浙江农业学报 ›› 2025, Vol. 37 ›› Issue (8): 1743-1754.DOI: 10.3969/j.issn.1004-1524.20240756
收稿日期:
2024-08-23
出版日期:
2025-08-25
发布日期:
2025-09-03
作者简介:
谭海霞(1979—),女,黑龙江五常人,硕士,副教授,主要从事生态修复研究。E-mail:tanhaixia2001@126.com
基金资助:
TAN Haixia1,2(), PENG Hongli1,2, WANG Lianlong1, WEI Jianmei1
Received:
2024-08-23
Online:
2025-08-25
Published:
2025-09-03
摘要: 以马铃薯健康株根区土壤(HS)和疮痂病株根区土壤(OS)为研究对象,利用高通量测序技术分析了两组样品中微生物的多样性差异。结果表明,OS细菌群落的ACE指数、Chao1指数、香农(Shannon)指数均显著(p<0.05)高于HS,但HS和OS的真菌群落Alpha多样性指数无显著差异。与OS相比:在门水平上,HS变形菌门(Proteobacteria)、芽单胞菌门(Gemmatimonadota)、拟杆菌门(Bacteroidota)、担子菌门(Basidiomycota)的相对丰度降低,而酸杆菌门(Acidobacteriota)、放线菌门(Actinobacteriota)、绿弯菌门(Chloroflexi)、子囊菌门(Ascomycota)、壶菌门(Chytridiomycota)的相对丰度增加;在属水平上,HS鞘氨醇单胞菌属(Sphingomonas)、溶杆菌属(Lysobacter)、Tausonia腐质霉属(Humicola)、链格孢属(Alternaria)、被孢霉属(Mortierella)的相对丰度降低,而Sonoraphlyctis、青霉属(Penicillium)的相对丰度增加。主坐标分析(PcoA)及LEfSe分析的结果均表明,HS与OS的土壤微生物群落结构差异明显。在土壤理化性状上,HS的土壤pH值、速效钾含量显著低于OS,但其土壤有机质、碱解氮、有效磷含量均显著高于OS。功能预测结果显示,HS与OS在细菌的碳代谢和嘌呤代谢功能上存在显著差异。HS和OS的真菌群落以腐生营养型真菌为主,但OS木质腐生真菌的相对丰度显著高于HS。该研究初步揭示了马铃薯疮痂病株与健康株根区土壤的微生物结构与功能差异,可为马铃薯疮痂病的有效防控提供部分理论依据。
中图分类号:
谭海霞, 彭红丽, 王连龙, 魏建梅. 马铃薯健康株与疮痂病株根区土壤微生物群落多样性差异分析[J]. 浙江农业学报, 2025, 37(8): 1743-1754.
TAN Haixia, PENG Hongli, WANG Lianlong, WEI Jianmei. Differences in soil microbial community diversity between healthy and scab-diseased potato plants in root zone[J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1743-1754.
微生物类别 Microbial type | 土壤样品 Soil sample | ACE指数 ACE index | Chao1指数 Chao1 index | 辛普森指数 Simpson index | 香农指数 Shannon index | 覆盖率 Coverage/% |
---|---|---|---|---|---|---|
细菌Bacteria | HS | 1 309.18±21.64 b | 1 306.28±21.99 b | 0.993 8±0.000 5 a | 8.62±0.03 b | 99.98±0.01 a |
OS | 1 371.63±7.20 a | 1 368.74±7.03 a | 0.994 5±0.000 3 a | 9.02±0.02 a | 99.98±0.01 a | |
真菌Fungi | HS | 233.82±35.89 a | 233.46±36.26 a | 0.803 4±0.215 2 a | 4.20±1.68 a | 99.99±0.01 a |
OS | 294.00±40.44 a | 293.58±40.65 a | 0.935 2±0.011 4 a | 5.19±0.33 a | 99.99±0.01 a |
表1 马铃薯根区土壤微生物群落的Alpha多样性指数
Table 1 Alpha diversity indices of microbial communities in potato root zone soil
微生物类别 Microbial type | 土壤样品 Soil sample | ACE指数 ACE index | Chao1指数 Chao1 index | 辛普森指数 Simpson index | 香农指数 Shannon index | 覆盖率 Coverage/% |
---|---|---|---|---|---|---|
细菌Bacteria | HS | 1 309.18±21.64 b | 1 306.28±21.99 b | 0.993 8±0.000 5 a | 8.62±0.03 b | 99.98±0.01 a |
OS | 1 371.63±7.20 a | 1 368.74±7.03 a | 0.994 5±0.000 3 a | 9.02±0.02 a | 99.98±0.01 a | |
