浙江农业学报 ›› 2022, Vol. 34 ›› Issue (7): 1386-1395.DOI: 10.3969/j.issn.1004-1524.2022.07.05
陈诗雨1,2(
), 徐美余1,2, 邓征宇1,2, 王峰1,2, 张麒麟1,2, 邓先余1,2, 林连兵1,2,*(
)
收稿日期:2021-04-22
出版日期:2022-07-25
发布日期:2022-07-26
作者简介:* 林连兵,E-mail: linlb@kmust.edu.cn通讯作者:
林连兵
基金资助:
CHEN Shiyu1,2(
), XU Meiyu1,2, DENG Zhengyu1,2, WANG Feng1,2, ZHANG Qilin1,2, DENG Xianyu1,2, LIN Lianbing1,2,*(
)
Received:2021-04-22
Online:2022-07-25
Published:2022-07-26
Contact:
LIN Lianbing
摘要:
志贺氏菌是一种常见的肠道致病菌,其引起的细菌病是危害公共卫生的人畜共患病之一。随着抗生素的滥用,志贺氏菌耐药性的问题难以控制,急需新的方法来解决,采用噬菌体杀灭耐药性细菌已日益受到重视。本研究建立肉鸡感染志贺氏菌模型,分别采用感染前2 h灌喂噬菌体液预防和感染2 h后灌喂噬菌体液两种方法对肉鸡进行治疗。灌喂志贺氏菌2 h后的肉鸡均出现腹泻状况,粪便中志贺氏菌含量最高达到1×107 CFU·g-1,优势菌群含量大幅下降,有害菌群占比上升。噬菌体治疗后,肉鸡粪便中噬菌体含量上升,志贺氏菌含量下降,粪便性状及肠道菌群恢复正常,且肉鸡存活率100%。没有噬菌体治疗的肉鸡存活率60%,解剖观察发现器官病变明显。噬菌体ΦDS8在治疗志贺氏菌株感染方面有良好的效果,其作为抗生素替代产品有较好的应用价值和前景。
中图分类号:
陈诗雨, 徐美余, 邓征宇, 王峰, 张麒麟, 邓先余, 林连兵. 志贺氏菌噬菌体ΦDS8对患病肉鸡的治疗及其肠道菌群的影响[J]. 浙江农业学报, 2022, 34(7): 1386-1395.
CHEN Shiyu, XU Meiyu, DENG Zhengyu, WANG Feng, ZHANG Qilin, DENG Xianyu, LIN Lianbing. Treatment of diseased broilers with Shigella bacteriophage ΦDS8 and the effect on their intestinal flora[J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1386-1395.
| 分组 Group | 动物数量 Animal number | 每只灌喂细菌量 Amount of bacteria per single animal/CFU | 每只灌喂噬菌体量 Bacteriophage volume per single animal/PFU | 灌喂噬菌体治疗时间点 Time point of phage therapy/h |
|---|---|---|---|---|
| 阴性对照组Negative control | 15 | — | — | — |
| 阳性对照组Positive control group | 15 | 1×108 | — | — |
| 噬菌体治疗组Therapeutic group | 15 | 1×108 | 1×108 | 4 |
| 噬菌体预防组Prophylactic group | 15 | 1×108 | 1×108 | 0 |
| 噬菌体治疗对照组Therapeutic control | 15 | — | 1×108 | 4 |
| 噬菌体预防对照组Prophylactic control | 15 | — | 1×108 | 0 |
表1 动物实验分组表
Table 1 Animal experiment grouping table
| 分组 Group | 动物数量 Animal number | 每只灌喂细菌量 Amount of bacteria per single animal/CFU | 每只灌喂噬菌体量 Bacteriophage volume per single animal/PFU | 灌喂噬菌体治疗时间点 Time point of phage therapy/h |
|---|---|---|---|---|
| 阴性对照组Negative control | 15 | — | — | — |
| 阳性对照组Positive control group | 15 | 1×108 | — | — |
| 噬菌体治疗组Therapeutic group | 15 | 1×108 | 1×108 | 4 |
| 噬菌体预防组Prophylactic group | 15 | 1×108 | 1×108 | 0 |
| 噬菌体治疗对照组Therapeutic control | 15 | — | 1×108 | 4 |
| 噬菌体预防对照组Prophylactic control | 15 | — | 1×108 | 0 |
| 分组Group | 0 h | 2 h | 4 h | 6 h | 12 h | 24 h | 48 h |
|---|---|---|---|---|---|---|---|
| 阴性对照组Negative control | - | - | - | - | - | - | - |
| 阳性对照组Positive control | - | + | + | ++ | +++ | +++ | ++ |
| 噬菌体治疗组Therapeutic group | - | + | ++ | ++ | + | - | - |
| 噬菌体预防组Prophylactic group | - | + | ++ | ++ | + | - | - |
| 噬菌体治疗对照组Therapeutic control | - | - | - | - | - | - | - |
| 噬菌体预防对照组Prophylactic control | - | - | - | - | - | - | - |
