浙江农业学报 ›› 2021, Vol. 33 ›› Issue (5): 873-884.DOI: 10.3969/j.issn.1004-1524.2021.05.13
收稿日期:
2020-10-25
出版日期:
2021-05-25
发布日期:
2021-05-25
通讯作者:
蔡燕飞
作者简介:
*蔡燕飞,E-mail:yanfeicai@scau.edu.cn基金资助:
LI Fuyan(), LIU Xiaoyu, YAN jingting, CAI Yanfei*(
)
Received:
2020-10-25
Online:
2021-05-25
Published:
2021-05-25
Contact:
CAI Yanfei
摘要:
为丰富具有产吲哚乙酸(IAA)功能的芽孢杆菌菌种资源,开发高效根际促生微生物菌肥,从玉米、生菜和绿化带植被的根际土壤中筛选产IAA的芽孢杆菌,最终获得3株高效产IAA的菌株——YC9L、YC3172和YC5064,其IAA产量分别为46.72、79.75、67.55 mg·L-1。对其进行理化特性和16S rDNA序列分析,鉴定YC9L和YC3172菌株为大猩猩芽孢杆菌(Bacillus massiliogorillae),YC5064菌株为栗褐芽孢杆菌(Bacillus badius)。玉米种子发芽试验显示,YC9L和YC5064菌株对玉米种子发芽,以及幼苗生长具有促进作用。生菜盆栽试验显示,YC9L、YC3172、YC5064菌株对生菜植株生长具有促进效果。玉米盆栽试验显示,YC9L、YC3172、YC5064菌株对玉米植株生长有良好的促进效果,且以YC9L的效果最优。YC9L、YC3172、YC5064菌株均具有解钾能力;YC9L和YC3172菌株具有解磷能力;YC9L、YC3172、YC5064菌株对镉、锌、铜均具有耐性。
中图分类号:
李福艳, 刘晓玉, 颜静婷, 蔡燕飞. 三株产吲哚乙酸根际促生芽孢杆菌的筛选鉴定及其促生作用[J]. 浙江农业学报, 2021, 33(5): 873-884.
LI Fuyan, LIU Xiaoyu, YAN jingting, CAI Yanfei. Isolation and identification of three indole-3-acetic acid producing plant-growth-promoting rhizosphere Bacillus sp. and their growth-promoting effects[J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 873-884.
图2 所筛菌株的产IAA能力定量结果 柱上无相同字母的表示差异显著(P<0.05)。下同。
Fig.2 Quantitative results of IAA produced by strains Bars marked without the same letters indicated significant difference at P<0.05. The same as below.
处理Treatment | 株高Plant height/cm | 根长Root length/cm |
---|---|---|
CK | 6.17±0.32 b | 2.70±0.31 c |
YC9L | 7.74±0.48 a | 8.18±0.52 a |
YC5064 | 7.18±0.38 ab | 4.86±0.33 b |
表1 不同处理对玉米种子发芽的影响
Table 1 Effect of different treatments on maize seed germination
处理Treatment | 株高Plant height/cm | 根长Root length/cm |
---|---|---|
CK | 6.17±0.32 b | 2.70±0.31 c |
YC9L | 7.74±0.48 a | 8.18±0.52 a |
YC5064 | 7.18±0.38 ab | 4.86±0.33 b |
处理 Treatment | 株高 Plant height/cm | 根长 Root length/cm | 叶长 Leaf length/cm | 茎粗 Stem thickness/mm | 叶宽 Leaf width/cm | 鲜重 Fresh weight/g |
---|---|---|---|---|---|---|
CK | 9.19±0.38 b | 10.81±0.55 b | 8.41±0.36 b | 2.87±0.05 c | 5.34±0.24 b | 3.25±0.27 b |
YC9L | 10.82±0.48 a | 10.74±0.58 b | 10.27±0.46 a | 3.66±0.16 b | 6.32±0.27 a | 4.91±0.42 a |
YC3172 | 10.69±0.39 a | 13.06±0.56 a | 10.23±0.37 a | 3.55±0.09 ab | 6.52±0.18 a | 5.19±0.31 a |
YC5064 | 11.06±0.31 a | 11.17±0.59 b | 9.91±0.47 a | 3.90±0.09 a | 6.33±0.24 a | 5.09±0.34 a |
表2 不同处理对生菜植株生物量的影响
Table 2 Effect of different treatments on lettuce biomass indexes
处理 Treatment | 株高 Plant height/cm | 根长 Root length/cm | 叶长 Leaf length/cm | 茎粗 Stem thickness/mm | 叶宽 Leaf width/cm | 鲜重 Fresh weight/g |
---|---|---|---|---|---|---|
CK | 9.19±0.38 b | 10.81±0.55 b | 8.41±0.36 b | 2.87±0.05 c | 5.34±0.24 b | 3.25±0.27 b |
YC9L | 10.82±0.48 a | 10.74±0.58 b | 10.27±0.46 a | 3.66±0.16 b | 6.32±0.27 a | 4.91±0.42 a |
YC3172 | 10.69±0.39 a | 13.06±0.56 a | 10.23±0.37 a | 3.55±0.09 ab | 6.52±0.18 a | 5.19±0.31 a |
YC5064 | 11.06±0.31 a | 11.17±0.59 b | 9.91±0.47 a | 3.90±0.09 a | 6.33±0.24 a | 5.09±0.34 a |