真菌Fungi | HS | 233.82±35.89 a | 233.46±36.26 a | 0.803 4±0.215 2 a | 4.20±1.68 a | 99.99±0.01 a |
OS | 294.00±40.44 a | 293.58±40.65 a | 0.935 2±0.011 4 a | 5.19±0.33 a | 99.99±0.01 a |
图2 马铃薯根区主要土壤细菌在门水平(左)和属水平(右)上的组成及其相对丰度 Unassigned,未分配。Others,其他;Patescibacteria,髌骨细菌门;unclassified_Bacteria,未分类细菌;Verrucomicrobiota,疣微菌门;Myxococcota,黏细菌门;Chloroflexi,绿弯菌门;Bacteroidota,拟杆菌门;Actinobacteriota,放线菌门;Gemmatimonadota,芽单胞菌门;Acidobacteriota,酸杆菌门;Proteobacteria,变形菌门。Unclassified,未分类。Bryobacter,苔藓杆菌属;Lysobacter,溶杆菌属;unclassified_Vicinamibacterales,Vicinamibacterales目未分类属;unclassified_Chitinophagaceae,噬几丁质菌科未分类属;Rhodanobacter,罗河杆菌属;unclassified_Acidobacteriales,酸杆菌目未分类属;Gemmatimonas,芽单胞菌属;unclassified_SC_Ⅰ_84,SC_Ⅰ_84未分类属;unclassified_Gemmatimonadaceae,芽单胞菌科未分类属;Sphingomonas,鞘氨醇单胞菌属。下同。The same as below.
Fig.2 Community compostion and relative abundance of main bacteria at phylum (left) and genus (right) level in potato root zone soil
图3 马铃薯根区主要土壤真菌在门水平(左)和属水平(右)上的组成及其相对丰度 Others,其他;Aphelidiomycota,滑鞭虫门;Glomeromycota,球囊菌门;Neocallimastigomycota,新美鞭菌门;Rozellomycota,罗兹菌门;Blastocladiomycota,芽枝霉门;Mortierellomycota,被孢霉门;unclassified_Fungi,未分类真菌;Chytridiomycota,壶菌门;Basidiomycota,担子菌门;Ascomycota,子囊菌门。unidentified,未识别;Penicillium,青霉属;Mortierella,被孢霉属;Alternaria,链格孢属;Humicola,腐质霉属;Idriella,花顶孢属;unclassified_Chaetomiaceae,毛壳菌科未分类属。下同。The same as below.
Fig.3 Community compostion and relative abundance of main fungi at phylum (left) and genus (right) level in potato root zone soil
图4 马铃薯根区土壤细菌(左)和真菌(右)群落的主坐标分析(PCoA) PCo1,第1主坐标;PCo2,第2主坐标。
Fig.4 Principal coordinates analysis (PCoA) of bacterial (left) and fungal (right) community in potato root zone soil PCo1, Principal coordinate 1; PCo2, Principal coordinate 2.
图5 马铃薯根区土壤细菌(左)和真菌(右)群落的线性判别分析(LDA)值分布图 k_、p_、c_、o_、f_、g_、s_分别表征界、门、纲、目、科、属、种水平。unclassified表示未分类。LDA SCORE (log 10),表示LDA值的常用对数值。Sphignomonadaceae,鞘脂单胞菌科;Sphingomonadales,鞘脂单胞菌目;Xanthomonadaceae,黄单胞菌科;Xanthomonadales,黄单胞菌目;Acidobacteriaceae_Subgroup_1,酸杆菌科亚群1;Bacteria,细菌界;Acidobacteriales,酸杆菌目;Acidobacteriae,酸杆菌纲;Humicola_nigrescens,黑腐质霉;Fungi,真菌;Agaricomycetes,伞菌纲;Eurotiales,散囊菌目;Aspergillaceae,曲霉科;Eurotiomycetes,散囊菌纲。
Fig.5 Distribution of linear discriminant analysis (LDA) scores for bacterial (left) and fungal (right) community in potato root zone soil k_, p_, c_, o_, f_, g_, s_ indicate categorical level of kingdom, phylum, class, order, family, genus, species, respectively. LDA SCORE (log 10) represents the common logarithm value of LDA score.