表2 肉鸡粪便性状变化表
Table 2 Change of fecal traits in broilers
| 分组Group | 0 h | 2 h | 4 h | 6 h | 12 h | 24 h | 48 h |
|---|---|---|---|---|---|---|---|
| 阴性对照组Negative control | - | - | - | - | - | - | - |
| 阳性对照组Positive control | - | + | + | ++ | +++ | +++ | ++ |
| 噬菌体治疗组Therapeutic group | - | + | ++ | ++ | + | - | - |
| 噬菌体预防组Prophylactic group | - | + | ++ | ++ | + | - | - |
| 噬菌体治疗对照组Therapeutic control | - | - | - | - | - | - | - |
| 噬菌体预防对照组Prophylactic control | - | - | - | - | - | - | - |
| 分组 Group | 死亡数量 Number of deaths | 存活率 Survival rate/% |
|---|---|---|
| 阴性对照组Negative control | 0 | 100 |
| 阳性对照组Positive control | 6 | 60 |
| 噬菌体治疗组Therapeutic group | 0 | 100 |
| 噬菌体预防组Prophylactic group | 1 | 93 |
| 噬菌体治疗对照组Therapeutic control | 0 | 100 |
| 噬菌体预防对照组Prophylactic control | 0 | 100 |
表3 肉鸡正常饲养15 d存活率
Table 3 Survival rate of broiler for 15 days
| 分组 Group | 死亡数量 Number of deaths | 存活率 Survival rate/% |
|---|---|---|
| 阴性对照组Negative control | 0 | 100 |
| 阳性对照组Positive control | 6 | 60 |
| 噬菌体治疗组Therapeutic group | 0 | 100 |
| 噬菌体预防组Prophylactic group | 1 | 93 |
| 噬菌体治疗对照组Therapeutic control | 0 | 100 |
| 噬菌体预防对照组Prophylactic control | 0 | 100 |
| 样品 Sample | Ace指数 Ace | Chao1指数 Chao1 | 辛普森指数 Simpson | 香农指数 Shannon | 覆盖率 Coverage |
|---|---|---|---|---|---|
| 0-A | 268.734 | 272.7 | 0.313 2 | 2.627 4 | 0.983 6 |
| 0-B | 312.564 | 286.2 | 0.091 8 | 3.568 5 | 0.966 8 |
| 2-A | 229.834 | 236.4 | 0.113 0 | 3.157 7 | 0.984 8 |
| 2-B | 282.828 | 269.3 | 0.084 4 | 3.404 6 | 0.982 3 |
| 12-A | 222.394 | 169.1 | 0.08 23 | 3.524 2 | 0.990 7 |
| 12-B | 207.277 | 217.3 | 0.353 1 | 2.121 1 | 0.976 8 |
| 48-A | 224.704 | 235.7 | 0.536 9 | 1.779 6 | 0.998 2 |
| 48-B | 207.677 | 299.1 | 0.111 0 | 3.074 0 | 0.991 7 |
表4 治疗组肉鸡不同感染时间测序结果
Table 4 Sequencing results of different infection time of broilers in treatment group
| 样品 Sample | Ace指数 Ace | Chao1指数 Chao1 | 辛普森指数 Simpson | 香农指数 Shannon | 覆盖率 Coverage |
|---|---|---|---|---|---|
| 0-A | 268.734 | 272.7 | 0.313 2 | 2.627 4 | 0.983 6 |
| 0-B | 312.564 | 286.2 | 0.091 8 | 3.568 5 | 0.966 8 |
| 2-A | 229.834 | 236.4 | 0.113 0 | 3.157 7 | 0.984 8 |
| 2-B | 282.828 | 269.3 | 0.084 4 | 3.404 6 | 0.982 3 |
| 12-A | 222.394 | 169.1 | 0.08 23 | 3.524 2 | 0.990 7 |
| 12-B | 207.277 | 217.3 | 0.353 1 | 2.121 1 | 0.976 8 |
| 48-A | 224.704 | 235.7 | 0.536 9 | 1.779 6 | 0.998 2 |
| 48-B | 207.677 | 299.1 | 0.111 0 | 3.074 0 | 0.991 7 |
| [1] |
BOLAND C, BERTRAND S, MATTHEUS W, et al. Extensive genetic variability linked to IS26 insertions in the fljB promoter region of atypical monophasic variants of Salmonella enterica serovar Typhimurium[J]. Applied and Environmental Microbiology, 2015, 81(9): 3169-3175.