处理 Treatment | 株高 Plant height/cm | 叶长 Leaf length/cm | 根长 Root length/cm | 茎粗 Stem thickness/mm | 叶宽 Leaf width/cm | 根干重 Root dry weight/g | 叶干重 Leaf dry weight/g |
---|---|---|---|---|---|---|---|
CK | 39.07±0.60 b | 29.64±0.45 b | 24.97±0.92 a | 4.81±0.09 b | 2.15±0.04 b | 0.24±0.02 b | 0.37±0.01 b |
YC9L | 41.55±0.61 a | 31.85±0.45 a | 27.30±0.90 a | 5.73±0.15 a | 2.37±0.06 a | 0.34±0.03 a | 0.46±0.02 a |
YC3172 | 38.79±0.68 b | 29.99±0.50 b | 27.75±0.87 a | 5.58±0.14 a | 2.31±0.07 ab | 0.29±0.02 ab | 0.39±0.02 b |
YC5064 | 39.97±0.46 ab | 31.01±0.47 ab | 26.67±1.68 a | 5.40±0.11 a | 2.33±0.06 a | 0.28±0.01 b | 0.41±0.01 ab |
表3 不同处理对玉米植株生物量的影响
Table 3 Effect of different treatments on biomass indexes of maize
处理 Treatment | 株高 Plant height/cm | 叶长 Leaf length/cm | 根长 Root length/cm | 茎粗 Stem thickness/mm | 叶宽 Leaf width/cm | 根干重 Root dry weight/g | 叶干重 Leaf dry weight/g |
---|---|---|---|---|---|---|---|
CK | 39.07±0.60 b | 29.64±0.45 b | 24.97±0.92 a | 4.81±0.09 b | 2.15±0.04 b | 0.24±0.02 b | 0.37±0.01 b |
YC9L | 41.55±0.61 a | 31.85±0.45 a | 27.30±0.90 a | 5.73±0.15 a | 2.37±0.06 a | 0.34±0.03 a | 0.46±0.02 a |
YC3172 | 38.79±0.68 b | 29.99±0.50 b | 27.75±0.87 a | 5.58±0.14 a | 2.31±0.07 ab | 0.29±0.02 ab | 0.39±0.02 b |
YC5064 | 39.97±0.46 ab | 31.01±0.47 ab | 26.67±1.68 a | 5.40±0.11 a | 2.33±0.06 a | 0.28±0.01 b | 0.41±0.01 ab |
[1] | 庞志强, 余迪求. 干旱胁迫下的植物根系-微生物互作体系及其应用[J]. 植物生理学报, 2020,56(2):109-126. |
PANG Z Q, YU D Q. Plant root system-microbial interaction system under drought stress and its application[J]. Plant Physiology Journal, 2020,56(2):109-126.(in Chinese with English abstract) | |
[2] | 闵莉静, 郭璐, 叶建仁. 基于嗜铁素介导的吡咯伯克霍尔德氏菌JK-SH007促生作用机制研究[J]. 南京林业大学学报(自然科学版), 2019,43(6):165-172. |
MIN L J, GUO L, YE J R. Mechanism of Burkholderia pyrrocinia JK-SH007 growth-promoting to plant via siderophore-mediation[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2019,43(6):165-172.(in Chinese with English abstract) | |
[3] | 窦承阳, 王焱, 张岳峰, 等. 3种促生有益微生物在上海梨树上的应用[J]. 南京林业大学学报(自然科学版), 2017,41(4):186-190. |
DOU C Y, WANG Y, ZHANG Y F, et al. An application of three somatotrophic bacteria on pear in Shanghai[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017,41(4):186-190.(in Chinese with English abstract) | |
[4] | 任嘉红, 班虎栋, 叶建仁, 等. 吡咯伯克霍尔德氏菌JK-SH007的发酵条件及其对杨树溃疡病的防治效果[J]. 中国生物防治, 2010,26(3):300-306. |
REN J H, BAN H D, YE J R, et al. Fermentation conditions of antagonistic strain Burkholderia pyrrocinia JK-SH007 and its control effect on poplar canker disease[J]. Chinese Journal of Biological Control, 2010,26(3):300-306.(in Chinese with English abstract) | |
[5] | 崔文艳, 何朋杰, 杨丽娟, 等. B9601-Y2溶磷解钾固氮能力及促玉米生长效果研究[J]. 玉米科学, 2019,27(3):155-160. |
CUI W Y, HE P J, YANG L J, et al. Phosphorus-and potassium-dissolving and nitrogen-fixing capabilities and growth-promotion effect of B9601-Y2 on maize[J]. Journal of Maize Sciences, 2019,27(3):155-160.(in Chinese with English abstract) | |
[6] |
KUMAR A, KUMAR A, PRATUSH A. Molecular diversity and functional variability of environmental isolates of Bacillus species[J]. SpringerPlus, 2014,3(1):1-11.