土壤样品 Soil sample | pH值 pH value | 有机质含量 Organic matter content/ (g·kg-1) | 碱解氮含量 Alkali-hydrolyzable nitrogen content/(mg·kg-1) | 有效磷含量 Available phosphorus content/(mg·kg-1) | 速效钾含量 Available potassium content/(mg·kg-1) |
---|---|---|---|---|---|
HS | 4.74±0.01 b | 11.51±0.01 a | 96.33±0.58 a | 157.17±1.05 a | 308.67±0.67 b |
OS | 5.64±0.01 a | 9.02±0.07 b | 64.42±0.46 b | 94.13±0.06 b | 332.49±0.58 a |
表2 马铃薯根区土壤的化学性质
Table 2 Chemical properties of soil in potato root zone
土壤样品 Soil sample | pH值 pH value | 有机质含量 Organic matter content/ (g·kg-1) | 碱解氮含量 Alkali-hydrolyzable nitrogen content/(mg·kg-1) | 有效磷含量 Available phosphorus content/(mg·kg-1) | 速效钾含量 Available potassium content/(mg·kg-1) |
---|---|---|---|---|---|
HS | 4.74±0.01 b | 11.51±0.01 a | 96.33±0.58 a | 157.17±1.05 a | 308.67±0.67 b |
OS | 5.64±0.01 a | 9.02±0.07 b | 64.42±0.46 b | 94.13±0.06 b | 332.49±0.58 a |
图6 土壤化学因子与马铃薯根区门水平细菌群落(左)和属水平真菌群落(右)结构的相关性 “*”“**”“***”分别表示在p<0.05、p<0.01、p<0.001水平显著相关。AK,速效钾含量;AN,碱解氮含量;OM,有机质含量,AP,有效磷含量。
Fig.6 Correlation between soil chemical factors and bacterial community strucutre at phylum level (left) and fungal community structure at genus level (right) in potato root zone “*” “**” “***” represent significant correlation at p<0.05,p<0.01, p<0.001 level, respectively. AK, Available potassium content; AN, Alkali-hydrolyzable nitrogen content; OM, Organic matter content; AP, Available phosphorus content.
图7 马铃薯根区土壤细菌(上)和真菌(下)群落的功能预测 Carbon metabolism,碳代谢;Purine metabolism,嘌呤代谢;Two-component system,双组分系统; Biosynthesis of secondary metabolites,次级代谢物的生物合成; Microbial metabolism in diverse environments,不同环境中的微生物代谢; Biosynthesis of amino acid,氨基酸的生物合成; ABC transporters, ABC转运蛋白;Ribosome,核糖体;Metabolic pathways,代谢途径;Biosynthesis of antibiotics,抗生素的生物合成。Wood saprotroph,木质腐生真菌;Undefined saprotroph,未定义腐生真菌;Animal pathogen,动物病原菌;Algal parasite,藻类寄生菌;Ectomycorrhizal,外生菌根真菌;Plant pathogen,植物病原菌;Dung saprotroph,粪生腐生真菌;Endophyte,内生真菌,Fungi parasite,真菌寄生菌。Mean proportion,丰度平均比例;Differences between proportions,功能丰度的差异比例;95% confidence intervals,95%置信度区间。
Fig.7 Functional prediction of bacterial (up) and fungal (down) community in potato root zone soil
[1] | 庞泽, 田国奎, 王海艳, 等. 我国马铃薯产业发展现状及展望[J]. 中国瓜菜, 2023, 36(7): 148-154. |
PANG Z, TIAN G K, WANG H Y, et al. Present situation and prospect of potato industry in China[J]. China Cucurbits and Vegetables, 2023, 36(7): 148-154. (in Chinese with English abstract) | |
[2] | 陈胜男, 王洪洋. 马铃薯主要细菌性病害及防治方法研究进展[J]. 中国马铃薯, 2023, 37(5): 452-459. |
CHEN S N, WANG H Y. Research progress in main potato bacterial diseases and their control methods[J]. Chinese Potato Journal, 2023, 37(5): 452-459. (in Chinese with English abstract) | |
[3] | HAO J J, ASHLEY K. Irreplaceable role of amendment-based strategies to enhance soil health and disease suppression in potato production[J]. Microorganisms, 2021, 9(8): 1660. |
[4] | 李胜华, 刘古月, 郭星星, 等. 作物土传病害与土壤微生物群落关系研究[J]. 农业与技术, 2024, 44(12): 38-40. |