DOI URL |
| [2] |
KHALIL I A, TROEGER C, BLACKER B F, et al. Morbidity and mortality due to Shigella and enterotoxigenic Escherichia coli diarrhoea: the Global Burden of Disease Study 1990-2016[J]. The Lancet Infectious Diseases, 2018, 18(11): 1229-1240.
DOI URL |
| [3] |
GARRETT V, BORNSCHLEGEL K, LANGE D, et al. A recurring outbreak of Shigella sonnei among traditionally observant Jewish children in New York City: the risks of daycare and household transmission[J]. Epidemiology and Infection, 2006, 134(6): 1231-1236.
DOI URL |
| [4] |
MOHLE-BOETANI J C, STAPLETON M, FINGER R, et al. Communitywide shigellosis: control of an outbreak and risk factors in child day-care centers[J]. American Journal of Public Health, 1995, 85(6): 812-816.
DOI URL |
| [5] |
SOBEL J, GOMES T A T, RAMOS R T S, et al. Pathogen-specific risk factors and protective factors for acute diarrheal illness in children aged 12-59 months in São Paulo, Brazil[J]. Clinical Infectious Diseases, 2004, 38(11): 1545-1551.
DOI URL |
| [6] |
HUIJBERS P M C, BLAAK H, DE JONG M C M, et al. Role of the environment in the transmission of antimicrobial resistance to humans: a review[J]. Environmental Science & Technology, 2015, 49(20): 11993-12004.
DOI URL |
| [7] | 魏麟, 朱方莉, 周洋, 等. 噬菌体在检测食源性病原菌中的应用研究进展[J]. 食品科学, 2018, 39(17): 314-322. |
|
WEI L, ZHU F L, ZHOU Y, et al. Progress in the application of bacteriophage in the detection of foodborne pathogenic bacteria[J]. Food Science, 2018, 39(17): 314-322. (in Chinese)
DOI URL |
|
| [8] | 孙伟, 朱春宝. 噬菌体治疗细菌感染的研究[J]. 国外医药(抗生素分册), 2005, 26(2): 54-58. |
| SUN W, ZHU C B. Study on bacteriophage therapy for bacterial infection[J]. World Notes on Antibiotics, 2005, 26(2): 54-58. (in Chinese) | |
| [9] | ZHAO J, HE L, PAN L, et al. Effect of a lytic bacteriophage on rabbits experimentally infected with pathogenic Escherichia coli[J]. World Rabbit Science, 2017, 25(3): 273. |
| [10] | MAI V, UKHANOVA M, REINHARD M K, et al. Bacteriophage administration significantly reduces Shigella colonization and shedding by Shigella-challenged mice without deleterious side effects and distortions in the gut microbiota[J]. Bacteriophage, 2015, 5(4): e1088124. |
| [11] |
ZHANG H, WANG R, BAO H D. Phage inactivation of foodborne Shigella on ready-to-eat spiced chicken[J]. Poultry Science, 2013, 92(1): 211-217.
DOI URL |
| [12] | WAITE D W, TAYLOR M W. Characterizing the avian gut microbiota: membership, driving influences, and potential function[J]. Frontiers in Microbiology, 2014, 5: 223. |
| [13] |
ABREU M T. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function[J]. Nature Reviews Immunology, 2010, 10(2): 131-144.
DOI URL |
| [14] | 陈丹丹, 顾胜华, 张金娜, 等. 肠道菌群对免疫系统的影响及其群落分析方法[J]. 应用与环境生物学报, 2013, 19(3): 542-546. |
|
CHEN D D, GU S H, ZHANG J N, et al. Effect of intestinal microbes on the immune system and the latest research methods[J]. Chinese Journal of Applied and Environmental Biology, 2013, 19(3): 542-546. (in Chinese with English abstract)
DOI URL |
|
| [15] |
SOMMER F, BÄCKHED F. The gut microbiota-Masters of host development and physiology[J]. Nature Reviews Microbiology, 2013, 11(4): 227-238.