DOI URL |
[7] | ADESEMOYE A O, YUEN G, WATTS D B. Microbial inoculants for optimized plant nutrient use in integrated pest and input management systems[M] //KUMAR V, KUMAR M, SHARMA S, et al. Probiotics and plant health. Singapore: Springer, 2017. |
[8] | BARRIUSO J, RAMOS SOLANO B, LUCAS J A, et al. Ecology, genetic diversity and screening strategies of plant growth promoting rhizobacteria (PGPR)[M]// Plant-bacteria interactions. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2008: 1-17. |
[9] |
JOUNG K B, CÔTÉ J C. Evaluation of ribosomal RNA gene restriction patterns for the classification of Bacillus species and related genera[J]. Journal of Applied Microbiology, 2002,92(1):97-108.
DOI URL |
[10] |
KEITA M B, DIENE S M, ROBERT C, et al. Non-contiguous finished genome sequence and description of Bacillus massiliogorillae sp. nov[J]. Standards in Genomic Sciences, 2013,9(1):93-105.
DOI URL |
[11] | 郑梅霞, 朱育菁, 刘波, 等. 云南苍山芽胞杆菌多样性研究[J]. 福建农业学报, 2019,34(1):104-116. |
ZHENG M X, ZHU Y J, LIU B, et al. Microbial diversity of Bacillus community in soils at Cangshan, Yunnan[J]. Fujian Journal of Agricultural Sciences, 2019,34(1):104-116.(in Chinese with English abstract) | |
[12] | FU S F, WEI J Y, CHEN H W, et al. Indole-3-acetic acid: a widespread physiological code in interactions of fungi with other organisms[J]. Plant Signaling & Behavior, 2015,10(8):e1048052. |
[13] | SUN S L, YANG W L, FANG W W, et al. The plant growth-promoting rhizobacterium Variovorax boronicumulans CGMCC 4969 regulates the level of indole-3-acetic acid synthesized from indole-3-acetonitrile[J]. Applied and Environmental Microbiology, 2018,84(16):e00298. |
[14] |
SHOKRI D, EMTIAZI G. Indole-3-acetic acid (IAA) production in symbiotic and non-symbiotic nitrogen-fixing bacteria and its optimization by Taguchi design[J]. Current Microbiology, 2010,61(3):217-225.
DOI URL |
[15] |
SPAEPEN S, VANDERLEYDEN J, REMANS R. Indole-3-acetic acid in microbial and microorganism-plant signaling[J]. FEMS Microbiology Reviews, 2007,31(4):425-448.