LI S H, LIU G Y, GUO X X, et al. Study on the relationship between soil-borne diseases of crops and soil microbial community[J]. Agriculture and Technology, 2024, 44(12): 38-40. (in Chinese) | |
[5] | 熊悯梓, 钞亚鹏, 赵盼, 等. 不同生境马铃薯根际土壤细菌多样性分析[J]. 微生物学报, 2020, 60(11): 2434-2449. |
XIONG M Z, CHAO Y P, ZHAO P, et al. Comparison of bacterial diversity in rhizosphere soil of potato in different habitats[J]. Acta Microbiologica Sinica, 2020, 60(11): 2434-2449. (in Chinese with English abstract) | |
[6] | 杨冰, 平原, 杜春梅. 马铃薯疮痂病的致病机制及防治研究进展[J]. 中国农学通报, 2021, 37(18): 131-137. |
YANG B, PING Y, DU C M. Pathogenic mechanism and control method of potato scab: research progress[J]. Chinese Agricultural Science Bulletin, 2021, 37(18): 131-137. (in Chinese with English abstract) | |
[7] | 黄勋, 刘霞, 邓琳梅, 等. 马铃薯疮痂病研究进展[J]. 植物病理学报, 2024, 54(6): 1083-1090. |
HUANG X, LIU X, DENG L M, et al. Research progress of potato common scab[J]. Acta Phytopathologica Sinica, 2024, 54(6): 1083-1090. (in Chinese with English abstract) | |
[8] | 赵卫松, 郭庆港, 苏振贺, 等. 马铃薯健株与黄萎病株根际土壤真菌群落结构及其对碳源利用特征[J]. 中国农业科学, 2021, 54(2): 296-309. |
ZHAO W S, GUO Q G, SU Z H, et al. Characterization of fungal community structure in the rhizosphere soil of healthy and diseased-verticillium wilt potato plants and carbon source utilization[J]. Scientia Agricultura Sinica, 2021, 54(2): 296-309. (in Chinese with English abstract) | |
[9] | 刘烈花, 董鹏, 况觅, 等. 辣椒青枯病罹病与健康植株根际土壤微生物群落多样性研究[J]. 植物医生, 2021(1): 41-47. |
LIU L H, DONG P, KUANG M, et al. Diversity analysis of soil microbial community in the rhizosphere soil of bacterial wilt-diseased and healthy pepper plants[J]. Plant Doctor, 2021(1): 41-47. (in Chinese with English abstract) | |
[10] | 徐沛国, 谢奎忠, 胡新元, 等. 不同连作年限马铃薯根际土壤细菌群落特征研究[J]. 干旱地区农业研究, 2024, 42(3): 197-205. |
XU P G, XIE K Z, HU X Y, et al. Effects of different continuous cropping years on diversity of bacterial communities in the rhizosphere soil of potatoes[J]. Agricultural Research in the Arid Areas, 2024, 42(3): 197-205. (in Chinese with English abstract) | |
[11] | 葛应兰, 孙廷. 马铃薯根际与非根际土壤微生物群落结构及多样性特征[J]. 生态环境学报, 2020, 29(1): 141-148. |
GE Y L, SUN T. Soil microbial community structure and diversity of potato in rhizosphere and non-rhizosphere soil[J]. Ecology and Environmental Sciences, 2020, 29(1): 141-148. (in Chinese) | |
[12] | 陈杰. 连作马铃薯健康生长的微生态机制及土传真菌病害生防菌研究[D]. 杨凌: 西北农林科技大学, 2013. |
CHEN J. Microecological mechanism of healthy plant growth in continuously cropping potato fields and biocontrol microorganisms of soil-borne fungal diseases[D]. Yangling: Northwest A & F University, 2013. (in Chinese with English abstract) | |
[13] | 李金泰. 马铃薯疮痂病拮抗菌的分离鉴定、发酵配方优化及其对马铃薯根际微生物的影响[D]. 泰安: 山东农业大学, 2023. |
LI J T. Isolation and identification of antagonistic bacteria against potato scab, optimization of fermentation formula, and their effects on potato rhizosphere microorganisms[D]. Tai’an: Shandong Agricultural University, 2023. (in Chinese with English abstract) | |