DOI URL |
| [16] | GUTIÉRREZ B, DOMINGO-CALAP P. Phage therapy in gastrointestinal diseases[J]. Microorganisms, 2020, 8(9): 1420. |
| [17] | MANRIQUE P, DILLS M, YOUNG M J. The human gut phage community and its implications for health and disease[J]. Viruses, 2017, 9(6): 141. |
| [18] |
CEPKO L C S, GARLING E E, DINSDALE M J, et al. Myoviridae phage PDX kills enteroaggregative Escherichia coli without human microbiome dysbiosis[J]. Journal of Medical Microbiology, 2020, 69(2): 309-323.
DOI URL |
| [19] | FUJIMOTO K, KIMURA Y, SHIMOHIGOSHI M, et al. Metagenome data on intestinal phage-bacteria associations aids the development of phage therapy against pathobionts[J]. Cell Host & Microbe, 2020, 28(3): 380-389. |
| [20] | 孙宇杰, 柳佳志, 王智柔, 等. 噬菌体SYJ4及其对肉鸡痢疾治疗效果的初步探究[J]. 农业现代化研究, 2016, 37(3): 601-605. |
| SUN Y J, LIU J Z, WANG Z R, et al. The therapeutic effect of bacteriophage SYJ4 on diarrhea in broiler chickens[J]. Research of Agricultural Modernization, 2016, 37(3): 601-605. (in Chinese with English abstract) | |
| [21] |
EDGAR R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10): 996-998.
DOI URL |
| [22] |
SHAHIN K, BOUZARI M, KOMIJANI M, et al. A new phage cocktail against multidrug, ESBL-producer isolates of Shigella sonnei and Shigella flexneri with highly efficient bacteriolytic activity[J]. Microbial Drug Resistance (Larchmont, N Y), 2020, 26(7): 831-841.
DOI URL |
| [23] |
WELCH T J. Characterization of a novel Yersinia ruckeri serotype O1-specific bacteriophage with virulence-neutralizing activity[J]. Journal of Fish Diseases, 2020, 43(2): 285-293.
DOI URL |
| [24] | 葛龙, 贺永超, 董强, 等. 噬菌体制剂对肉鸡生长性能、肠道菌群及免疫功能的影响[J]. 饲料研究, 2020, 43(4): 111-115. |
| GE L, HE Y C, DONG Q, et al. Effect of bacteriophage preparation on growth performance, intestinal flora and immune organs of broilers[J]. Feed Research, 2020, 43(4): 111-115. (in Chinese with English abstract) | |
| [25] | 张灿, 卢国民, 刘文华, 等. 灌服噬菌体对白羽肉鸡肠道菌群的影响[J]. 中国抗生素杂志, 2017, 42(9): 755-759. |
| ZHANG C, LU G M, LIU W H, et al. Effects of bacteriophages on intestinal microbiota of white feather broilers by oral adminstration[J]. Chinese Journal of Antibiotics, 2017, 42(9): 755-759. (in Chinese with English abstract) | |
| [26] |
WEI S, MORRISON M, YU Z. Bacterial census of poultry intestinal microbiome[J]. Poultry Science, 2013, 92(3): 671-683.
DOI URL |
| [27] |
OAKLEY B B, LILLEHOJ H S, KOGUT M H, et al. The chicken gastrointestinal microbiome[J]. FEMS Microbiology Letters, 2014, 360(2): 100-112.
DOI URL |
| [28] | LAMENDELLA R, DOMINGO J W S, GHOSH S, et al. Comparative fecal metagenomics unveils unique functional capacity of the swine gut[J]. BMC Microbiology, 2011, 11: 103. |
| [29] |
SHIN N R, WHON T W, BAE J W. Proteobacteria: microbial signature of dysbiosis in gut microbiota[J]. Trends in Biotechnology, 2015, 33(9): 496-503.
DOI URL |
| [30] |
CLAVIJO V, FLÓREZ M J V. The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: a review[J]. Poultry Science, 2018, 97(3): 1006-1021.
DOI URL |
| [31] |
YU X, NIU S L, TIE K Y, et al. Characteristics of the intestinal flora of specific pathogen free chickens with age[J]. Microbial Pathogenesis, 2019, 132: 325-334.
DOI URL |
| [32] |
BIAN X, WANG T T, XU M, et al. Effect of Lactobacillus strains on intestinal microflora and mucosa immunity in Escherichia coli O157: H7-induced diarrhea in mice[J]. Current Microbiology, 2016, 73(1): 65-70.