DOI URL |
[16] | 万水霞, 王静, 李帆, 等. 玉米根际高效溶磷菌的筛选、鉴定及促生效应研究[J]. 生物技术通报, 2020,36(5):98-103. |
WAN S X, WANG J, LI F, et al. Screening and identification of phosphate solubilizing bacteria from maize rhizosphere soil and its growth promoting effect[J]. Biotechnology Bulletin, 2020,36(5):98-103.(in Chinese with English abstract) | |
[17] | 林英, 司春灿, 黄莉萍, 等. 香樟根际促生菌的筛选与促生特性研究[J]. 北方园艺, 2019 (4):59-64. |
LIN Y, SI C C, HUANG L P, et al. Isolation and promoting characteristics of the rhizospheric bacteria of Cinnamomum camphora[J]. Northern Horticulture, 2019 (4):59-64.(in Chinese with English abstract) | |
[18] | 杨茉, 高婷, 李滟璟, 等. 辣椒根际促生菌的分离筛选及抗病促生特性研究[J]. 生物技术通报, 2020,36(5):104-109. |
YANG M, GAO T, LI Y J, et al. Isolation and screening of plant growth-promoting rhizobacteria in pepper and their disease-resistant growth-promoting characteristics[J]. Biotechnology Bulletin, 2020,36(5):104-109.(in Chinese with English abstract) | |
[19] | 贾西贝, 王琦琦, 李杨, 等. 一株产吲哚乙酸耐盐促生菌的分离、鉴定及发酵条件优化[J]. 中国酿造, 2019,38(11):37-42. |
JIA X B, WANG Q Q, LI Y, et al. Isolation, identification and fermentation conditions optimization of a salt-tolerant, growth-promoting and indoleacetic acid-producing bacterium[J]. China Brewing, 2019,38(11):37-42.(in Chinese with English abstract) | |
[20] |
PARK Y G, MUN B G, KANG S M, et al. Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones[J]. PLoS One, 2017,12(3):e0173203.
DOI URL |
[21] | 李培根, 要雅倩, 宋吉祥, 等. 马铃薯根际产IAA芽孢杆菌的分离鉴定及促生效果研究[J]. 生物技术通报, 2020,36(9):109-116. |
LI P G, YAO Y Q, SONG J X, et al. Isolation and identification of IAA-producing Bacillus sp. on potato rhizosphere and its growth-promoting effect[J]. Biotechnology Bulletin, 2020,36(9):109-116.(in Chinese with English abstract) | |
[22] | SWAIN M R, NASKAR S K, RAY R C. Indole-3-acetic acid production and effect on sprouting of yam (Dioscorea rotundata L.) minisetts by Bacillus subtilis isolated from culturable cowdung microflora[J]. Polish Journal of Microbiology, 2007,56(2):103-110. |
[23] | YASMIN F, OTHMAN R, SAAD M S, et al. Screening for beneficial properties of rhizobacteria isolated from sweetpotato rhizosphere[J]. Biotechnology (Faisalabad), 2006,6(1):49-52. |
[24] |
SHIM J, KIM J W, SHEA P J, et al. IAA production by Bacillus sp. JH 2-2 promotes Indian mustard growth in the presence of hexavalent chromium[J]. Journal of Basic Microbiology, 2015,55(5):652-658.
DOI URL |
[25] | 孙科, 耿凤英, 于秋菊, 等. 牛蒡根际土壤中解钾菌筛选、鉴定及解钾条件优化[J]. 中国酿造, 2020,39(10):103-108. |
SUN K, GENG F Y, YU Q J, et al. Screening and identification of potassium-dissolving bacterium in burdock rhizosphere soil and optimization of potassium-dissolving conditions[J]. China Brewing, 2020,39(10):103-108.(in Chinese with English abstract) | |
[26] | 姚丹, 牛舒琪, 赵祺, 等. 梭梭根际枯草芽孢杆菌WM13-24对多年生黑麦草耐盐性的影响[J]. 生态学报, 2020,40(20):7419-7429. |
YAO D, NIU S Q, ZHAO Q, et al. Induced salt tolerance of ryegrass by Bacillus subtilis strain WM13-24 from the rhizosphere of Haloxylon ammodendron[J]. Acta Ecologica Sinica, 2020,40(20):7419-7429.(in Chinese with English abstract) | |
[27] | 张丹雨, 曲甜甜, 刘莹莹, 等. 2株野生大豆根际促生菌抑菌促生作用研究[J]. 大豆科学, 2019,38(4):563-569. |
ZHANG D Y, QU T T, LIU Y Y, et al. Antibacterial function and promoting effect of two plant growth promoting rhizobiain from Glycine soja[J]. Soybean Science, 2019,38(4):563-569.(in Chinese with English abstract) | |
[28] | 孔令娜. 高产生长素菌藻种的筛选鉴定及优化培养研究[D]. 北京: 中国石油大学(北京), 2017. |
KONG L N. Screening, identification and optimization of bacterium and microalgae for high yield of auxin[D]. Beijing: China University of Petroleum, 2017. (in Chinese with English abstract) | |
[29] | 姚晓惠, 刘秀花, 梁峰. 土壤中磷细菌的筛选和鉴定[J]. 河南农业科学, 2002,31(7):28-31. |
YAO X H, LIU X H, LIANG F. Screening and identification of phosphobacteria from soil[J]. Journal of Henan Agricultural Sciences, 2002,31(7):28-31.(in Chinese with English abstract) | |
[30] |
BOKHARI A, ESSACK M, LAFI F F, et al. Bioprospecting desert plant Bacillus endophytic strains for their potential to enhance plant stress tolerance[J]. Scientific Reports, 2019,9(1):18154.