[14] | 史文宠. 马铃薯疮痂病发生的土壤微生态机制研究[D]. 泰安: 山东农业大学, 2022. |
SHI W C. Soil microbiome mechanisms for potato common scab development[D]. Tai’an: Shandong Agricultural University, 2022. (in Chinese with English abstract) | |
[15] | SHI W C, LI M C, WEI G S, et al. The occurrence of potato common scab correlates with the community composition and function of the geocaulosphere soil microbiome[J]. Microbiome, 2019, 7(1): 14. |
[16] | 糜芳, 吴紫燕, 王承芳, 等. 1株解淀粉芽孢杆菌的分离、鉴定及在马铃薯疮痂病防治上的应用[J]. 江苏农业科学, 2021, 49(18): 122-127. |
MI F, WU Z Y, WANG C F, et al. Isolation and identification of a strain of Bacillus amyloliquefaciens and its application in prevention and treatment of potato scab[J]. Jiangsu Agricultural Sciences, 2021, 49(18): 122-127. (in Chinese with English abstract) | |
[17] | BIESSY A, FILION M. Biological control of potato common scab by plant-beneficial bacteria[J]. Biological Control, 2022, 165: 104808. |
[18] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2005. |
[19] | 谭海霞, 彭红丽, 葛振宇, 等. 盐碱土壤修复菌剂对耐盐蒲公英根际土壤微生物群落多样性的影响[J]. 农业生物技术学报, 2023, 31(1): 156-164. |
TAN H X, PENG H L, GE Z Y, et al. Effects of salt-alkali soil remediation agents on microbial community diversity in salt-tolerant dandelion (Taraxacum mongolicum) rhizosphere soil[J]. Journal of Agricultural Biotechnology, 2023, 31(1): 156-164. (in Chinese with English abstract) | |
[20] | 涂敏, 蔡海滨, 彭延麟, 等. 橡胶树红根病患病与健康植株根际土壤微生物结构及多样性分析[J]. 热带作物学报, 2021, 42(12): 3639-3645. |
TU M, CAI H B, PENG Y L, et al. Structures and biodiversity of microbial communities in rhizosphere soil of red root rot disease and healthy of Hevea brasiliensis[J]. Chinese Journal of Tropical Crops, 2021, 42(12): 3639-3645. (in Chinese with English abstract) | |
[21] | 雷美玲, 饶文华, 胡进锋, 等. 黄龙病发病芦柑根际土壤细菌群落组成与多样性特征[J]. 生物技术通报, 2024, 40(2): 266-276. |
LEI M L, RAO W H, HU J F, et al. Bacterial diversity and structure in rhizosphere soil of citrus infested with huanglongbing[J]. Biotechnology Bulletin, 2024, 40(2): 266-276. (in Chinese with English abstract) | |
[22] | 陈星星, 邢琳, 杨梦琳, 等. 卷丹鳞茎腐烂病株及种植土壤真菌多样性研究[J]. 河南农业科学, 2024, 53(8): 92-98. |
CHEN X X, XING L, YANG M L, et al. Fungal diversity in rotten bulb and cultivated soil of Lilium lancifolium[J]. Journal of Henan Agricultural Sciences, 2024, 53(8): 92-98. (in Chinese with English abstract) | |
[23] | 张智浩, 邓毅书, 聂强, 等. 白菜健康株与根肿病患病株的土壤微生物群落和功能差异[J]. 中国生态农业学报(中英文), 2023, 31(4): 530-542. |
ZHANG Z H, DENG Y S, NIE Q, et al. Differences in soil microbial community and function between healthy and clubroot diseased plants of Chinese cabbage[J]. Chinese Journal of Eco-Agriculture, 2023, 31(4): 530-542. (in Chinese with English abstract) | |
[24] | 杜洋洋, 包媛媛, 刘项宇, 等. 连作和轮作对云南三个马铃薯主栽品种根际土壤真菌群落结构的影响[J]. 中国土壤与肥料, 2023(12): 58-69. |