DOI URL |
| [33] | 王利勤. 鸡源致病性大肠埃希菌耐药基因及毒力基因检测研究[D]. 杨凌: 西北农林科技大学, 2012. |
| WANG L Q. Study on resistance genes and virulence genes of pathogenic Escherichia coli isolates from chickens[D]. Yangling: Northwest A & F University, 2012. (in Chinese with English abstract) | |
| [34] | VON KLITZING E, EKMEKCIU I, KÜHL A A, et al. Multidrug-resistant Pseudomonas aeruginosa aggravates inflammatory responses in murine chronic colitis[J]. Scientific Reports, 2018, 8: 6685. |
| [1] | 翁歆之, 刁奕昕, 贺洁, 刘莉, 沈海钰, 郭琦, 沈卫锋, 韩明明, 楼宝, 吕孙建. 弧菌噬菌体鸡尾酒制剂对凡纳滨对虾肠道微生物区系的影响[J]. 浙江农业学报, 2025, 37(5): 1045-1056. |
| [2] | 吴兴凤, 肖英平, 吕文涛, 马灵燕, 陈渠, 温洋, 徐娥. 丁酸梭菌通过调节结肠微生物结构和短链脂肪酸含量影响小鼠肌纤维类型[J]. 浙江农业学报, 2025, 37(3): 568-578. |
| [3] | 刘雅丽, 杨福生, 宋榜桂, 杜雪, 俞奇力, 陈菲, 陈国宏. 甜菊糖苷对黄羽肉鸡生长的影响[J]. 浙江农业学报, 2025, 37(10): 2049-2056. |
| [4] | 齐天鹏, 刘莉, 夏美文, 吕孙建, 徐海圣. 乳酸菌和噬菌体对中华鳖生理生化与肠道菌群的影响[J]. 浙江农业学报, 2025, 37(1): 39-48. |
| [5] | 张妮, 陶文扬, 罗梦帆, 周万怡, 郑晓杰, 李彦坡, 金火喜, 杨颖. 酶解辅助提取对铁皮石斛多糖结构和菌群调节功能的影响[J]. 浙江农业学报, 2024, 36(9): 2099-2109. |
| [6] | 张红芳, 钱涛, 金婷, 谢小玲, 吴酬飞, 肖英平, 马灵燕. 草鱼肠道微生物谱及其发育性变化[J]. 浙江农业学报, 2024, 36(4): 780-789. |
| [7] | 温婉宁, 王晨, 胡连花, 房志家, 邓旗, 孙力军. 海蛾水提取物对小鼠系统低度炎症的干预作用[J]. 浙江农业学报, 2024, 36(12): 2784-2793. |
| [8] | 吴兴凤, 章啸君, 朱江, 余敏洁, 徐娥, 马灵燕, 肖英平. 腹泻仔猪肠道菌群结构特征及肠道炎症因子、腺苷酸环化酶和鸟苷酸环化酶mRNA表达变化研究[J]. 浙江农业学报, 2024, 36(11): 2465-2475. |
| [9] | 王志鹏, 赵剑, 黄盼, 崔雪梅, 南黎, 宋厚辉, 鲍国连, 刘燕. 兔源大肠埃希菌噬菌体分离鉴定与生物学特性研究[J]. 浙江农业学报, 2022, 34(8): 1599-1608. |
| [10] | 洪伟鸣, 李睿婷, 郭子杰, 徐海, 左伟勇, 张亮, 宋亮. T7噬菌体尾丝蛋白随机进化文库的构建[J]. 浙江农业学报, 2022, 34(12): 2640-2647. |
| [11] | 徐海, 王健, 郭长明, 董洪燕, 邓碧华, 侯继波. 单域抗体T7噬菌体展示文库构建与鉴定[J]. 浙江农业学报, 2021, 33(1): 27-33. |
| [12] | 刘江英, 朱建津, 蒋蓉, 刘子微. 多菌种联合发酵饲料对肉鸡抗沙门氏菌感染能力的影响[J]. 浙江农业学报, 2019, 31(2): 229-234. |
| [13] | 肖英平, 杨彩梅, 代兵, 李开锋, 陈镜刚, 杨华. 基于高通量测序的丁酸梭菌对肉鸡盲肠菌群结构的影响[J]. 浙江农业学报, 2017, 29(3): 373-379. |
| [14] | 靳二辉, 周金星, 任曼, 胡倩倩, 金光明, 李升和. 酵母硒和硼联合添加对肉鸡免疫器官组织结构及免疫功能的影响[J]. 浙江农业学报, 2017, 29(11): 1783-1795. |
| [15] | 邢晋祎, 王晓培, 宋琪. 肉鸡MTHFR基因的克隆和表达水平研究[J]. 浙江农业学报, 2016, 28(12): 2033-2039. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||