DOI URL |
[31] | GOPINATH S, KUMARAN K S, SUNDARARAMAN M. A new initiative in micropropagation: airborne bacterial volatiles modulate organogenesis and antioxidant activity in tobacco (Nicotiana tabacum L.) callus[J]. In Vitro Cellular & Developmental Biology: Plant, 2015,51(5):514-523. |
[1] | 高竞, 方伟, 顾佳悦, 严淑娴, 邵帅, 梁辰飞, 秦华, 陈俊辉, 徐秋芳. 荧光标记解淀粉芽孢杆菌WK1在山核桃树体和土壤中的定殖规律[J]. 浙江农业学报, 2021, 33(1): 77-86. |
[2] | 桂雪儿, 王志, 李思婷, 贺濛初, 朱杰, 冯士彬, 吴金节. 鸡源复合益生菌对青年白羽肉杂鸡免疫球蛋白和Toll样受体通路的影响[J]. 浙江农业学报, 2020, 32(9): 1609-1614. |
[3] | 江宇航, 李宏伟, 蔡赛波, 林连兵, 张棋麟. 马尾松毛虫肠道细菌的分离鉴定与产蛋白酶细菌的筛选[J]. 浙江农业学报, 2020, 32(8): 1446-1456. |
[4] | 冯江鹏, 邱莉萍, 梁秀燕, 陈碧秀, 夏海洋, 彭春龙, 钟永军. 草莓胶孢炭疽菌拮抗细菌贝莱斯芽孢杆菌JK3的鉴定及其抗菌活性[J]. 浙江农业学报, 2020, 32(5): 831-839. |
[5] | 徐莉, 陈小洁, 曹静婷, 刘楚楚, 丁婷, 江腾. 小麦赤霉病生防菌DZSG23的抗病机制[J]. 浙江农业学报, 2020, 32(11): 2001-2008. |
[6] | 王应兰, 姜雄, 吉俐, 张景宁, 谢承卫. 基于高效解磷菌的煤矸石肥料制备及其应用潜力分析[J]. 浙江农业学报, 2020, 32(11): 2035-2041. |
[7] | 刘治会, 郝蓉蓉, 许永锋, 杨成德, 张俊莲. 马铃薯茄镰孢菌干腐病生防菌株的筛选、鉴定及其防效[J]. 浙江农业学报, 2019, 31(7): 1105-1111. |
[8] | 陈小洁, 王其, 张欣悦, 丁婷. 杜仲内生细菌拮抗小麦赤霉病菌研究[J]. 浙江农业学报, 2019, 31(5): 766-776. |
[9] | 周艳超, 吴艳红, 田兴武, 周海霞, 韩泽宇, 刘吉青, 兰挚谦, 张雪艳. 纳米碳与枯草菌对黄瓜幼苗生长及土壤环境的影响[J]. 浙江农业学报, 2019, 31(3): 392-400. |
[10] | 崔一龙, 石芸, 杨达汉, 尹有勤, 薛江东, 霍晓伟, 马德慧. 马源蜡样芽孢杆菌的分离鉴定及毒力基因检测[J]. 浙江农业学报, 2019, 31(2): 216-221. |
[11] | 王恒煦, 徐伟慧, 杨友财, 王志刚, 刘泽平, 王可昕. 一株Fusarium oxysporum f. sp. niveum拮抗菌的筛选、鉴定及其抑菌特性[J]. 浙江农业学报, 2019, 31(10): 1671-1680. |
[12] | 张洪玉, 王海波, 杨移斌, 赵明军, 夏磊. 虾源蜡样芽孢杆菌D7的生态安全性评价[J]. 浙江农业学报, 2018, 30(9): 1585-1591. |
[13] | 索桂芳, 吕豪豪, 汪玉瑛, 刘玉学, 何莉莉, 杨生茂. 炭基微生物肥料制备工艺及性质分析[J]. 浙江农业学报, 2018, 30(7): 1218-1228. |
[14] | 王志刚, 刘泽平, 胡云龙, 刘虹, 朱晓慧. 植物杆菌属(Plantibacter)菌株WZW03的分子标记与定殖促生能力[J]. 浙江农业学报, 2018, 30(10): 1715-1721. |
[15] | 邹高溪, 赵春田, 裘娟萍. 生防枯草芽孢杆菌210发酵工艺优化[J]. 浙江农业学报, 2017, 29(5): 799-805. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||