DU Y Y, BAO Y Y, LIU X Y, et al. Effects of continuous cropping and rotation on fungal community structure in rhizosphere soil of three potato cultivars in Yunnan[J]. Soil and Fertilizer Sciences in China, 2023(12): 58-69. (in Chinese with English abstract) | |
[25] | 卢雨欣, 冯志珍, 贾俊超, 等. 连作对芹菜根际土壤微生物群落结构及多样性的影响[J]. 农业生物技术学报, 2023, 31(12): 2466-2476. |
LU Y X, FENG Z Z, JIA J C, et al. Effects of continuous cropping on rhizosphere soil microbial community structure and diversity of celery(Apium graveolens)[J]. Journal of Agricultural Biotechnology, 2023, 31(12): 2466-2476. (in Chinese with English abstract) | |
[26] | 姬广海. 溶杆菌属及其在植物病害防治中的研究进展[J]. 云南农业大学学报(自然科学版), 2011, 26(1): 124-130. |
JI G H. Advances in the study on Lysobacter spp. bacteria and their effects on biological control of plant diseases[J]. Journal of Yunnan Agricultural University(Natural Science), 2011, 26(1): 124-130. (in Chinese with English abstract) | |
[27] | SUN H, HU X, MA J, et al. Requirement of ABA signalling-mediated stomatal closure for resistance of wild tobacco to Alternaria alternata[J]. Plant Pathology, 2014, 63(5): 1070-1077. |
[28] | 孙小花, 胡新元, 陆立银, 等. 黄土高原马铃薯不同连作年限土壤理化性质及微生物特性[J]. 干旱地区农业研究, 2019, 37(4): 184-192. |
SUN X H, HU X Y, LU L Y, et al. Soil physical and chemical properties and microbial characteristics of potato in different continuous cropping years on the Loess Plateau[J]. Agricultural Research in the Arid Areas, 2019, 37(4): 184-192. (in Chinese with English abstract) | |
[29] | CHEN G X, WU C F, WANG F, et al. Microbial community changes in different underground compartments of potato affected yield and quality[J]. 3 Biotech, 2022, 12(5): 106. |
[30] | WU H N, CHEN S F, HUANG Z P, et al. Effects of intercropping and nitrogen application on soil fertility and microbial communities in peanut rhizosphere soil[J]. Agronomy, 2024, 14(3): 635. |
[31] | 林亚, 蔡瑜, 胡凡, 等. 大黄根腐病与土壤营养及微生物群落组成的相关性研究[J]. 西南大学学报(自然科学版), 2024(3): 70-83. |
LIN Y, CAI Y, HU F, et al. Study on the correlation of rhubarb root rot disease with soil nutrients and microbial community composition[J]. Journal of Southwest University(Natural Science Edition), 2024(3): 70-83. (in Chinese) | |
[32] | GOYER C, OTRYSKO B, BEAULIEU C. Taxonomie studies on streptomycetes causing potato common scab: a review[J]. Canadian Journal of Plant Pathology, 1996, 18(2): 107-113. |
[33] | 贾晨波, 郭洋, 马成莲, 等. 宁杞1号枸杞健康株与根腐病患病株的土壤微生物群落和功能差异[J]. 生态环境学报, 2021, 30(9): 1831-1841. |
JIA C B, GUO Y, MA C L, et al. Difference on soil microbial community and function of healthy and diseased plants of Lycium barbarum Ningqi-1[J]. Ecology and Environmental Sciences, 2021, 30(9): 1831-1841. (in Chinese with English abstract) |
[1] | 乔红雍, 袁涛, 赵信勇, 杨会岩. 不同株龄鲁菏红细根内生微生物群落变化特征[J]. 浙江农业学报, 2024, 36(1): 115-126. |
[2] | 郝柳柳, 代梨梨, 彭亮, 陈思媛, 陶玲, 李谷, 张辉. 稻虾种养系统水稻根际土壤活性有机碳、微生物群落结构及其相互关系[J]. 浙江农业学报, 2023, 35(12): 2901-2913. |
[3] | 孙正国. 4种园林植物及其根区土壤重金属元素含量季相变化特征研究[J]. 浙江农业学报, 2016, 28(3): 447-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||