying temperatures on quality of Chimonobambusa quadrangularis shoots[J]. Science and Technology of Food Industry, 2021, 42(11): 23-29. (in Chinese with English abstract) |
[1] | 郭威良, 吴剑, 张兴一龙, 吴可荆, 谢佳家, 冯海林. 茭白秆水解制备高价值呋喃平台化合物研究[J]. 浙江农业学报, 2024, 36(4): 870-880. |
[2] | 邵雪, 牛犇, 房祥军, 吴伟杰, 吴来春, 郜海燕, 陈杭君. 方便粥的干燥方式优选与风味优化[J]. 浙江农业学报, 2024, 36(4): 894-904. |
[3] | 田晓明, 向光锋, 牟村, 吕浩, 马涛, 朱路, 彭静, 张敏, 何艳. 四种红豆属植物耐旱性综合评价[J]. 浙江农业学报, 2024, 36(2): 308-324. |
[4] | 艾然, 何杰, 林海忠, 翁丽青, 陈照明, 马军伟, 王强. 不同种植年限茭白田土壤的有机碳含量与结构特征[J]. 浙江农业学报, 2024, 36(11): 2558-2565. |
[5] | 林先玉, 李紫倩, 柏松, 罗军, 屈燕. 云南山茶在干旱-复水过程中抗氧化酶活性变化及关键基因差异表达分析[J]. 浙江农业学报, 2023, 35(11): 2611-2620. |
[6] | 单英杰, 任白琳, 陈宇航, 丁志峰, 章明奎. 茭白田土壤磷库特征及其与种植年限的关系和流失风险[J]. 浙江农业学报, 2023, 35(11): 2645-2654. |
[7] | 朱伟成, 郜海燕, 韩延超, 李大祥, 陈杭君. 不同预冷方式对茭白采后降温速度和贮藏品质的影响[J]. 浙江农业学报, 2020, 32(10): 1873-1879. |
[8] | 俞明涛, 张科锋. 基于HYDRUS-2D软件的土壤水力特征参数反演及间接地下滴灌的土壤水分运动模拟[J]. 浙江农业学报, 2019, 31(3): 458-468. |
[9] | 罗书吉1,2,3,王钫2,3,陈文学1,王伟2,3,胡桂仙2,3,王强1,2,3,*. 离子色谱法测定茭白中总亚硫酸盐的应用研究[J]. 浙江农业学报, 2016, 28(5): 870-. |
[10] | 周锦连1,陈建明2,*,王来亮3,张珏锋2,马雅敏3,王斌4,钟海英2. 敌磺钠对单季茭白产量和效益的影响[J]. 浙江农业学报, 2016, 28(4): 624-. |
[11] | 陈贵1,赵国华2,张红梅1,沈亚强1,杨继锋3,冯四海4,陈小忠3,程旺大1,*. 沼液浇灌对茭白氮磷钾养分吸收利用特性的影响[J]. 浙江农业学报, 2016, 28(3): 474-. |
[12] | 阮志平1, 2. 砂糖椰子对干旱和水分补偿的生理变化[J]. 浙江农业学报, 2016, 28(1): 74-. |
[13] | 钱仲仓,杨泉灿*. 添加乳酸菌对茭白叶青贮品质的影响[J]. 浙江农业学报, 2015, 27(9): 1541-. |
[14] | 陈建明1, 庞英华2,张珏锋1,朱徐燕2,黄锡志2,冯帆1,朱建杰2. 不同灌溉方式对双季茭白(秋茭)生长和产量的影响[J]. 浙江农业学报, 2015, 27(2): 148-. |
[15] | 张雪平1,王雪娟2,张金云3,刘爱荣1,*,周玉丽1. 干旱胁迫及复水对银边常春藤生长和生理指标的影响[J]. 浙江农业学报, 2015, 27(2): 194-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||